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PACS. 05.45.Mt – Quantum chaos; semiclassical methods.
PACS. 46.40.Cd – Mechanical wave propagation (including diffraction, scattering, and disper-

sion).
PACS. 62.30.+d – Mechanical and elastic waves; vibrations.

Abstract. – The exact elastodynamic scattering theory is constructed to describe the spec-
tral properties of two- and more- cylindrical cavity systems, and compared to an elastodynamic
generalization of the semi-classical Gutzwiller unstable periodic orbits formulas. In contrast to
quantum mechanics, complex periodic orbits associated with the surface Rayleigh waves domi-
nate the low-frequency spectrum, and already the two-cavity system displays chaotic features.

Introduction. – The Gutzwiller semi-classical quantization of classically chaotic systems
relates quantum observables such as spectral densities to sums over classical unstable periodic
orbits [1, 2]. The work presented here is a step toward a formulation of such approximate
short-wavelength theory of wave chaos for the case of linear elastodynamics. Why elasto-
dynamics? The experiments initiated in ref. [3] attain Q values as high as 5 · 106, making
spectral measurements in elastodynamics competitive with measurements in microwave cav-
ities at liquid-helium temperatures [4, 5], and vastly superior to nuclear-physics and room
temperature microwave experiments for which the Q values are orders of magnitude lower,
typically ∼ 102–103. For elastodynamics there are only a few experimental demonstrations [6]
of the existence of unstable periodic orbits, and no theory that would predict them. While
Oxborrow et al. [3] measure about 105 spectral lines, the current theory is barely adequate for
computation of dozens of resonances. A more effective theory would find many applications
such as in the frequency domain quality testing for small devices built from high-Q materials.
This unsatisfactory state of affairs is the raison d’être for the theoretical effort undertaken here.

While current experiments excel in measurements of eigenspectra of compact resonators,
the periodic orbit theory computations of such bound system spectra are rendered difficult
by the presence of non-hyperbolic phase space regions. As our primary goal is to derive and
test rules for replacing wave mechanics by the short-wavelength ray-dynamic trajectories, we
concentrate here instead on the problem of scattering off cylindrical cavities, for which the
classical dynamics is fully under control. In the case of one cavity the exact scattering spectrum
is known [7]. For the multiple-cavities case we generalize the quantum-mechanical (QM) S-
matrix formalism for N -disk scattering [8–11], and compute the exact resonances and the
Wigner time delays from the full elastodynamic wave-mechanical scattering matrix. We then
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compare the exact results with the corresponding quantities calculated in the short-wavelength
approximation (SWA), and discover that the QM intuition fails us: the Rayleigh surface waves
(which have no analog in the QM scattering problem) dominate the low-frequency spectrum
because of their weights and number, such that already the two-disk elastodynamic scattering
problem displays chaotic features in this regime in contrast to its QM counterpart.

Elastodynamics. – Consider an infinite slab of an isotropic and homogeneous elastic ma-
terial (e.g., polyethylene or isotropic quartz) with parallel top and bottom plane boundaries,
and an in-phase stimulus such that the system behaves quasi–two-dimensionally along the
slab, with no excitation of or coupling to waves propagating perpendicular to the slab. The
propagating waves are either the pressure or the shear solutions of the Navier-Cauchy equa-
tion [12] µ∇2u + (λ + µ)∇(∇ · u

)
+ ρω2u = 0, where u is a vectorial displacement field,

λ and µ are the Lamé constants, ρ the mass density and ω the frequency. The experiments
dictate free boundary conditions, with vanishing traction t(u) = 0, where

t(u) ≡
[
λ
(
∇ · u

)
1+ µ

{(∇u
)
+

(∇u
)T

}]
· n̂ . (1)

Here n̂ is a unit vector normal to the boundary, 1 the unit matrix, and T indicates a transposi-
tion. Elastodynamic waves are vectorial, with the pressure (longitudinal, L) wave propagating
through the bulk with velocity cL =

√
(λ+ 2µ)/ρ, and the shear (transverse, T) wave with ve-

locity cT =
√

µ/ρ. Furthermore, the Rayleigh surface waves propagate along plane boundaries
unattenuated, with the velocity cR determined [12] by the condition

0 =
(
2η2 − 1

)2 − 4η2

√
(η2 − 1)(η2 − (cT/cL)

2) with η ≡ cT/cR . (2)

When either a shear or pressure plane wave hits a boundary, mode conversion can take
place [13], with waves of different types emitted at different angles. We now drill one, two, or
more cylindrical cavities of radius a perpendicularly through the slab.

