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Abstract 

Penod1c orbit theory methods for evaluation of average values of observables for chaotic dynamical system5 are reviewed 
and illustrated by several examples, such as evaluat10n of the Lyapunov exponents and the d1ffus1on constants 

In chaotic dynamics detailed pred1ct10n 1s impossible, as any finitely specified initial condit10n, no matter 
how precise, will fill out the entire accessible phase space (s1m1larly finitely grained) m finite time Hence for 
chaotic dynamics one does not attempt to follow md1V1dual traJectones to asymptotic times, what 1s possible 
( and sensible) 1s descnpt10n of the geometry of the set of possible outcomes, and evaluation of the asymptotic 
time averages Examples of such averages are transport coefficients for chaotic dynamical flows, such as the 
escape rate, mean dnft and the d1ffus10n rate, power spectra, and a host of mathematical constructs such as 
the generalized d1mens10ns, Lyapunov exponents and the Kolmogorov entropy Here we shall outlme how 
such averages are evaluated w1thm the framework of the penod1c orbit theory The key idea 1s to replace 
the expectat10n values of observables by the expectat10n values of generating funct10nals This associates a 
Ruelle operator with a given observable, and leads to cycle averaging formulas for its dynamical averages In 
contrad1stinct10n to average!> evaluated on finite approximat10ns to Cantor sets, these formulas are exact, and 
highly convergent for nice hyperbolic dynarmcal systems We illustrate the utility of such cycle expansions by 
several examples, such as evaluat10n of the Lyapunov exponents and the d1ffus1on constants 

1. Dynamical averaging 

Consider a d-d1mens1onal dynamical system descnbed by d first order ordinary differential equations 

dt, 
-=F,(x), t=l,2, 
dt 

,d 

The traJectory passing through point x 1s parametenzed by the integral of the above equat10ns 

( 1) 
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I 

x,(t) = / drF,(x) = J:(x), t, = t,(O) 

0 

The flow might descnbe a trajectory of a particle moving in a potential, evolution of concentrat10n-, of a ~ct ot 
chemicals, a d1~crete time mapping Xn = r ( x), or even a renormahzat1on operator flow descnbing a trans1t10n 
to chaos 

I I T1me averaging 

Let </J( T, x( T)) be any "observable" evaluated on a trajectory x( T) = F ( x) Function <P can be a scalar, a 
vector, a tensor, for example, the coordinate <fl, ( T, x) = x, ( T) The integral of an observable along the trajectory 
IS 

I 

<Ji(x) = J dr</J(r, t(r)), x =x(O) 

0 

A familiar example of such function for Ham1ltoman flows 1s the act10n associated with a trajectory, 

I 

<P1 (x) = S(q(t),q(O)) = J dq(r) p(r), t, = (q,p) 

0 

The tune average of the observable along the trajectory 1s given by 

1 
(</J(x)) = hm -<P1(x) 

t~CXJ t 

(2) 

(3) 

If <P does not behave too wildly as a function of lime - for example, </J, = x, 1s bounded for bounded dynamical 
systems - <ti(x) 1s expected to grow not faster than t, and the hm1t (3) might exist In other contexts, such a~ 
in the case of anomalous d1ffus10n, <P1 

( x) 1s not proport10nal to t but some funct10n of t such as ta, in such 
cases ( 3) has to be smtably redefined 

However, ( </J( x)) 1s a very wild funct10n of x, for a mce hyperbolic system 1t takes the same value ( </J) for 
almost all in1lial x, but a different value on any penod1c orbit, 1 e on a dense set of initial p01nts For example, 
for an open ~ystem such as the Sinai gas (an infimte 2D penod1c array of 5cattenng disks) the phase space 1s 
dense with 1mtial x which correspond to penod1c runaway trajectones The mean distance squared traversed by 
such trajectory grows as x(t) 2 ~ t2, and its contnbulion to the d1ffus10n rate D;::::: x(t) 2/t, (3) evaluated with 
</J(x) = x(t) 2, diverges Hence for chaolic dynamical systems robust averaging reqmres also averaging over the 
initial x and worrying about the measure of the "pathological" trajectones 

I 2 Space averaging 

The expectation value (</J), the asymptotic lime and space average over the "phase space" M (d-d1men-,1onal 
integral over t, E M, where t, are the d coordinates of the dynamical system) 15 not of a parlicularly tractable 
form 



(¢>) = l~I J dx (cp(x)) , 
M 

I 
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IMI = J dx =volume, 

M 

= hm -
1

1
-

1 

jdx Jd7cp(7,j7(:t)) 
1-= t M 

M 0 

Ill 

(4) 

Such averages are more convemently studied by introducing an aux1hary variable /3, and investigating instead 
of (¢>) the expectat10n value of 

(5) 

