Dynamical averaging in terms of periodic orbits

Predrag Cvitanović ${ }^{1}$
Center for Studies in Physus and Biology Rochefeller Unwersty, Box 75, 1230 York Ave , New Yorh, NY 10021-6399, USA

Abstract

Penodic orbit theory methods for evaluation of average values of observables for chaotic dynamical systems are reviewed and illustrated by several examples, such as evaluation of the Lyapunov exponents and the diffusion constants

In chaotic dynamics detaled prediction is impossible, as any finitely specified initial condition, no matter how precise, will fill out the entire accessible phase space (sımilarly fintely graned) in finte time Hence for chaotic dynamics one does not attempt to follow individual trajectories to asymptotic times, what is possible (and sensible) is description of the geometry of the set of possible outcomes, and evaluation of the asymptotic tıme averages Examples of such averages are transport coefficients for chaotic dynamical flows, such as the escape rate, mean drift and the diffusion rate, power spectra, and a host of mathematical constructs such as the generalızed dımensions, Lyapunov exponents and the Kolmogorov entropy Here we shall outline how such averages are evaluated within the framework of the periodic orbit theory The key idea is to replace the expectation values of observables by the expectation values of generating functionals This associates a Ruelle operator with a given observable, and leads to cycle averaging formulas for its dynamical averages In contradistinction to averages evaluated on finte approximations to Cantor sets, these formulas are exact, and highly convergent for nice hyperbolic dynamical systems We illustrate the utility of such cycle expansions by several examples, such as evaluation of the Lyapunov exponents and the diffusion constants

1. Dynamical averaging

Consider a d-dımensional dynamical system described by d first order ordınary differential equations

$$
\begin{equation*}
\frac{d x_{t}}{d t}=F_{l}(x), \quad t=1,2, \quad, d \tag{1}
\end{equation*}
$$

The trajectory passing through point x is parameterized by the integral of the above equations

[^0]$$
x_{t}(t)=\int_{0}^{t} d \tau F_{t}(x) \equiv f_{t}^{t}(x), \quad x_{t}=x_{t}(0)
$$

The flow might describe a trajectory of a partucle moving in a potential, evolution of concentrations of a set of chemicals, a discrete time mapping $x_{n}=f^{n}(x)$, or even a renormalization operator flow describing a transition to chaos

11 Time averaging

Let $\phi(\tau, x(\tau))$ be any "observable" evaluated on a trajectory $x(\tau)=f^{\tau}(x)$ Function ϕ can be a scalar, a vector, a tensor, for example, the coordınate $\phi_{1}(\tau, x)=x_{t}(\tau)$ The integral of an observable along the trajectory is

$$
\begin{equation*}
\phi^{t}(x)=\int_{0}^{t} d \tau \phi(\tau, x(\tau)), \quad x=x(0) \tag{2}
\end{equation*}
$$

A familiar example of such function for Hamiltonian flows is the action associated with a trajectory,

$$
\Phi^{t}(x)=S(q(t), q(0))=\int_{0}^{t} d \mathbf{q}(\tau) \quad \mathbf{p}(\tau), \quad x_{i}=(\mathbf{q}, \mathbf{p})
$$

The tume average of the observable along the trajectory is given by

$$
\begin{equation*}
\langle\phi(x)\rangle=\lim _{t \rightarrow \infty} \frac{1}{t} \Phi^{\prime}(x) \tag{3}
\end{equation*}
$$

If ϕ does not behave too wildly as a function of tume - for example, $\phi_{t}=x_{t}$ is bounded for bounded dynamical systems - $\Phi^{t}(x)$ is expected to grow not faster than t, and the limit (3) might exist In other contexts, such as in the case of anomalous diffusion, $\Phi^{t}(x)$ is not proportional to t but some function of t such as t^{α}. in such cases (3) has to be suitably redefined

However, $\langle\phi(x)\rangle$ is a very wild function of x, for a nice hyperbolic system it takes the same value $\langle\phi\rangle$ for almost all initial x, but a different value on any periodic orbit, 1 e on a dense set of initial points For example, for an open system such as the Sinal gas (an infinite 2D periodic array of scattering disks) the phase space is dense with initial x which correspond to periodic runaway trajectories The mean distance squared traversed by such trajectory grows as $x(t)^{2} \sim t^{2}$, and its contribution to the diffusion rate $D \approx x(t)^{2} / t$. (3) evaluated with $\phi(x)=x(t)^{2}$, diverges Hence for chaotic dynamical systems robust averaging requires also averaging over the initial x and worrying about the measure of the "pathological" trajectories

12 Space averaging

The expectatoon value $\langle\phi\rangle$, the asymptotic time and space average over the "phase space" M (d-dimensional integral over $x_{t} \in M$, where x_{t} are the d coordnates of the dynamical system) is not of a particularly tractable form

$$
\begin{align*}
\langle\phi\rangle & =\frac{1}{|M|} \int_{M} d x\langle\phi(x)\rangle, \quad|M|=\int_{M} d x=\text { volume } \\
& =\lim _{t \rightarrow \infty} \frac{1}{t|M|} \int_{M} d x \int_{0}^{t} d \tau \phi\left(\tau, f^{\tau}(x)\right) \tag{4}
\end{align*}
$$