One-cavity scattering, the exact spectrum. – Scattering off a single cylindrical cavity is
separable in angular momentum. The one-cavity S-matrix of elastodynamics, a [2× 2] matrix
in {L,T} components, is determined by the free boundary condition for the traction matrices

S
(1)
mm′ = −δmm′

[
t(+)
m

]−1 · [t(−)
m

]
, m = 0,±1,±2, · · · . (3)

For comparison, the corresponding one-disk scattering matrix [11, 14] of quantum mechanics
(QM), for a scalar field with the Dirichlet boundary condition, is expressed in terms of Hankel
functions, S

(1)
mm′ = −δmm′H(−)

m′ (ka)/H
(+)
m (ka), as a function of the wave number k. The

traction matrices [15] of angular momentum m and superscript Z ∈ {+,−, J} result when
outgoing (+), incoming (−) or regular (J) pressure and shear displacements u in terms of
Hankel or Bessel functions, Zm ∈ {H(+)

m ,H(−)
m , Jm}, are inserted into the traction (1):

[
t(Z)
m

]
πσ

=
2µ
a2

[
(−1)σδπσ

(
kσ

d
dkσ

− (
m2 − 1

2k
2
Ta

2
)) − im(1− δπσ)

(
kσ

d
dkσ

− 1
)]

Zm(akσ).

(4)
The index π ∈ {1, 2} labels the 2-d spherical components {r̂, θ̂} of the displacement u at the
cavity while σ ∈ {1, 2} labels its polarization {L,T}, where kσ = ω/cσ are the corresponding
wave numbers. The scattering resonances for the one-cavity elastodynamic medium with
traction-free boundary conditions are determined [7] from det

[
t
(+)
m

]
= 0, see eq. (3).
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Fig. 1 – The lowest few hundred exact A1 resonances of the two-cavity elastodynamic scatterer, in the
complex pressure wave number kL = ω/cL plane. The labels refer to the various resonance families
interpreted (together with the lines) in the Discussion section, where the italics specify the orders in
the cumulant expansion at which the structures are first observed. The second label indicates whether
the bands are lead ing (closest to the real axis), add itional, subleading, rising, regular or dropping.

Multi-cavity scattering, exact spectrum. – We construct the S-matrix for the N -cavity
system following ref. [11]. The determinant of the N -scatterer S-matrix factorizes, as in QM,
into the product of the one-cavity determinants and the multi-scattering contributions [11,15]:

detS(ω) =
Det

[
M(ω∗)†

]
Det

[
M(ω)

] N∏
j=1

detS(1)j
(ω) . (5)

Here the matrix M = 1+A is the inverse of the multi-scattering matrix. The transfer matrix
A evolves the displacement of internal angular momentum l′ = 0,±1,±2, · · · and spherical
component π′ ∈ {1, 2} at cavity j′ (of radius aj′) to the (l = 0,±1,±2, · · · and π ∈ {1, 2})
displacement at cavity j (of radius aj) where j, j′ = 1, · · · , N are the cavity labels:

[
Ajj′

ll′
]
ππ′ = (1− δjj′)

aj

aj′

2∑
σ=1

2∑
σ′=1

[
t
(J)j
l

]
πσ

[
T

(+)jj′

ll′

]
σσ′

[
t
(+)j′

l′
]−1

σ′π′ . (6)

The matrix [T(+)jj′

ll′ ]σσ′= δσσ′H(+)
l−l′(kσRjj′) exp [ilαj′j − il′(αjj′ − π)] translates the {L,T}

modes evaluated relative to the origin of cavity j′ to the corresponding modes at cavity j.
Rjj′ and αjj′ are the relative center-to-center distances and angles, respectively [11,15]. The
multi-scattering resonances of the N -cavity problem are given by the zeros of DetM(ω), see
eq. (5). For the two-cavity system the two-fold reflection symmetry implies that the determi-
nant factors into four irreducible representations, with the transfer matrix for each irreducible
subspace defined on the fundamental domain, a quarter of the full elastodynamic slab [2].