For example, 1f the observable 1s a d-d1mens10nal vector cp, ( 7, x), then f3 1s a conjugate vector f3 E ]Rd, 1f the 

observable 1s a [ d x d] temor, /3 1s also a rank-2 tensor, and so on The aux1hary variable f3 usually has no 
particular physical meamng 

2. Evolution operator formalism 

Formally, all we have done above 1s to insert the 1dent1ty 

I= J dyo(y- j1(x)), (6) 

M 

1 e we are averagmg over trajectones that remain m M for all times However, this subst1tut10n enables us to 
shift the focus from studying indIV1dual trajectones J1 ( x) to the evolut10n of the totality of initial cond1t1ons 
The kernel of ( 5) 1s the Ruelle ( or the evolution) operator [ I] 

£/ ( y, X) = 0 ( y - j1 (-x:) ) e/3 <P' ( ' l ( 7 ) 

The integral over the observable <P 1s add1t1ve along the trajectory 

t1 t1+t2 

<P11
H

2 (x) = j d7q>(7.x(7)) + J d7q>(7,X(7)) =<P11 (x) +<P12 (x(t1)) 

0 tI 

either 1f the observable 1s penod1c, cp( 7 + t1, x( 7)) = ¢>( 7, x( 7)), or 1f 1t has no exphc1t dependence on 7, 
cp( 7, \) = cp( x) ( why we might care about penod1c observables will become clear m Sect10n 4 4) If <P1 

( x) 

ts add1t1ve along the trajectory, the Ruelle operator has the sem1group property J d-;:, £12 (y,-;:,).C11 (-;:,.x) = 
_ct,+ 1I ( y, x) This sem1group property 1s the reason why ( 5) 1s preferable to ( 4) as a startmg pomt for 
evaluation of dynamical averages, thelf value in the asymptotic t -+ '.Xl hmll can be recovered by meam ot 
evolut10n operators If the hm1t (cp(x)), Eq (3) exists for "almost all" in1t1al x, the expectat10n value (5) 1s 
an integral over exponentials, which therefore also grows exponenllally with time 

( e13 ,,,, ) ~ - 1
- / dx e113 (<!>< rl) ~ e1Q<f3 l 

IMI . 
M 

and the funct10n 

Q(/3) = hm ! log (e 13 "'') 
1-00 ( 

(8) 
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also exists £,1 1s a hnear operator actmg on a d1stnbut1on of 1mtial cond1t1ons p( :t), .:t E M, so the t -----. '.X, 

hm1t will be dommated by etQ(/3l, the leadmg eigenvalue of£/, 

(_e,t o p13) (y) = j dx:8(.v- j1(x))e13 '1"C,)p13(x) = etQ(/3Jp13(y), 

M 

(9) 

where p13(x) 1s the correspondmg e1genfunct10n For /3 = 0 the Ruelle operator (7) 1s a dynamical flows 

generahzat10n of the Perron-Frobemus operator of probab1hty theory, with po(t) the natural measure [1-3] 
If the system 1s bounded and no traJectones escape, the leadmg eigenvalue of £,1 1s exactly I, 1 e Q ( 0) = 0 
The expectat10n value \ e/3 rp') 1s a generatmg funct10n for the moments of ¢, and averages such as ( 4) are 

recovered by evaluatmg the denvatives of Q(/3) 

( 10) 

( 11) 

and so forth 
What are such formulas good for? A typical apphcat10n 1s to the problem of descnbmg a particle scattenng 

e]a5t1cally off a 2D tnangular array of d1sk5 If the disks are sufficiently large to block any mfimte length free 
flights, the particle will diffuse chaotically, and the transport coefficient of interest 1~ the d1ffus1on com,tant 

given by x:(t) 2 :::: 4Dt In contrast to D estimated numencally from traJectones x(t) for fimte but large t, the 
above formulas yield an express10n for D evaluated m the t -----. oo hm1t For example, for ¢, = x:, and zero 

mean dnft (x,) = 0, the d1ffus10n constant 1s given by the curvature of the leadmg eigenvalue exponent Q(/3) 

at /3 = 0 

1 1 a
2
Q J D = hm - (x(t) 2

) = - L -
t~IXJ 2dt 2d , B/3; /3=0 

( 12) 

As we shall see below, evolut10n operator formalism yields an exphc1t closed form express10n for D 

2 I Fredholm determinants, Ruelle zeta functwns 

Extract10n of the spectrum of ,C commences with the evaluation of the trace 

tr ,et= j dx e13 '1"< ,)8(x - ft (x)) 

As the relation between evolut10n operators and the associated Fredholm determmants, Ruelle zeta funct10n~ 
and cycle expans10ns 1s discussed at length m literature ( see for example Ref [ 4,5] ) , here and m the next 
sect10n we only state the results needed for understandmg the central formula of this paper, cycle averagmg 
tormula ( 21) For a contmuous time hyperbolic flow one obtams [ 6] 

rt L Loo 8(t - Tpr) r/3 1, tr 1-., = T -----e " 
pEP P r=I ldet(l - J;} I , 

( I 3) 

where the sum 1s over all pnme ( 1 e, nonrepeatmg) cycles p whose penod Tp d1v1des t, and Jp ( x) = D j7P ( t) _j_ 

