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Abstract

1 cycle expansions.

1 Introduction

This paper is organized as follows: Section 2 is a brief introduction to cycle
expansion averaging. In section 3 some known facts are reviewed and section 4
considers linear response in terms of periodic orbits. The summary and conclusion
is presented in section 7.

Cycle expansion is a technique for evaluation of averages and eigenvalues of
chaotic systems (for an introduction to the periodic orbit theory we refer the
reader to ref. [1]) and is based on calculation of derivatives of dynamical zeta
functions.

2 Periodic orbit averaging

Expand the dynamical zeta function as a formal power series,

1/ζ =
∏
p

(1− tp) = 1−
∑′

p1+p2+...+pk

tp1+p2+...+pk ,

tp1+p2+...+pk = (−1)k+1tp1tp2 . . . tpk (1)
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where the prime on the sum indicates that the sum is over all distinct non-
repeating combinations of prime cycles. For k > 1, tp1+p2+...+pk are weights of
pseudocycles; they are sequences of shorter cycles that shadow a cycle with the
symbol sequence p1p2 . . . pk along segments p1, p2, . . ., pk.

The simplest example is the cycle expansion for a system described by a
complete binary symbolic dynamics. In this case the Euler product (??) is given
by

1/ζ = (1− t0)(1− t1)(1− t01)(1− t001)(1− t011)

(1− t0001)(1− t0011)(1− t0111)(1− t00001)(1− t00011)

(1− t00101)(1− t00111)(1− t01011)(1− t01111) . . .

and the first few terms of the expansion (1) ordered by increasing total pseudo-
cycle length are:

1/ζ = 1− t0 − t1 − t01 − t001 − t011 − t0001 − t0011 − t0111 − . . .
−t0+1 − t0+01 − t01+1 − t0+001 − t0+011 − t001+1 − t011+1

−t0+01+1 − . . .

We refer to such series as a cycle expansion. A cycle expansion is a series repre-
sentation of a dynamical zeta function or a spectral determinant, expanded as a
sum over pseudocycles, ordered by increasing cycle length and instability.

The next step is the key step: regroup the terms into the dominant fundamen-
tal contributions tf and the decreasing curvature corrections cn. For the binary
case this regrouping is given by

1/ζ = 1− t0 − t1 − [(t01 − t1t0)]− [(t001 − t01t0) + (t011 − t01t1)]

−[(t0001 − t0t001) + (t0111 − t011t1)

+(t0011 − t001t1 − t0t011 + t0t01t1)]− . . .
= 1−

∑
f

tf −
∑
n

cn . (2)

We refer to such regrouped series as curvature expansions. This separation into
“fundamental” and “curvature” parts of cycle expansions is possible only for dy-
namical systems whose symbolic dynamics has finite grammar. The fundamental
cycles t0, t1 have no shorter approximants; they are the “building blocks” of the
dynamics in the sense that all longer orbits can be approximately pieced together
from them. The terms grouped in brackets are the curvature corrections; the
terms grouped in parenthesis are combinations of longer orbits and their shorter
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“shadowing” approximants. If the flow is continuous and smooth, orbits of simi-
lar symbolic dynamics will traverse the same neighborhoods and will have similar
weights, and the weights in such combinations will almost cancel. The utility of
cycle expansions dynamical zeta functions and spectral determinants lies pre-
cisely in this organization into nearly cancelling combinations: cycle expansions
are dominated by short cycles, with long cycles giving exponentially decaying
corrections.

3 Cycle formulas for dynamical averages

The eigenvalue condition for the dynamical zeta function (1)

0 = 1−
∑′

tp1+p2+...+pk , ti = ti(β, s(β)) =
1

|Λi|
eβ·Ai−s(β)Ti (3)

is an implicit equation for s = s(β) of form G(β, s(β)) = 0. The cycle averaging
formulas for the slope and the curvature of s(β) are obtained by taking the
derivatives of the eigenvalue condition. The first derivative leads to

0 =
d

dβ
G(β, s(β))

=
∂G

∂β
+

∂s

∂β

∂G

∂s

∣∣∣∣
s=s(β)

=⇒ ∂s

∂β
= −∂G

∂β
/
∂G

∂s
. (4)

Denoting by

〈A〉G = − ∂G

∂β

∣∣∣∣
β,s=s(β)

, 〈T〉G =
∂G

∂s

∣∣∣∣
β,s=s(β)

(5)

respectively the mean cycle expectation value of A and the mean cycle period
computed from the G(β, s(β)) = 0 condition we obtain the cycle averaging for-
mulas for the expectation value of the observable

〈a〉 =
〈A〉G
〈T〉G

(6)

3.1 Dynamical zeta function cycle expansions

Substituting the cycle expansion (1) for dynamical zeta function we obtain the
cycle averaging formulas for the mean cycle A and the mean cycle period

〈A〉ζ := − ∂

∂β

1

ζ
=
∑′

(Ap1 +Ap2 · · ·+Apk) tp1+p2+...+pk

3



〈T〉ζ :=
∂

∂s

1

ζ
=
∑′

(Tp1 + Tp2 · · ·+ Tpk) tp1+p2+...+pk ,

where 〈· · ·〉ζ stands for the dynamical zeta function average over prime cycles,
and cycle weights are evaluated at their leading eigenvalue values tp = tp(β, s(β)).
For bounded flows s(0) = 0, so

〈A〉ζ =
∑′

(−1)k+1Ap1 +Ap2 · · ·+Apk
|Λp1 · · ·Λpk |

〈T〉ζ =
∑′

(−1)k+1Tp1 + Tp2 · · ·+ Tpk
|Λp1 · · ·Λpk |

. (7)

For example, for the complete binary symbolic dynamics the mean cycle period
〈T〉ζ is given by

〈T〉ζ =
T0

|Λ0|
+

T1

|Λ1|
+

(
T01

|Λ01|
− T0 + T1

|Λ0Λ1|

)
+

(
T001

|Λ001|
− T01 + T0

|Λ01Λ0|

)
+

(
T011

|Λ011|
− T01 + T1

|Λ01Λ1|

)
+ . . . (8)

and similarly for 〈A〉ζ . Note that these cycle expansions are also grouped into
shadowing combinations, with nearby pseudoorbits nearly cancelling each other.