Such averages are more conveniently studied by introducing an auxılıary variable β, and investıgatıng instead of $\langle\phi\rangle$ the expectation value of

$$
\begin{equation*}
\left\langle e^{\beta \phi^{\prime}}\right\rangle=\frac{1}{|M|} \int_{M} d x e^{\beta \phi^{\prime}(x)}=\frac{1}{|M|} \int_{M} d x d y \delta\left(y-f^{t}(x)\right) e^{\beta \phi^{t}(x)} \tag{5}
\end{equation*}
$$

For example, if the observable is a d-dimensional vector $\phi_{l}(\tau, x)$, then β is a conjugate vector $\beta \in \mathbb{R}^{d}$, if the observable is a $[d \times d$] tensor, β is also a rank-2 tensor, and so on The duxiliary variable β usually has no particular physical meaning

2. Evolution operator formalism

Formally, all we have done above is to insert the identity

$$
\begin{equation*}
1=\int_{M} d y \delta\left(y-f^{t}(x)\right) \tag{6}
\end{equation*}
$$

1 e we are averagıng over trajectories that remain in M for all times However, this substitution enables us to shift the focus from studying individual trajectories $f^{t}(x)$ to the evolution of the totality of initial conditions The kernel of (5) is the Ruelle (or the evolution) operator [1]

$$
\begin{equation*}
\mathcal{L}^{t}(y, x)=\delta\left(y-f^{t}(x)\right) e^{\beta \phi^{\prime}(x)} \tag{7}
\end{equation*}
$$

The integral over the observable Φ is additive along the trajectory

$$
\Phi^{t_{1}+t_{2}}(x)=\int_{0}^{t_{1}} d \tau \phi(\tau, x(\tau))+\int_{t_{1}}^{t_{1}+t_{2}} d \tau \phi(\tau, x(\tau))=\Phi^{t_{1}}(x)+\Phi^{t_{2}}\left(x\left(t_{1}\right)\right)
$$

etther if the observable is periodic, $\phi\left(\tau+t_{1}, x(\tau)\right)=\phi(\tau, x(\tau))$, or if it has no explicit dependence on τ. $\phi(\tau, \mathfrak{r})=\phi(x)$ (why we mıght care about periodic observables will become clear in Section 44) If $\Phi^{t}(x)$ is additive along the trajectory, the Ruelle operator has the semıgroup property $\int d z \mathcal{L}^{t_{2}}(y, z) \mathcal{L}^{t_{1}}(z, x)=$ $\mathcal{L}^{t_{2}+t_{1}}(y, x)$ This semigroup property is the reason why (5) is preferable to (4) as a starting point for evaluation of dynamical averages, their value in the asymptotic $t \rightarrow \infty$ limit can be recovered by means of evolution operators If the limit $\langle\phi(x)\rangle$, Eq (3) exists for "almost all" initial x, the expectation value (5) is an integral over exponentials, which therefore also grows exponentially with time

$$
\left\langle e^{\beta \phi^{\prime}}\right\rangle \sim \frac{1}{|M|} \int_{M} d x e^{t \beta\langle\phi(x)\rangle} \sim e^{t Q(\beta)}
$$

and the function

$$
\begin{equation*}
Q(\beta)=\lim _{t \rightarrow \infty} \frac{1}{t} \log \left\langle e^{\beta \phi^{\prime}}\right\rangle \tag{8}
\end{equation*}
$$

also exists \mathcal{L}^{t} is a linear operator acting on a distribution of initial conditions $\rho(x), x \in M$, so the $t \rightarrow \infty$ limit will be domınated by $e^{t Q(\beta)}$, the leadıng eigenvalue of \mathcal{L}^{\prime},

$$
\begin{equation*}
\left(\mathcal{L}^{t} \circ \rho_{\beta}\right)(y) \equiv \int_{M} d x \delta\left(y-f^{t}(x)\right) e^{\beta \Phi^{\prime}(x)} \rho_{\beta}(x)=e^{t Q(\beta)} \rho_{\beta}(y), \tag{9}
\end{equation*}
$$

where $\rho_{\beta}(x)$ is the corresponding eigenfunction For $\beta=0$ the Ruelle operator (7) is a dynamical flows generalization of the Perron-Frobenius operator of probability theory, with $\rho_{0}(x)$ the natural measure [1-3] If the system is bounded and no trajectories escape, the leading eigenvalue of \mathcal{L}^{t} is exactly 1, ie $Q(0)=0$ The expectation value $\left\langle e^{\beta \phi^{\prime}}\right\rangle$ is a generating function for the moments of ϕ, and averages such as (4) are recovered by evaluating the derivatives of $Q(\beta)$