1s the Jacobian (monodromy matnx) transverse to the flow 
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The above trace formula has a simple geometncal mterpretat10n Pnme cycles part1t1on the phase space 

mto closed tubes of length Tl' and thickness 1/ldet(l - Jl')I, the trace picks up a penod1c orbit contnbut1on 
only when the time t equals a pnme penod or its repeat, hence the lime delta funct10n 8( t - rl'r) Fmally. 
e'/3 <Pp 1s the mean value of e/3 <P'( r> evaluated on this part of phase space, so the trace formula 1s nothmg 
but the mtegral J M dx e/3 <P' < 'l part1t10ned by the mtnns1c topology of the flow, and d1scret1zed as a sum over 
neighborhoods of penod1c orbits The beauty of the formula 1s that 1t 1s coordmat1zat10n mdependent both 
det(l - JI') = det(l - J7

P ( :t) ) and <Pl' = </J7
P ( x) are mdependent of the startmg penod1c pomt pomt x, for 

the Jacobian Jp this follows from the cham rule for denvatives, and for <Pl' from the fact that the mtegral 
1~ evaluated on a clo~ed loop The sum over time delta funct10m, 1s smoothened over by takmg a Laplace 
transform, 

X 

tr.C(s) = J dte-' 1tr.c1 

o, 

The 1dent1ty tr.C(s) = f,F(/3,s) then yields [6] the penod1c orbit formula for the Fredholm determmant of 
the evolution operator (7) 

( 
= I e< /3 <Pi,-'7,, )r ) 

F(/3, s) = IT exp - L - I ( ) I r det 1 - J' 
pEP r=l I' 

( 14) 

Values of j for which F(/3, s) vamshes yield the eigenvalues of the operator .C 
If one 1s mterested only m the leadmg eigenvalue of £ 1

, the size of the p cycle neighborhood 1 / ldet ( 1 - J;,) I 
can be approximated by 1/jApj', the dommant term m the t ------> oo hm1t, where Ap = TL Al' e 1s the product 
of the expandmg eigenvalues of the Jacobian Jp Performmg the r sum, the Fredholm determmant 1s thus 
approximated by the Ruelle zeta funct10n [ 1] 

l/?(/3,s) = IT o - tp), 
pEP 

The Ruelle zeta funct10n 1s useful because 1t also vamshes at e1
' equal to e1Qtf3>, the leading eigenvalue of £ 1

, 

defined 1mphc1tly as the largest solut10n of either of the equations 

F(/3,Q(/3)) =0, l/;(/3,Q(/3)) =0 (16) 

In practice Fredholm determmants and Ruelle zeta funct10ns are preferable to the trace ( 13) because they are 

much easier to compute, the mam difference 1s that while a trace diverges at an eigenvalue, they vamsh at s 
correspondmg to an eigenvalue, and are analytic m s m its neighborhood 

3. Cycle expansions 

The above mfimte products can be rearranged as expans10ns with improved convergence properties [ 4,5] To 
present the result we expand the zeta funct10n ( 15) as a formal power sen es, 

(17) 
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where the pnme on the sum md1cates that the sum 1s over all d1stmct non-repeatmg combmat10m, of pnme 

cycles For k > I, tp, + +p, are weights of "p">eudocycles", they are sequences of shorter cycles that shadow a 

cycle with symbol sequence p1p2 Pl. along segments PI, p2, , p, 

The simplest example 1s the cycle expan~1on for a system descnbed by a complete bmary symbolic dynamics 
In this case the Euler product ( 15) 1s given by 

1 /? = ( 1 - to) ( I - ti) (I - to1) (I - tooi> (I - to11 )( I - tooo1) ( 1 - too11) ( 1 - to11 i) 

x(l -toooo1Hl -tooo11Hl -too101)(l -too111Hl -to101i>O-t01111) 

and the first few terms of the expans10n ( 17) ordered by mcreasmg total pseudocycle length are 

1 /? = 1 - to - t1 - to1 - too1 - to11 - tooo1 - too11 - to111 -

-to+1 - to+o1 - to1+1 - to+oo1 - to+o11 - too1+1 - to11+1 - to+o1+1 -

We refer to such senes as C_\cle expanswns 

The next step 1s the key step regroup the terms mto the dommant fundamental contnbut10m t 1 and the 

decreasmg curvature corrections Cn For the bmary case this regroupmg 1s given by 

I/?= 1 - to - t1 - [ (t01 - t1 to)] - [ ( too1 - to1 to) - Uo11 - to1 t1 ) ] 