Here we present typical numerical results for the fully symmetric A1 subspace of the system
of two cylindrical cavities. In all presented calculations we take values of the Lamé constants
corresponding to polyethylene [7], and set cL = 1950m/s, cT = 540m/s, cR ≈ 513m/s, and
take cavities of radius a = 1 cm, center-to-center separation R = 6 cm. The lowest few hundred
exact A1 resonances (hopefully, all A1 resonances in the window [0 < Re kLa < 45,−0.55 <
Im kLa < 0]) determined by the zeros of Det(1+ A)|A1

are shown in fig. 1.
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aηa

Fig. 2 – Two new periodic orbits of Rayleigh type of topological length 2 (and “effective” arc radius
ηa > a) in the fundamental domain (and the full space) of the two-cavity system. In the former the
Rayleigh orbits are further classifiable by the number of contacts with the two symmetry axes [17,18].

One-cavity scattering, ray-dynamic interpretation. – In the one-cavity case a sophis-
ticated theory of ray dynamics already exists. The main tool is the Sommerfeld-Watson
transformation which in the QM case replaces a slowly converging partial wave sum by a fast
converging sum over complex creeping trajectories, first derived by Franz [14]. The pressure
and shear Franz resonances also exist in elastodynamics [16], but here the one-cavity spectrum
is dominated by the weakly damped Rayleigh resonances [7], with no QM counterpart.

In the spirit of Keller’s geometrical theory of diffraction [16] we use the one-cavity S-
matrix (3) to assign a ray-dynamic weight to a segment of the boundary traversed by a
Rayleigh wave. A circular Rayleigh segment of arc length ∆φa (with ∆φ the pertinent angle)
has the complex-valued weight exp[i∆φ νR(ω)], such that the effective arc length of a Rayleigh
segment is ∆φ νR(ω)/kT ≈ ∆φaη, where η = cT/cR, see eq. (2). Here we take ∆φ times the
exact wave-mechanical νR(ω), determined as complex angular momentum by det[t(+)

νR(ω)] = 0,
as the input for the complex-valued action of the Rayleigh trajectory segment.

Multi-cavity scattering, ray-dynamic interpretation. – In QM the Gutzwiller-Voros Zeta
function is the semi-classical approximation to DetM, where the connection follows via the
semi-classical reduction of the traces Tr(An) appearing in the cumulant expansion DetM =
1+TrA−[

TrA2 − (TrA)2
]
/2 +· · · . As shown in refs. [10,11], in the SWA (applicable here from

kLa ∼ 2 onwards) the traces TrAn reduce to the set of ray-dynamic periodic orbits of topologi-
cal length n, whereas the cumulants become “curvatures” (periodic orbits shadowed by pseudo
orbits [2]). The shortest geometrical periodic orbits, bouncing between the two cavities, are the
border orbits of topological length one in the fundamental domain. Their weights, derived from
the SWA to TrAA1 , are of form [11,15] tσ = − exp

[
ikσ(R− 2a)

]
/
[√|Λ0|(−Λ0)σ−1(1−Λ−2

0 )
]

with Λ0 =
(
R − a +

√
R2 − 2Ra

)
/a, σ ∈ {1, 2} ≡ {L,T}. These unstable geometrical orbits

including their repetitions are summed up in the usual way in terms of the Gutzwiller-Voros
spectral determinant DetMgeom. [2].