$$
\begin{align*}
& \left.\frac{\partial Q}{\partial \beta_{i}}\right|_{\beta=0}=\lim _{t \rightarrow \infty} \frac{1}{t}\left\langle\Phi_{t}^{t}\right\rangle=\left\langle\phi_{t}\right\rangle, \tag{10}\\
& \left.\frac{\partial^{2} Q}{\partial \beta_{t} \partial \beta_{j}}\right|_{\beta=0}=\lim _{t \rightarrow \infty} \frac{1}{t}\left(\left\langle\Phi_{t}^{t} \Phi_{j}^{t}\right\rangle-\left\langle\Phi_{t}^{t}\right\rangle\left\langle\Phi_{j}^{t}\right\rangle\right)=\lim _{t \rightarrow \infty} \frac{1}{t}\left\langle\left(\Phi_{t}^{t}-t\left\langle\phi_{t}\right\rangle\right)\left(\Phi_{J}^{t}-t\left\langle\phi_{\jmath}\right\rangle\right)\right\rangle \tag{11}
\end{align*}
$$

and so forth
What are such formulas good for? A typical application is to the problem of describing a particle scattering elastically off a 2D triangular array of disks If the disks are sufficiently large to block any infinite length free flights, the partucle will diffuse chaotically, and the transport coefficient of interest is the diffusion constant given by $x(t)^{2} \approx 4 D t$ In contrast to D estimated numerically from trajectories $x(t)$ for finte but large t, the above formulas yield an expression for D evaluated in the $t \rightarrow \infty$ limit For example, for $\phi_{i}=x_{t}$ and zero mean drift $\left\langle x_{1}\right\rangle=0$, the diffusion constant is given by the curvature of the leading eigenvalue exponent $Q(\beta)$ at $\beta=0$

$$
\begin{equation*}
D \equiv \lim _{t \rightarrow \infty} \frac{1}{2 d t}\left\langle x(t)^{2}\right\rangle=\left.\frac{1}{2 d} \sum_{t} \frac{\partial^{2} Q}{\partial \beta_{t}^{2}}\right|_{\beta=0} \tag{12}
\end{equation*}
$$

As we shall see below, evolution operator formalism yields an explicit closed form expression for D

$2 I$ Fredholm determinants, Ruelle zeta functions

Extraction of the spectrum of \mathcal{L} commences with the evaluation of the trace

$$
\operatorname{tr} \mathcal{L}^{t}=\int d x e^{\beta \phi^{\prime}(x)} \delta\left(x-f^{t}(x)\right)
$$

As the relation between evolution operators and the associated Fredholm determinants, Ruelle zeta functions and cycle expansions is discussed at length in literature (see for example Ref [4,5]), here and in the next section we only state the results needed for understandıng the central formula of this paper, cycle averaging tormula (21) For a contınuous tıme hyperbolic flow one obtans [6]

$$
\begin{equation*}
\operatorname{tr} \mathcal{L}^{t}=\sum_{p \in \mathcal{P}} \tau_{p} \sum_{r=1}^{\infty} \frac{\delta\left(t-\tau_{p} r\right)}{\left|\operatorname{det}\left(\mathbf{1}-\mathbf{J}_{p}^{r}\right)\right|} e^{r \beta \phi_{p}}, \tag{13}
\end{equation*}
$$

where the sum is over all prime (1 e , nonrepeating) cycles p whose period τ_{p} divides t, and $\mathbf{J}_{p}(x)=D f^{\tau_{p}}(x)_{\perp}$ is the Jacobian (monodromy matrix) transverse to the flow

The above trace formula has a simple geometrical interpretation Prime cycles partition the phase space into closed tubes of length τ_{p} and thickness $1 /\left|\operatorname{det}\left(\mathbf{1}-\mathbf{J}_{p}\right)\right|$, the trace picks up a periodic orbit contribution only when the time t equals a prime period or its repeat, hence the time delta function $\delta\left(t-\tau_{p} r\right)$ Finally. $e^{r \beta \phi_{p}}$ is the mean value of $e^{\beta \phi^{\prime}(x)}$ evaluated on this part of phase space, so the trace formula is nothing but the integral $\int_{M} d x e^{\beta \Phi^{\prime}(1)}$ partutioned by the intrinsic topology of the flow, and discretized as a sum over neighborhoods of periodic orbits The beauty of the formula is that it is coordinatization independent both $\operatorname{det}\left(\mathbf{1}-\mathbf{J}_{p}\right)=\operatorname{det}\left(\mathbf{1}-\mathbf{J}^{\tau_{p}}(x)\right)$ and $\Phi_{p}=\Phi^{\tau_{p}}(x)$ are independent of the starting periodic point point x, for the Jacobian \mathbf{J}_{p} this follows from the chain rule for derivatives, and for Φ_{p} from the fact that the integral is evaluated on a closed loop The sum over time delta functions is smoothened over by taking a Laplace transform,

$$
\operatorname{tr} \mathcal{L}(s) \equiv \int_{0}^{\infty} d t e^{-s} \operatorname{tr} \mathcal{L}^{t}
$$

The identity $\operatorname{tr} \mathcal{L}(s)=\frac{d}{d s} F(\beta, s)$ then yields [6] the periodic orbit formula for the Fredholm determinant of the evolution operator (7)

$$
\begin{equation*}
F(\beta, s)=\prod_{p \in \mathcal{P}} \exp \left(-\sum_{r=1}^{\infty} \frac{1}{r} \frac{e^{\left(\beta \Phi_{p}-\Delta \tau_{p}\right) r}}{\left|\operatorname{det}\left(\mathbf{1}-\mathbf{J}_{p}^{r}\right)\right|}\right) \tag{14}
\end{equation*}
$$