-[ ( tooo1 - totoo1) + ( to111 - to11 t1) + ( too11 - too1 t1 - toto11 + toto1 t1)] -

= 1- LfJ- LCn ( 18) 
J n 

We refer to such regrouped senes as curvature expanswns The separat10n mto "fundamental" and "curvature" 

parts of cycle expans10m, 1s possible only for dynamical systems whose symbolic dynamics has fimte grammar 

The fundamental cycles t0 , t 1 have no shorter approx1mants, they are the "bmldmg blocks" of the dynamic'> m 

the sense that all longer orbits can be approximately pieced together from them The fundamental part of a cycle 

expansion 1s given by the ">Um of the products of all nomntersectmg loops of the as~oc1ated Markov graph [ 7] 

The terms grouped m brackets are the curvature correct10ns, the terms grouped m parenthesis are combmat10ns 

of longer orbits and their shorter "'>hadowmg" approx1mants If all orbits are weighted equally (ti' = ;:, 111'), 

such combmations cancel exactly If the flow 1s contmuous and smooth, orbits of similar symbolic dynamics 

will traverse the ~ame neighborhoods and will have s1m1lar weights, and the weights m such combmat10ns will 

almost cancel The ut1hty of cycle expans10ns, m contrast to direct averages over penod1c orbit'> ~uch as the 

trace formulas ( see ( 37) below), hes precisely m this orgamzat10n mto nearly cancellmg combmat10ns cycle 

expans10ns are dommated by short cycles, with long cycles g1vmg exponentially decaymg correct10ns 

A cycle expans10n I'> m essence not much more than a Taylor expans10n m a topological cycle length m the 

followmg sense, 1f the number of cycles and the!f weights grow not faster than exponentially with the cycle 

length, and we multiply each cycle p by a factor ;:,"P, np = symbol stnng length of p, the cycle expans10n 

converges for sufficiently small ;:, The pleasant surpnse 1s that after the pnme cycles and the pseudocycles have 

been grouped mto subsets of equal topolog1cal length, the dummy variable can be set equal to ;:, = 1, as the 

coefficients m th1~ Taylor expan">IOn can be proven to fall off exponentially or even faster [ 4,5], guaranteemg 

the anaht1c1ty of F ( /3, 5) for s value~ well beyond those for which the trace formula diverges 

Cycle expans10ns of Fredholm determmants are obtamed m the same way, by groupmg together contnbut10n~ 

of cycles and pseudocycles of the same symbolic dynamics length 
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3 1 Cycle formulas for dynanucal averages 

115 

The cycle averagmg formulas for the slope and the curvature of Q(/3) are obtamed by takmg the denvat1ves 
of the Eq (16) 

0 _ !!_p _ aF aQ aF\ 
- df3 (/3, Q(/3)) - a{3 + a{3 as ,=Q</3) ~ 

aQ _ aF/aF ---- -
a{3 a{3 as 

( 19) 

The second denvatJve of F( {3, Q ( f3)) = 0 yields 

(20) 

With F --> 1 /? the same formulas apply Subst1tutmg ( 17) we obtam the cycle averagmg formulas [ 4] for the 
expectat10n value of the observable ( 10) and its variance ( 11) 

( 21) 

where (<P),, and (r\, are respectively the mean cycle <P and the mean cycle penod 

a I , 
(<P),, = - a{3t = L <P,,1+ +,,ktp,+ +Pk, 

the mtegrals over the pseudocycles are given by 

and ( ) I' '>lands for the average over pnme cycles For bounded flows both f3 = 0 and Q ( 0) = 0, so 

(22) 

The mean cycle penod (r)P fixe<; the normahzat1on of the umt of time For example, 1f we have evaluated 
a billiard expectat10n value (¢) m terms of contmuous time, and would hke to also have the corre<;pondmg 
average [ </J] measured m discrete time given by the number of reflect10ns off billiard walls, the two averages 

are related by [ </J] = (¢) (r\, / (n) ,,, where np 1s the number of bounces along the cycle p 
As we shall explam m Section 5 1, the above averages are not what one would mtmlively wnte down 

Note also that the cycle averagmg formulas, m contrast to some of the earlier analytic work [ 8], reqmre no 
knowledge of explicit eigenvalues of the Perron-Frobemus operator ( 1 e, the natural measure po) This 1s one 
of the mam virtues of the cycle expans10ns their evaluat10n does not reqmre construction of the ( coordmate 
dependent) e1genfunct10ns 

4. Applications of cycle expansions 

The cycle averagmg formulas ( 21 ) are the mam result of the penod1c orbit theory apphed to evaluation of 
dynamical averages We now give a few examples of their apphcab1hty An apphcat1on to the evaluat10n of 
correlat10n funct10ns, formulated very much m the same spmt as th1~ paper, was given recently by Eckhardt 
and Grossmann [ 10] A few more examples of "thermodynamic" averages are given m Refs [ 4, 12] 
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4 I Probability conservatwn 