Moreover, Keller’s theory yields orbits with unstable geometrical legs and weakly damped
Rayleigh surface wave arcs circling the cavities. At the topological length one, two (unstable)
complex Rayleigh-type periodic orbits, an “oval” and “figure eight” contribute [10]. In addition
to the repeated primary orbits and the “oval-eight” combination, two new (unstable) Rayleigh-
type orbits contribute to TrA2, see fig. 2 and so on for longer Rayleigh-type orbits, with their
total number (including repeats) growing exponentially with their topological length. By
analogy to creeping orbits [17, 18], if qi, i = 1, · · · , n (with qn+i ≡ qi) are the points along
a cycle where a Rayleigh arc segment connects to geometric trajectories (which may include
reflections with/without conversions between pressure and shear rays), the Rayleigh surface
wave contribution to the spectral determinant is of form

DetM|Rayl. = exp

[ ∞∑
p,r=1

(−1/r)

(
np∏
i=1

[G(qi+1, qi)]σi+1σi

)r ]
. (7)
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Fig. 3 – Wigner time delay for the two-cavity system, the exact A1 result vs. its ray-dynamic expansion
to period two, as a function of the pressure wave number kL (times the cavity radius a).

Here the summation goes over all prime periodic orbits p and their repetition number r.
[G(qi+1, qi)]σi+1σi

(with σi, σi+1 ∈ {L,T}) is the Van-Vleck propagator (including instabilities,
reflections and mode conversions [15, 19]) if qi and qi+1 are connected by a pure geometric
trajectory, and i

2 [D̃R(ω)]σi+1σi
exp[i∆φ νR(ω)] if qi and qi+1 are the endpoints of a Rayleigh

arc segment, with σi, σi+1 the polarizations of the two attached geometrical legs. The [2× 2]
diffraction matrix D̃R(ω) is the elastodynamics analogue of the square of the corresponding
QM diffraction constant [11,17,18]. It is determined by Keller and Karal [16] for the half-plane
case, and in [15] for the circular cavity. [D̃R(ω)]σi+1σi

is proportional to exp[−λ(ω)σi+1−λ(ω)σi
]

with λ(ω)σ ≡ νRarccosh[νR/(akσ)]−
√

ν2
R − (akσ)2, i.e., it is weakly attenuated for the pure

shear case σi+1 = σi = T at low frequencies, but strongly attenuated otherwise.
The “semiclassical” form of the spectral determinant is given by the formal product

DetM|geom. × DetM|Rayl., evaluated in the cycle expansion where the classifying topological
length is equal to the number of geometrical straight legs of the orbits and pseudo orbits [2].

The Wigner time delays and cumulant traces are particularly well suited to detailed com-
parisons of the exact results with the SWA [11]. In fig. 3 we plot the exact Wigner “time” delay
τcl = d

dkLaηcl of the cluster phase shift ηcl(ω) = −i1
2 ln

[
DetM(ω∗)†/DetM(ω)

]
as a function

of the pressure wave number kL = ω/cL, and compare it to the cycle expansion based on the
geometrical and complex periodic orbits of topological lengths one and two. The periodic orbit
approximation is in good agreement with the exact result which can be truncated at second
cumulant order for the presented kL values. Finally, in fig. 4 we compare the periods of the
ray-dynamic periodic orbits with the Fourier peaks of the exact wave-mechanical data by plot-
ting the moduli of the Fourier transforms of TrAA1 and TrA2

A1
for the region 10 ≤ kLa ≤ 45,

and the corresponding Fourier transforms of sums over periodic orbits of topological length
one and two, respectively. The Fourier peaks indeed correspond to the periodic-orbit periods
Tp =

∑
iL

liL/cL +
∑

iT
liT/cT +

∑
iR

ηa∆φiR/cT, with liL , liT and ηa∆φiR the (effective)
geometrical lengths of the pressure, shear and Rayleigh segments, respectively.

The SWA captures nearly all qualitative features of the exact calculation. However, the
1/kLa corrections are still not negligible, as can be seen from the small structure close to 0.1ms
in fig. 4 (right). This corresponds to a combined LT geometric orbit that vanishes in the SWA,
as there is no coupling of pressure to shear rays at perpendicular impact. The complex orbits
visible in fig. 4 have only shear segments coupled to Rayleigh segments, whereas the coupling
of pressure segments to Rayleigh segments is severely suppressed (since cL � cR).
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Fig. 4 – Comparison of the Fourier transforms of the exact traces TrAA1 (left panel) and TrA2
A1 (right

panel) of the two-cavity system with the short-wavelength approximation (SWA) based on periodic
orbits of topological length one and periodic orbits of topological length two, respectively, in the range
10 ≤ kLa ≤ 45. All peaks are identifiable as the periods of the shortest period orbits.