Values of s for which $F(\beta, s)$ vanishes yield the eigenvalues of the operator \mathcal{L}
If one is interested only in the leading eigenvalue of \mathcal{L}^{t}, the size of the p cycle neighborhood $1 / \mid \operatorname{det}\left(\mathbf{1}-\mathbf{J}_{p}^{r}\right)$ can be approximated by $1 /\left|\Lambda_{p}\right|^{r}$, the domınant term in the $t \rightarrow \infty$ limit, where $\Lambda_{p}=\prod_{e} \Lambda_{p e}$ is the product of the expanding eigenvalues of the Jacobian \mathbf{J}_{p} Performing the r sum, the Fredholm determinant is thus approximated by the Ruelle zeta function [1]

$$
\begin{equation*}
1 / \zeta(\beta, s)=\prod_{p \in \mathcal{P}}\left(1-t_{p}\right), \quad t_{p}=\frac{1}{\left|\Lambda_{p}\right|} e^{\beta \phi_{p}-s \tau_{p}} \tag{15}
\end{equation*}
$$

The Ruelle zeta function is useful because it also vanıshes at $e^{t,}$ equal to $e^{t Q(\beta)}$, the leading eigenvalue of \mathcal{L}^{t}, defined implictitly as the largest solution of either of the equations

$$
\begin{equation*}
F(\beta, Q(\beta))=0, \quad 1 / \zeta(\beta, Q(\beta))=0 \tag{16}
\end{equation*}
$$

In practice Fredholm determınants and Ruelle zeta functions are preferable to the trace (13) because they are much easier to compute, the main difference is that while a trace diverges at an eigenvalue, they vanish at s corresponding to an eigenvalue, and are analytic in s in its neighborhood

3. Cycle expansions

The above infinite products can be rearranged as expansions with improved convergence properties [4,5] To present the result we expand the zeta function (15) as a formal power series,

$$
\begin{gather*}
1 / \zeta=\prod_{p}\left(1-t_{p}\right)=1-\sum_{p_{1}++p_{k}}^{\prime} t_{p_{1}++p_{k}} \\
t_{p_{1}++p_{k}}=(-1)^{k+1} t_{p_{1}} t_{p_{2}} \quad t_{p_{k}} \tag{17}
\end{gather*}
$$

where the prime on the sum indicates that the sum is over all distinct non-repeating combinations of prime cycles For $k>1, t_{p_{1}+}+p_{k}$ are weights of "pseudocycles". they are sequences of shorter cycles that shadow a cycle with symbol sequence $p_{1} p_{2} \quad p_{k}$ along segments $p_{1}, p_{2}, \quad, p_{k}$

The simplest example is the cycle expansion for a system described by a complete binary symbolic dynamics In this case the Euler product (15) is given by

$$
\begin{aligned}
1 / \zeta= & \left(1-t_{0}\right)\left(1-t_{1}\right)\left(1-t_{01}\right)\left(1-t_{001}\right)\left(1-t_{011}\right)\left(1-t_{0001}\right)\left(1-t_{0011}\right)\left(1-t_{0111}\right) \\
& \times\left(1-t_{00001}\right)\left(1-t_{00011}\right)\left(1-t_{00101}\right)\left(1-t_{00111}\right)\left(1-t_{01011}\right)\left(1-t_{01111}\right)
\end{aligned}
$$

and the first few terms of the expansion (17) ordered by increasing total pseudocycle length are

$$
\begin{aligned}
1 / \zeta= & 1-t_{0}-t_{1}-t_{01}-t_{001}-t_{011}-t_{0001}-t_{0011}-t_{0111}- \\
& -t_{0+1}-t_{0+01}-t_{01+1}-t_{0+001}-t_{0+011}-t_{001+1}-t_{011+1}-t_{0+01+1}-
\end{aligned}
$$

We refer to such series as cycle expansions
The next step is the key step regroup the terms into the dominant fundamental contributions t_{f} and the decreasing curvature corrections c_{n} For the binary case this regrouping is given by

$$
\begin{align*}
1 / \zeta= & 1-t_{0}-t_{1}-\left[\left(t_{01}-t_{1} t_{0}\right)\right]-\left[\left(t_{001}-t_{01} t_{0}\right)-\left(t_{011}-t_{01} t_{1}\right)\right] \\
& -\left[\left(t_{0001}-t_{0} t_{001}\right)+\left(t_{0111}-t_{011} t_{1}\right)+\left(t_{0011}-t_{001} t_{1}-t_{0} t_{011}+t_{0} t_{01} t_{1}\right)\right]- \\
= & 1-\sum_{f} t_{f}-\sum_{n} c_{n} \tag{18}
\end{align*}
$$