If the system 1s bounded, all traJectones remam confined for all times and the leadmg eigenvalue (9) must 
equal I, Q(O) = 0 Probability conservat10n thus provides the first and a very useful check of the quality 
of finite cycle truncat10rn, of cycle expans10ns the dynamical zeta function ( 15) should have its first zero at 
/3, s = 0 

(23) 

4 2 Lyapunov e.tponents 

The largest Lyapunov exponent µ of a given dynamical traJectory 1s given by the t --+ oc hm1t of 
f loglDf1(x)I, where 1Df1(x)I 15 the absolute value of the largest eigenvalue of the lmear1zed flow The 
correspondmg "observable" ( 2) 

<JY(x) =tµ(>.) =loglDf(x)I 

1s add1t1ve for ID map~ by the cham rule formula for the denvat1ve of the iterated map J1 For h1gher
d1mens1onal flows only stability matnces are mult1plicative, not md1v1dual eigenvalues, and the construction of 
the correct Ruelle operator for evaluation of the Lyapunov spectra for h1gher-d1mens1onal flows 1s not tnvial, 1t 
requlfes an extens10n of evolution equallons to the flow m the tangent space, and was given only recently [ 13] 
However, the mod1ficat1on affects only the nonleadmg eigenvalues of the evolut10n operator, and the Ruelle 
zeta funct10n and the associated cycle averagmg formula ( 2 I) for the largest Lyapunov exponent are of the 
expected form 

(24) 

with µr = In IA;"'l/rp the Lyapunov exponent of the p cycle, and A;ax its largest eigenvalue The above cycle 
averagmg formula has been applied to many ID maps, 2D maps and 3D flows, and works well m practice 

4 3 D1ffuswn 

Consider a d-d1mens10nal flow on a penod1c potential and let .x(t) be the traJectory of the initial pomt x(O) 
The cycle expans10n for the d1ffus10n constant ( 12) with zero mean dnft (i,) = 0 1s given by [ 14-16] 

(25) 

The alert reader should immediately protest that Xp = x(rp) - x(O) 1s manifestly equal to zero for a penod1c 
orb!l That 1s correct, ip m the above formula refers to a displacement on a penod1c lattice, while p refers 
to closed orbit of the dynamics reduced to the fundamental cell, with Xp belongmg to the closed pnme orbit 
p Even 50, this 1s not an obvious formula Globally penod1c orbits have i~ = 0, and contnbute only to 
the time normahzat10n ( r\, The mean square displacement (.x2) P gets contnbut1ons only from the penod1c 
runaway traJectones, they are closed m the fundamental cell, but on the penod1c lattice each one grows hke 
x(t) 2 = (t/rp) 2.xi, ~ t2 Nevertheless, thanks to the exponential suppress10n of long cycles by the I/111'1 
weights, the mean .x(t) 2 grows lmearly with t If the system 1s not hyperbolic, the supress10n of long cycles 
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can be weaker, 1/IApl :=::o 1/rp'' rather than 1/IApl :=::o e-rpµ (hereµ 1s the Lyapunov exponent), and the 
d1ffus10n can be anomalous [20] 

A very <,1mple example of apphcab1hty of the above formula tor the d1ffus10n constant D 1s offered by an 
mfimte cham of ID maps, each actmg on mterval [ n - ½, n + ½] with a smgle constant slope branch 

fn(t) =A(x-n) +n, x-n E [-½,½] 

If .1 > I, a fract10n of i iterate mto ne1ghbonng mtervals, mducmg d1ffus1on The associated map reduced to 
the fundamental cell [ -½, ½] 1s given by the 3-branch fract10nal part of fn 

Ax+ I 
I I 

1f XE I = [ -- -- ] 
a 2' A ' O" = -1 

I 
At 1fxEh=[--,0], O" = 0 

f (:t) = A (26) 
I 

Ax 1ftEl<=[0,-], O" = 0 
11 

I I 
11X - I 1f \ E IJ = [ -, - ] , O" = I 

A 2 

where, for 1 <A::; 3, the dnft per 1terat10n 1s given by O"(t) = f 0 (x) - f(t) E {-1,0, I}, and the total 
global drift per one fundamental cell p cycle traversal 1s Xp = I:,Ep O"(x,) The cycle expansions are simple 
1f the Markov part1t10n 1s fimte the simplest example 1s given by fixmg the stretchmg factor to A = 3 For 

this slope the four mtervals la, h, le, IJ give a complete Markov partlt10n f (lh) = la+ h, f Uc) = ( + IJ, 
so the symbolic dynamics 1s given by four prumng rules subsequences _be_, _bd_, _ca_, _cb_ are forbidden 
The allowed sequences are walks on the associated Markov graph, and 1f the map 1s p1ecew1se hnear, the cycle 
expansion ( 17) 1s polynomial m ~ = e-', with coefficients given by products over all non-mtersectmg walks 
on the Markov graph [ 7] 