Discussion. – These observations combined with the cumulant expansion (in detail be-
yond the scope of this letter) explain the qualitative features of the low-frequency resonance
spectrum shown in fig. 1. The dotted and dashed lines represent the imaginary parts Im kL

= − 1
2 ln(Λ0)/(R− 2a) ≈ −0.29/a and Im kT = − 3

2 ln(Λ0)cT/cL(R− 2a) ≈ −0.24/a predicted
by the isolated pressure tL and shear tT orbit, respectively. As the transverse oscillation of
the tT orbit strongly mixes with the Rayleigh waves of nearly the same wave velocity, the
irregular band with the leading and subleading resonances arises from the interference of the
Rayleigh orbits with the tT orbit. Due to this mixing, there are no resonances on the tT line.

The Rayleigh orbits include the factor (1−exp[2πiνR])−1 which arises from the geometrical
sum of the additional Rayleigh waves around the half-cavity in the fundamental domain. These
1-cavity structures, which lead to the leading resonances in the 1-cavity case, correspond
here to poles in DetMA1 which amplify the contributions of the Rayleigh orbits already at
topological length one, but which also complicate the searches for nearby genuine multi-
scattering resonances, the zeros of DetMA1 . This is especially the case for the family i-add.

Below RekLa ≈ 32, SWA cycles of at most topological length two are needed to get a
qualitative fit of the chaotic band labelled as ii-lead, whereas already order one is sufficient for
the resonances i-lead, before they merge with the rising band ii-ris at about RekLa ≈ 4, and
for the resonances i-add. Below RekLa ≈ 2, the SWA expansion breaks down and a uniform
approximation based on a multipole expansion as in ref. [20] should take over. The dropping
band, iii-drop, has a QM analog which is generated by Franz’ creeping waves. The regular
family of resonances (see iii-reg and iv-reg) corresponds to the tL orbit that dominates the QM
two-disk case [17], but is subdominant here, and that couples neither to the complex Rayleigh
orbits nor to the shear orbit. When the rising band (iv-ris) crosses the regular band (iii-reg),
the cumulant orders three and four are interchanged. It continues as band iii-ris and merges
with the subleading band ii-sub at about RekLa = 35, generating the combined band iii-sub.

For the kL window shown in fig. 1, the periodic orbit sum can be truncated at length four,
since the spectrum generated from the cumulant expansion to this order does not differ from
the complete one to the resolution of this figure. This is confirmed by numerical diagonaliza-
tions of the M ×M matrices MA1(kL) in the {L,T}× angular momentum space where M has
to satisfy the bound M > e(cL/cT)|kL|a (e.g., M > 440 for Re kL = 45/a) [8, 11].
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Summary and outlook. – We have derived the scattering determinant and calculated, in
the low-frequency regime, the exact scattering resonances and Wigner time delays for a quasi-
two-dimensional isotropic and homogeneous elastodynamic slab with two cylindrical cavities.
Already the physics of this simplest possible multi-scattering system in elastodynamics with
free boundary conditions is totally different from the one of quantum billiards at low frequen-
cies: none of the measurable medium excitation (e.g., phase shifts, leading resonances) can be
understood without the Rayleigh waves which do not have quantum-mechanical counterparts.
For circular boundaries they are barely damped at all [7] and the diffraction constants, which
link them at the different cavities to the shear waves, are still only weakly attenuated at low
frequencies. These features are generic for smooth finite-size concave cavities. The pressure
waves which are the analog of the scalar quantum-mechanical ones play only a secondary role.

A symbolic dynamics in the total space needs to account for cycles patched together
from 4 kinds of segments: pressure, shear (their sum is the topological length), anti- and
clockwise Rayleigh, implying an exponentially growing number of interfering periodic orbits.
Whether the topological increase or the attenuation of the Rayleigh orbits eventually wins is
still open. Surface orbits of Rayleigh type —with no counterpart in QM— are expected in
general non-convex elastic resonators. Generalizations to anisotropic media (the highest-Q-
value experiments are performed on single crystals of quartz), and applications of the above
ray-dynamics techniques to resonator geometries used in experiments remain open problems.
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