We refer to such regrouped series as curvature expansions The separation into "fundamental" and "curvature" parts of cycle expansions is possible only for dynamical systems whose symbolic dynamics has finte grammar The fundamental cycles t_{0}, t_{1} have no shorter approximants, they are the "building blocks" of the dynamics in the sense that all longer orbits can be approximately preced together from them The fundamental part of a cycle expansion is given by the sum of the products of all nonintersecting loops of the associated Markov graph [7] The terms grouped in brackets are the curvature corrections, the terms grouped in parenthesis are combinations of longer orbits and their shorter "shadowing" approximants If all orbits are weighted equally ($t_{p}=z^{n_{p}}$), such combinations cancel exactly If the flow is continuous and smooth, orbits of simılar symbolic dynamics will traverse the same neighborhoods and will have simular weights, and the weights in such combinations will almost cancel The utility of cycle expansions, in contrast to direct averages over periodic orbits such as the trace formulas (see (37) below), hes precisely in this organization into nearly cancelling combinations cycle expansions are dominated by short cycles, with long cycles giving exponentially decaying corrections

A cycle expansion is in essence not much more than a Taylor expansion in a topological cycle length in the following sense, if the number of cycles and their weights grow not faster than exponentally with the cycle length, and we multuply each cycle p by a factor $z^{n_{p}}, n_{p}=$ symbol string length of p, the cycle expansion converges for sufficiently small z The pleasant surprise is that after the prime cycles and the pseudocycles have been grouped into subsets of equal topological length, the dummy variable can be set equal to $z=1$, as the coefficients in this Taylor expansion can be proven to fall off exponentally or even faster [4,5], guaranteeing the analiticity of $F(\beta, s)$ for s values well beyond those for which the trace formula diverges

Cycle expansions of Fredholm determınants are obtaned in the same way, by grouping together contributions of cycles and pseudocycles of the same symbolic dynamics length

31 Cycle formulas for dynamıcal averages

The cycle averaging formulas for the slope and the curvature of $Q(\beta)$ are obtaned by taking the derivatives of the Eq (16)

$$
\begin{equation*}
0=\frac{d}{d \beta} F(\beta, Q(\beta))=\frac{\partial F}{\partial \beta}+\left.\frac{\partial Q}{\partial \beta} \frac{\partial F}{\partial s}\right|_{r=Q(\beta)} \quad \Longrightarrow \quad \frac{\partial Q}{\partial \beta}=--\frac{\partial F}{\partial \beta} / \frac{\partial F}{\partial s} \tag{19}
\end{equation*}
$$

The second derivative of $F(\beta, Q(\beta))=0$ yields

$$
\begin{equation*}
\frac{\partial^{2} Q}{\partial \beta^{2}}=-\left[\frac{\partial^{2} F}{\partial \beta^{2}}+2 \frac{\partial Q}{\partial \beta} \frac{\partial^{2} F}{\partial \beta \partial s}+\left(\frac{\partial Q}{\partial \beta}\right)^{2} \frac{\partial^{2} F}{\partial s^{2}}\right] / \frac{\partial F}{\partial s} \tag{20}
\end{equation*}
$$

With $F \rightarrow 1 / \zeta$ the same formulas apply Substituting (17) we obtain the cycle averaging formulas [4] for the expectation value of the observable (10) and its variance (11)

$$
\begin{equation*}
\langle\phi\rangle=\frac{\langle\Phi\rangle_{p}}{\langle\tau\rangle_{p}}, \quad\left\langle(\phi-\langle\phi\rangle)^{2}\right\rangle=\frac{1}{\langle\tau\rangle_{p}}\left\langle(\Phi-\tau\langle\phi\rangle)^{2}\right\rangle_{p} \tag{21}
\end{equation*}
$$

where $\langle\Phi\rangle_{p}$ and $\langle\tau\rangle_{p}$ are respectively the mean cycle Φ and the mean cycle period

$$
\langle\Phi\rangle_{p} \equiv-\frac{\partial}{\partial \beta} \frac{1}{\zeta}=\sum^{\prime} \Phi_{p_{1}++p_{k}} t_{p_{1}++p_{k}}, \quad\langle\tau\rangle_{p} \equiv \frac{\partial}{\partial s} \frac{1}{\zeta}=\sum^{\prime} \tau_{p_{1}++p_{k}} t_{p_{1}++p_{k}},
$$

the integrals over the pseudocycles are given by

$$
\Phi_{p_{1}++p_{k}}=\Phi_{p_{1}}+\Phi_{p_{2}} \quad+\Phi_{p_{k}}, \quad \tau_{p_{1}++p_{k}}=\tau_{p_{1}}+\tau_{p_{2}} \quad+\tau_{p_{k}}
$$

and $\left\rangle_{p}\right.$ stands for the average over prıme cycles For bounded flows both $\beta=0$ and $Q(0)=0$, so

$$
\begin{equation*}
\langle\Phi\rangle_{p}=\sum^{\prime}(-1)^{k+1} \frac{\Phi_{p_{1}+}+p_{k}}{\left|A_{p_{1}} \Lambda_{p_{k}}\right|}, \quad\langle\tau\rangle_{p}=\sum^{\prime}(-1)^{k+1} \frac{\tau_{p_{1}++p_{k}}}{\left|A_{p_{1}} \Lambda_{p_{k}}\right|} \tag{22}
\end{equation*}
$$

The mean cycle period $\langle\tau\rangle_{p}$ fixes the normalization of the unit of time For example, if we have evaluated a billiard expectation value $\langle\phi\rangle$ in terms of continuous time, and would like to also have the corresponding average $[\phi]$ measured in discrete time given by the number of reflections off billiard walls, the two averages are related by $[\phi]=\langle\phi\rangle\langle\tau\rangle_{p} /\langle n\rangle_{p}$, where n_{p} is the number of bounces along the cycle p