For the p1ecew1se hnear maps with umform stretchmg the weight of a symbol sequence 1s a product of weights 
for md1v1dual steps, tpq = tptq, where p, q stand for 

ta, tJ correspond to translat10ns by O" = ± I along the ID cham For /3 = 0 the dynamics 1s symmetric under 
t -----+ -x, and zeta function factonzes mto ? = ?s?a, product of the zeta functions for the symmetnc and 
ant,~ymmetnc subspaces [ 17] 

The probability conservation serves here as a check, (23) 1s mdeed satisfied, as A= 3 The leadmg (probab1hty 
con~ervmg) eigenvalues= 0 belongs to the symmetnc subspace 1/(,(0,0) = 0, ~o the derivatives also act only 

on the symmetric subspace 

a 1 I 1 a I I ( 1)3 
Ml'= as ((0,5) ,=O = ?a(0,0) as ?,(0,s) s=O = l - A A (27) 
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The cycle averagmg formula for the "mean square dnft" 

now yields the d1ffus1on constant 

1 (t2
\, I 

D=---=-
2 (r\, 3 

We would have obtamed this result 1mmed1ately, 1f we treated Ii, + I< a5 a smgle Markov part1t10n mterval, 

however. keepmg them separate highlights most of the steps that would be needed m analysis of system~ with 
more complicated symbolic dynamics 

This formalism works well for simple ID maps with fimte Markov part1t10ns [ 14), p1ecew1se lmear standard 

map [ 18), and even mfimte part1t10ns [ 19) Anomalous d1ffus10n can be treated m a similar way [20] 

Regrettably, for physically mterestmg problems such a5 the fimte honzon Lorentz gas, the convergence of cycle 

expans1on5 has - so far - been med10cre due to the severe prumng of symbolic dynamics [ 16,21] 

./ ./ Power ::ipectra 

P1kovsky et al [22] have applied the cycle averagmg formulas to evaluat10n ot the power spectra of chaotic 

d15crete time senes The key idea 1s to thmk of the d1ffus1on constant (25) a5 the value of the power spectrum 

at zero frequency, and then generalize the d1ffus1on cycle averagmg formula to evaluation ot the power spectrum 

at any rat10nal frequency 

Consider ( </J( x)), the time averaged observable ( 3) of the form 

(28) 

where the time 1s discrete, and t,, = f" (;t) In the t --+ oc limit this 1s the Fourier transform of the orbit of a 
dynamical sy5tem passmg through to = x The power spectrum consists of broad band nmse D ( w) and discrete 

spectrum .J ( w), 

(lti1(w)l 2
) ~ t2J(w) +2tD(w), 

~o D(w) 1s the d1ttus10n constant for quantity <P1(x) = tx1(w,x), and .1(w) 1s its mean dnft 

The Founer transform £1 ( w) 1s an average of the form ; I: a,, t,, • where a,, 1s also an orbit of a dynamical 

system m the case of Founer analysis a1 = e101 
, and the extended dynamical system 1s 

(29) 

where the e, dynamics IS the tnv1al dynamics on the circle For rat10nal (JJ = 2m1/ t penod1c orbits of r are 
also penod1c orbits of the extended system, hence the penod1c theory can be applied to this problem We take 
a-; the Ruelle operator (where the 0 o-funct10n 1s taken mod 27T) 

(30) 

Th,~ operator act5 mult1plicat1vely on functions defined on the extended phase space 
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with a 1 the complex phase of i 1 However, as the tnvial dynamics on the circle 1s not hyperbolic, care has to 

be taken [22] in defining [,t For the measure uniform in 0, the 01 integrat10n can be shifted to absorb a 1 , so 

the [/ l{I integrated over x and 0 yields 

\/ 
d0 ) \exp (.BtJirl)) -
2 

exp(,Btlt 1 icos0) ------> J A 

7T 21r,Btlxrl 
fort------> oo ( 3 I) 

Apart from a prefactor, the saddle point approx1mat10n yields the desired generating funct10n ( 5) The trace 

tr.C = J dx8(x - /(x)) J :: exp (,BtJi1(w,x)I cos0) (32) 

can pick up contnbut10ns only from the penod1c points x = Jl(x) Every penod1c point x belongs to some 

pnme cycle p, x E {xpo,xp,1, ,xp,r,,-d, where Tp 1s the minimal penod of x under f, and Xp,m = fm(xpo) 

The Founer transform of a single traversal of a pnme cycle 1s given by 

r,,-1 
A ( ) ] """"' ,mw Xp ltl = - ~ Xp,mC , 

'Tp m=O 

and the Founer transform of the r-th repeat, t = Tpr, by 

r-l r,,-1 r-l 

x1(w, x) = -
1
- LL Xp,m exp( 1(m + r1,P)w) = Xp (w) ! L exp(1rp£w) 