The mean cycle period 〈T〉ζ fixes the normalization of the unit of time; it can
be interpreted as the average near recurrence or the average first return time.
For example, if we have evaluated a billiard expectation value 〈a〉 in terms of
continuous time, and would like to also have the corresponding average 〈a〉dscr
measured in discrete time given by the number of reflections off billiard walls,
the two averages are related by

〈a〉dscr = 〈a〉 〈T〉ζ / 〈n〉ζ , (9)

where 〈n〉ζ is the average of the number of bounces np along the cycle p.

4 Linear response in terms of periodic orbits

4.1 Eigenvalue shift using dynamical zeta functions

Consider the dynamical system

d

dt
xi = vi(x) (10)
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Assume hyperbolicity and construct the dynamical zeta function; an eigenvalue
sα is determined by the condition

1/ζ0(sα) = 0. (11)

Consider now a weakly perturbed system

d

dt
xi = vi(x) + εδvi(x), |ε| � 1 (12)

where the perturbation δvi(x) is space, but not time dependent. The eigenvalues
of the perturbed system are slightly shifted:

sα → sα + δsα, (13)

so the condition on the dynamical zeta function becomes

1/ζ(sα + δsα) = 0. (14)

To linear order

1/ζ(sα) + δsα
∂

∂s

1

ζ(sα)
= 0 (15)

so the eigenvalue shift is

δsα = −1/ζ(sα)
∂
∂s

1
ζ(sα)

. (16)

The cycle expansion of 1/ζ(s) is a cycle-by-cycle deformation of 1/ζ0(s)± new/lost
cycles. We assume that the dynamics is structurally stable, so the latter contri-
bution will be ignored until further notice. To linear order the cycle expansion
is

1/ζ(sα) =
∑
p

tp(sα) +
∑
p

δtp(sα). (17)

The first sum is the cycle expansion of 1/ζ0(sα) which vanishes by (11). Now the
denominator can be replaced by ∂

∂s
1

ζ0(sα) to leading order, so

∂

∂s

1

ζ(sα)
=

∂

∂s

1

ζ0(sα)
=
∑
p

∂

∂s
tp(sα)

= −
∑
p

Tptp(sα) = −〈T 〉ζ . (18)
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The cycle weight variation is a combination of variations of Ap, Tp and Λp due
to deformation of the cycle. One finds with the orbit weight

tp =
1

|Λp|
eβAp−sTp (19)

δtp =

(
βδAp − sδTp −

δΛp
Λp

)
tp, (20)

so the eigenvalue shift is given by

δsα = −
β 〈δAp〉ζ − s 〈δTp〉ζ −

〈
δΛp
Λp

〉
ζ

〈T 〉ζ

∣∣∣∣∣∣∣
s=sα

(21)

4.2 Cycle averaging formulas for linear response of observables

The observable, the eigenvalue sα and the characteristics of the orbits now all
depend on the variation of the system δε. However, for each fixed value of the
external parameter (12) the averaging formula in terms of periodic orbits should
be applicable. Thus:

∂ 〈a〉
∂ε

=
∂

∂ε

〈A〉ζ
〈T 〉ζ

=
〈T 〉ζ

∂〈A〉ζ
∂ε − 〈A〉ζ

∂〈T 〉ζ
∂ε

〈T 〉2ζ
(22)

=

∂〈A〉ζ
∂ε − 〈a〉ζ

∂〈A〉ζ
∂ε

〈T 〉ζ
. (23)

Here the zeta averages are calculated with the weight (19).

We remark that in a typical calculation of a physical average β is put to
zero. For a bounded system the leading eigenvalue s0 = 0 independent on the

perturbation. Let us show how to calculate
∂〈A〉ζ
∂ε (the formula for

∂〈T 〉ζ
∂ε is similar).

From (20) it follows that:
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Figure 1: The truncated dynamical zeta function.

∂ 〈A〉ζ
∂ε

=
∂

∂ε

∑
p

tpAp =
∑
p

∂tp
∂ε
Ap +

∑
p

∂Ap
∂ε

tp (24)

=
∑
p

tp

((
−s∂Tp

∂ε
+ β

∂Ap
∂ε
−

∂Λp
∂ε

Λp

)
Ap +

∂Ap
∂ε

)
. (25)

Using this and the formula above for the eigenvalue shift we calculate ∂〈a〉
∂ε .

We find

∂ 〈a〉ζ
∂ε

=
1

〈T 〉ζ

(〈
(β(A− 〈a〉T ) + 1)

∂A

∂ε

〉
−
〈

(sα − (1− sα) 〈a〉)∂T
∂ε

〉

−
〈

(A− 〈a〉T )
∂Λ
∂ε

|Λ|

〉)
(26)

5 Numerical tests of the linear response theory

6 Results

The averages we wish to know consist of

7 Conclusions

In conclusion we have demonstrated that exact
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