As we shall explain in Section 51 , the above averages are not what one would intuitively write down Note also that the cycle averaging formulas, in contrast to some of the earlier analytic work [8], require no knowledge of explicit elgenvalues of the Perron-Frobenius operator (1 e , the natural measure ρ_{0}) This is one of the main virtues of the cycle expansions their evaluation does not require construction of the (coordinate dependent) elgenfunctions

4. Applications of cycle expansions

The cycle averaging formulas (21) are the main result of the periodic orbit theory applied to evaluation of dynamical averages We now give a few examples of their applicability An application to the evaluation of correlation functions, formulated very much in the same spirit as this paper, was given recently by Eckhardt and Grossmann [10] A few more examples of "thermodynamic" averages are given in Refs [4,12]

41 Probability conservatoon

If the system is bounded, all trajectories reman confined for all times and the leading eigenvalue (9) must equal $1, Q(0)=0$ Probability conservation thus provides the first and a very useful check of the quality of finte cycle truncations of cycle expansions the dynamical zeta function (15) should have its first zero at $\beta, s=0$

$$
\begin{equation*}
1 / \zeta(0,0)=1+\sum_{p_{1}++p_{k}}^{\prime} \frac{(-1)^{k}}{\left|A_{p_{1}} A_{p_{k}}\right|}=0 \tag{23}
\end{equation*}
$$

42 Lyapunov exponents

The largest Lyapunov exponent μ of a given dynamical trajectory is given by the $t \rightarrow \infty$ limit of $\frac{1}{t} \log \left|D f^{t}(x)\right|$, where $\left|D f^{t}(x)\right|$ is the absolute value of the largest elgenvalue of the linearized flow The correspondıng "observable" (2)

$$
\Phi^{t}(x)=t \mu(x)=\log \left|D f^{t}(x)\right|
$$

is additive for 1D maps by the chain rule formula for the derivative of the terated map f^{t} For higherdimensional flows only stability matrices are multiplicative, not individual eigenvalues, and the construction of the correct Ruelle operator for evaluation of the Lyapunov spectra for higher-dimensional flows is not trivial, it requires an extension of evolution equations to the flow in the tangent space, and was given only recently [13] However, the modification affects only the nonleading eigenvalues of the evolution operator, and the Ruelle zeta function and the associated cycle averaging formula (21) for the largest Lyapunov exponent are of the expected form

$$
\begin{equation*}
\mu=\frac{1}{\langle\tau\rangle_{p}} \sum^{\prime}(-1)^{k+1} \frac{\tau_{p_{1}} \mu_{p_{1}}+}{\mid \Lambda_{p_{1}}}+\text {. }_{p_{p_{k}}} \mid \quad \mu_{p_{k}}, \tag{24}
\end{equation*}
$$

with $\mu_{p}=\ln \left|\Lambda_{p}^{\max }\right| / \tau_{p}$ the Lyapunov exponent of the p cycle, and $\Lambda_{p}^{\max }$ its largest eigenvalue The above cycle averaging formula has been applıed to many 1D maps, 2D maps and 3D flows, and works well in practice

43 Diffusion

Consider a d-dimensional flow on a periodic potential and let $\hat{x}(t)$ be the trajectory of the initial point $x(0)$ The cycle expansion for the diffusion constant (12) with zero mean drift $\left\langle\hat{x}_{t}\right\rangle=0$ is given by [14-16]

$$
\begin{equation*}
\left.D=\frac{1}{2 d} \frac{\left\langle\hat{\varkappa}^{2}\right\rangle_{p}}{\langle\tau\rangle_{p}}=\frac{1}{2 d} \frac{1}{\langle\tau\rangle_{p}} \sum^{\prime}(-1)^{k+1} \frac{\left(\hat{x}_{p_{1}}+\quad+\hat{x}_{p_{k}}\right)^{2}}{\mid \Lambda_{p_{1}}} A_{p_{k}} \right\rvert\, \quad \tag{25}
\end{equation*}
$$

The alert reader should immediately protest that $x_{p}=x\left(\tau_{p}\right)-x(0)$ is manifestly equal to zero for a periodic orbit That is correct, \hat{x}_{p} in the above formula refers to a displacement on a periodic lattice, while p refers to closed orbit of the dynamics reduced to the fundamental cell, with x_{p} belonging to the closed prime orbit p Even so, this is not an obvious formula Globally periodic orbits have $\hat{x}_{p}^{2}=0$, and contribute only to the time normalization $\langle\tau\rangle_{p}$ The mean square displacement $\left\langle\hat{x}^{2}\right\rangle_{p}$ gets contributions only from the periodic runaway trajectories, they are closed in the fundamental cell, but on the periodic lattice each one grows like $\hat{x}(t)^{2}=\left(t / \tau_{p}\right)^{2} \hat{x}_{p}^{2} \sim t^{2}$ Nevertheless, thanks to the exponential suppression of long cycles by the $1 /\left|1_{p}\right|$ weights, the mean $\hat{x}(t)^{2}$ grows linearly with t If the system is not hyperbolic, the supression of long cycles
can be weaker, $1 /\left|\Lambda_{p}\right| \approx 1 / \tau_{p}{ }^{\alpha}$ rather than $1 /\left|\Lambda_{p}\right| \approx e^{-\tau_{p} \mu}$ (here μ is the Lyapunov exponent), and the diffusion can be anomalous [20]