TT P f=O m=O r £=0 

(33) 

As .x1(w,xp,m) = e-,wm£ 1(w,xp,o), J.xp(w)I 1s the same for all cycle points belonging to the pnme cycle p, but 
the cycle weight depends on the initial cycle point through the phase factor e-,wm However, as the trace (32) 

1s invariant under 0 translations, this dependence can be rotated away, so the Founer cycle weight depends only 
on the cycle, and not on the initial cycle point 

If the frequency 1s matlonal, the last sum in ( 33) in the t ------> oo hm1t traces out a circle in the complex 
plane, and averages to zero However, for a rat10nal frequency of form w = 21rn/t, n = 0, , t -- 1, the sum 

projects out resonant penod1c orbits, 

r-l 

! """"' e2mnf / r _ s:, L....t - Un kr, 
r 

''Tp - 1 
{=() 

Here n,t can share common d1v1sors Thus, xp(w) contnbutes its own value to (32) 

1f r,,Jt and w = 21rk/rp 
otherwise 

(34) 

Integrating ( 32) over x yields the trace formula of Ref [ 22] 
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Assummg no dnft, the power spectrum 1s given by 

t A 1 a2
Q I D(w) = hm - (lxr(w)l 2

) = - -
2 

, 
I-+= 2 2 a f3 13=0 

(35) 

so the second denvatlve with respect to /3 yields the cycle averagmg formula for the power spectrum 

1 l 1 (-1)"+ 1 
A 

D(w) = 2 (r)P L IAp, APkl (rp,lxp,(w)I + (36) 

Only those pnme cycles p whose whose penods Tp are mteger multiples of the frequency w = 27Tk/n 
denommator n contnbute to the numerator of the cycle expansion ( 36) All cycles contnbute to the denommator, 
but the denommator 1s a frequency-mdependent normahzat10n factor which needs to be computed only once 

A power spectrum cycle averagmg formula has been checked by P1kovsky [ 11] for several ID mappmgs, 
and 1t works well However, 1t should be noted that the above formahsm 1s madequate for evaluat10n of power 
spectra of contmuous time flows, as 1t hmges on the time m ( 28) bemg discrete, and p1ckmg out sets of orbits 
that resonate at rat10nal frequencies For contmuous time flows, there 1s generally no reason to expect such 
resonant sets 

5. How reliable are cycle averaging formulas? 

5 1 Cycle expanswns vs log-log fits 

The thermodynamic formalism [1-3] takes the parameter /3 senously, as a kmd of mathematician's temper
ature, refers to Q(/3) as a "pressure", "free energy" or somethmg s1m1larly puzzlmg, and studies the funct10n 
Q(/3), defined 1mphc1tly by the cond1t10n (16), for ranges of /3 This makes It possible to plot a variety of 
smooth curves which can be helpful m understandmg gross features m the d1stnbut1on of scales m dynamically 
generated Cantor sets Various approximations to the trace formula ( 13) are m physics hterature called the 
Reny1 [23], the generahzed d1mens1ons [24], the "mult1fractal" [25] or the f-of-a formahsm [26] The 
idea 1s to stare at rectangles stretched and squeezed by the flow, and estimate, from the stab1hty of nearby 
penod1c orbit p or by other means, their size to be proport1onal to the mverse of local stretchmg, of order 
of 1/IApl, for example, for large t the weight m (13) 1s dommated by the product of expandmg eigenvalues, 
det ( 1 - JP) -+ Ap In such approximations one replaces the exact trace formula ( 13) by 

< r) I 
tr .C '.c:: z 1 (/3) = L IA,le 13 <P,, 

I 

where the sum goes over all penod1c pomts t, of penod t (In the multifractal hterature the "time" t is taken 
discrete, but one can also model contmuous flows by mtroducmg a "time ce1hng function" [ 3] ) The fimte 
time t estimate of the average 1s then 

(</>) = ! I:;r> <P,/IA,I =!~In zr (/3) I , 
1 t I:;n I/IA,I t a13 13

=0 
(37) 

which (by log-log extrapolat10ns from the fimte t data) leads to a t -+ oo estimate of the expectat10n value 
(</>) Such average 1s an approximate sum bmlt by part1t10mng the phase space mto neighborhoods of penod1c 
pomts of penod t In contrast, cycle averagmg formulas (21) are exact t -+ oo sums over all pnme cycles 
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As shown m the Ref [ 4] , the prefactors ( -1 ) I- enforce the curvature ( shadowmg) cancelat1orn, ( 18), and 

accelerate the convergence of fimte cycle length truncat10ns of cycle expans10ns 

As tor dynamical systems evaluat10n of the exact trace (21) and the approximate trace (37) reqmres. the 

same amount of labor, nothmg 1s gamed by the approx1mat10n The utility of the f-of-a formalism hes not 

m its applications to the determ1mst1c dynamical systems (where the ongmal Bowen-Smai-Ruelle theory 1s. 