A very simple example of applicability of the above formula tor the diffusion constant D is offered by an infinite chan of 1D maps, each acting on interval $\left[n-\frac{1}{2}, n+\frac{1}{2}\right]$ with a single constant slope branch

$$
f_{n}(\hat{x})=A(\hat{x}-n)+n, \quad \hat{x}-n \in\left[-\frac{1}{2}, \frac{1}{2}\right]
$$

If $A>1$, a fraction of \hat{x} iterate into neıghboring intervals, inducing diffusion The associated map reduced to the fundamental cell $\left[-\frac{1}{2}, \frac{1}{2}\right]$ is given by the 3 -branch fractional part of f_{n}

$$
f(x)=\left\{\begin{array}{lll}
\Lambda x+1 & \text { if } x \in I_{a}=\left[-\frac{1}{2},-\frac{1}{\Lambda}\right], & \sigma=-1 \tag{26}\\
\Lambda x & \text { if } x \in I_{b}=\left[-\frac{1}{4}, 0\right], & \sigma=0 \\
\Lambda x & \text { if } x \in I_{c}=\left[0, \frac{1}{4}\right], & \sigma=0 \\
A x-1 & \text { if } \imath \in I_{d}=\left[\frac{1}{\Lambda}, \frac{1}{2}\right], & \sigma=1
\end{array}\right.
$$

where. for $1<A \leq 3$, the drift per iteration is given by $\sigma(x)=f_{0}(x)-f(x) \in\{-1,0,1\}$, and the total global drift per one fundamental cell p cycle traversal is $\hat{x}_{p}=\sum_{i \in p} \sigma\left(x_{t}\right)$ The cycle expansions are simple if the Markov partition is finte the simplest example is given by fixing the stretching factor to $A=3$ For this slope the four intervals $I_{a}, I_{b}, I_{c}, I_{d}$ give a complete Markov partition $f\left(I_{b}\right)=I_{a}+I_{b}, f\left(I_{c}\right)=I_{c}+I_{d}$, so the symbolic dynamics is given by four pruning rules subsequences $\quad b c_{-}, \ldots d_{-}, \ldots c a_{-}, \ldots c b_{-}$are forbidden The allowed sequences are walks on the associated Markov graph, and if the map is precewise linear, the cycle expansion (17) is polynomial in $z=e^{-1}$, with coefficients given by products over all non-intersecting walks on the Markov graph [7]

$$
1 / \zeta=1-t_{a}-t_{b}-t_{c}-t_{d}-t_{a b}-t_{c d}+\left(t_{a}+t_{d}\right)\left(t_{b}+t_{c}\right)+t_{b} t_{c}+t_{a b} t_{c}+t_{c d} t_{b}-\left(t_{a}+t_{d}\right) t_{b} t_{c}
$$

For the piecewise linear maps with uniform stretching the weight of a symbol sequence is a product of weights for individual steps, $t_{p q}=t_{p} t_{q}$, where p, q stand for

$$
\begin{aligned}
& t_{a}=e^{-\beta} z / \Lambda, \quad t_{b}=t_{c}=z / \Lambda, \quad t_{d}=e^{\beta} z / \Lambda, \quad z=e^{-1} \\
& \frac{1}{\zeta(\beta, s)}=1-\frac{z}{\Lambda}\left(2+e^{-\beta}+e^{\beta}\right)+\frac{z^{2}}{1^{2}}\left(1+e^{-\beta}+e^{\beta}\right)
\end{aligned}
$$

t_{a}, t_{d} correspond to translations by $\sigma= \pm 1$ along the 1 D chain For $\beta=0$ the dynamics is symmetric under $x \rightarrow-x$, and zeta function factorizes into $\zeta=\zeta_{s} \zeta_{a}$, product of the zeta functions for the symmetric and antisymmetric subspaces [17]

$$
\frac{1}{\zeta(0, s)}=\left(1-3 \frac{z}{\Lambda}\right)\left(1-\frac{z}{\Lambda}\right)
$$

The probability conservation serves here as a check, (23) is indeed satisfied, as $\Lambda=3$ The leading (probability conserving) eigenvalue $s=0$ belongs to the symmetric subspace $1 / \zeta_{s}(0,0)=0$, so the derivatives also act only on the symmetric subspace

$$
\begin{equation*}
\langle\tau\rangle_{p}=\left.\frac{\partial}{\partial s} \frac{1}{\zeta(0, s)}\right|_{t=0}=\left.\frac{1}{\zeta_{a}(0,0)} \frac{\partial}{\partial s} \frac{1}{\zeta_{s}(0, s)}\right|_{s=0}=\left(1-\frac{1}{\Lambda}\right) \frac{3}{\Lambda} \tag{27}
\end{equation*}
$$