much more powerful), but m its applications to numencal evaluat10ns of averages over random obJects, such 
a5 fractal aggregates and n01sy expenmental data, where no dynamical theory exists 

5 2 Convergence 

When the dynamical system's symbolic dynamics does not have a fimte grammar, and we are not able 
to arrange its cycle expansion mto curvature combmat1ons ( 18), the senes 1s truncated by mcludmg all 

pseudocycles such that 1Ap1 Ap,I ::; IApl, where P 1s the most unstable pnme cycle mcluded mto truncation 
The truncat10n error should then be of order 0( eh7 pTp /IAPI), with h the topolog1cal entropy, and ehr,, roughly 

the number of pseudocycles of stability ~ IAPI In this case the cycle averagmg formulas do not converge 
s1gmficantly better [ 16,21] than the approx1mat1ons such as the trace formula ( 37) Even that 1s not the worst 

case scenano, genenc dynamical sy5tems are plagued by mterm1ttency and other nonhyperbohc effects, and 

method-, that go beyond cycle expans10ns need to be developed [27] However, for smooth hyperbolic flows 
with fimte 5ymbolic dynamics grammar the convergence as funct10n of the cycle length truncation can be 

dramatically better, even faster than exponential [ 28,5] 
Numencal results ( see for example the plots of the accuracy of the cycle expans10n truncat10ns for the Henon 

map m Re: [ 12]) md1cate that the truncat10n error of most average'> tracks cl05ely the fluctuat10ns due to the 

irregular growth m the number of cycles It 1s not known whether one can expl01t the sum rules such as the 
probability conservat10n (23) to improve the accuracy of dynamical averagmg 

5 3 Mathematical caveats 

The penod1c orbit theory 1s learned m stages At first glance, 1t seems totally impenetrable After basic 

exercises are gone through, 1t 5eems totally tnvial, m practice all that 1s at stake are elementary mampulat10ns 

with traces, determmants, denvat1ves Still, from the mathematical pomt of view, the theory 1s full of penis 
Birkhoff's. 1931 ergodic theorem [29] s.tates that the time average (3) exists almost everywhere, and, 1f the 

flow 1s ergodic, 1t implies that (¢( t)) = (¢) 1s a constant for almost all t The problem 1s that the above cycle 
averagmg formulas 1mphc1tly rely on ergodic hypothesis they are stnctly correct only 1f the dynamical system 
1s locally hyperbolic and globally m1xmg If one takes a /3 denvat1ve of both sides of (9) 

Pf3(y)e 1Q(/3) = J dxo(y-P(t))ef3<P'(x)Pf3(t)' 

M 

and mtegrate5 over y 

one obtams 

~Q/31 = j dy po(x) (cp(x)) 
[3=0 

M 

(38) 
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This 1s the expectation value (10) only 1f the time average ( 3) equals the space average ( 4) ( ¢( x)) = ( ¢) for 
all .\ except a subset .\ E M of zero measure, 1f the phase space 1s foliated mto non-commumcatmg subspaces 
M = M1 + M2 of fimte measure such that j1(M1) n M2 = 0 for all t, this fails In other words, we have 
tacitly assumed ergod1c1ty We have also glossed over the nature of the "phase space" M For example, 1f the 
dynamical system 1s open, such as the 3-disk pmball, M m the expectat10n value mtegral ( 6) 1s a Cantor 
set, the closure of the umon of all penod1c orbits Alternatively, x can be considered contmuous, but then the 
measure po m (38) 1s highly smgular The beauty of the penod1c theory 1s that mstead of usmg an arbitrary 
coordmat1zation x E M rt partitions the phase space by the mtnns1c topology of the dynamical flow and bmlds 
the correct measure from cycle mvanants, the stability eigenvalues of penod1c orbits 

Were we to restnct the applicat10ns of the formalism only to systems which have been ngorously proven to 
be ergodic, we would not have much to do For example, even for somethmg as simple as the Henon mappmg 
we do not know whether the asymptotic time attractor 1s strange or penod1c Physics applications reqmre a 
more pragmatic attitude In the cycle expans10ns approach we construct the mvarrant set of the given dynamical 
system as a closure of the umon of penod1c orbits, and mvestigate how robust are the averages computed on 
this set This turns out to depend very much on the observable bemg averaged over, dynamical averages exhibit 
"phase trans1t10ns" [30], and the above cycle averagmg formulas apply m a "hyperbohc phase" where the 
average 1s dommated by exponentrally many exponentrally small contnbutions, but fail m a phase dommated 
by few margmally stable orbits 

Still, m spite of all the caveats, penod1c orbit theory 1s a beautiful theory, and the cycle averagmg formulas 
are the most elegant and powerful tool available today for evaluat10n of dynamical averages for low d1mens10nal 
chaotic determ1mstic systems 
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