The cycle averagıng formula for the "mean square drift"

$$
\left\langle\hat{x}^{2}\right\rangle_{p}=-\left.\frac{\partial^{2}}{\partial \beta^{2}} \frac{1}{\zeta(\beta, 0)}\right|_{\beta=0}=\frac{2}{1}\left(1-\frac{1}{1}\right)
$$

now yields the diffusion constant

$$
D=\frac{1}{2} \frac{\left\langle\hat{x}^{2}\right\rangle_{p}}{\langle\tau\rangle_{p}}=\frac{1}{3}
$$

We would have obtaned this result immedately, if we treated $I_{b}+I_{c}$ as a single Markov partition interval, however, keeping them separate highlights most of the steps that would be needed in analysis of systems with more complicated symbolic dynamıcs

This formalism works well for simple 1D maps with finte Markov partitions [14], precewise linear standard map [18], and even infinite partitions [19] Anomalous diffusion can be treated in a similar way [20] Regrettably, for physically interesting problems such as the finte horizon Lorentz gas, the convergence of cycle expansions has - so far - been mediocre due to the severe pruning of symbolic dynamics [16,21]

44 Power spectra

Pikovsky et al [22] have applied the cycle averaging formulas to evaluation of the power spectra of chaotic discrete time series The key idea is to think of the diffusion constant (25) as the value of the power spectrum at zero frequency, and then generalize the diffusion cycle averaging formula to evaluation of the power spectrum at any rational frequency

Consider $\langle\phi(x)\rangle$, the tume averaged observable (3) of the form

$$
\begin{equation*}
\hat{x}_{t}(\omega, \chi)=\frac{1}{t} \sum_{n=0}^{t-1} x_{n} e^{i n \omega} \tag{28}
\end{equation*}
$$

where the time is discrete, and $x_{n}=f^{n}(x)$ In the $t \rightarrow \infty$ limit this is the Fourter transform of the orbit of a dynamical system passing through $x_{0}=x$ The power spectrum consists of broad band noise $D(\omega)$ and discrete spectrum $\lrcorner(\omega)$,

$$
\left.\left.\langle | t \hat{x}_{t}(\omega)\right|^{2}\right\rangle \sim t^{2} \Delta(\omega)+2 t D(\omega),
$$

so $D(\omega)$ is the diffusion constant for quantity $\Phi^{\prime}(x)=t \hat{x}_{t}(\omega, \lambda)$, and $\Delta(\omega)$ is its mean drift
The Fourrer transform $\hat{\chi}_{t}(\omega)$ is an average of the form $\frac{1}{t} \sum a_{n} \chi_{n}$, where a_{n} is also an orbit of a dynamical system in the case of Fourier analysis $a_{t}=e^{t \theta_{t}}$, and the extended dynamical system is

$$
\begin{equation*}
x_{t+1}=f\left(x_{t}\right) \theta_{l+1}=g_{\omega}\left(\theta_{t}\right)=\omega+\theta_{t} \quad(\bmod 2 \pi) \tag{29}
\end{equation*}
$$

where the θ_{l} dynamics is the trivial dynamics on the circle For rational $\omega=2 \pi n / t$ periodic orbits of f^{t} are also periodic orbits of the extended system, hence the periodic theory can be applied to this problem We take as the Ruelle operator (where the $\theta \delta$-function is taken $\bmod 2 \pi$)

$$
\begin{equation*}
\mathcal{L}\left(x, \theta, x^{\prime}, \theta^{\prime}\right)=\delta\left(x-f\left(x^{\prime}\right)\right) \delta\left(\theta-g_{\omega}\left(\theta^{\prime}\right)\right) \exp \left(\beta x^{\prime} \frac{1}{2}\left(e^{t \theta^{\prime}}+e^{-i \theta^{\prime}}\right)\right) \tag{30}
\end{equation*}
$$

This operator acts multuplicatively on functions defined on the extended phase space

$$
\left(\mathcal{L}^{t} \psi\right)(x, \theta)=\int d x^{\prime} \frac{d \theta^{\prime}}{2 \pi} \delta\left(x-f^{t}\left(x^{\prime}\right)\right) \delta\left(\theta-g_{\omega}^{t}\left(\theta^{\prime}\right)\right) \exp \left(\beta t\left|\hat{x}_{t}\right| \cos \left(\theta^{\prime}+\alpha_{t}\right)\right) \psi\left(x^{\prime}, \theta^{\prime}\right) .
$$

with α_{t} the complex phase of \hat{x}_{t} However, as the trivial dynamics on the circle is not hyperbolic, care has to be taken [22] in defining \mathcal{L}^{t} For the measure uniform in θ, the θ^{\prime} integration can be shifted to absorb α_{t}, so the $\mathcal{L}^{t} \psi$ integrated over x and θ yields

$$
\begin{equation*}
\left\langle\int \frac{d \theta}{2 \pi} \exp \left(\beta t\left|\hat{x}_{t}\right| \cos \theta\right)\right\rangle \rightarrow\left\langle\frac{\exp \left(\beta t\left|\hat{x}_{t}\right|\right)}{\sqrt{2 \pi \beta t\left|\hat{x}_{t}\right|}}\right\rangle \quad \text { for } t \rightarrow \infty \tag{31}
\end{equation*}
$$

Apart from a prefactor, the saddle point approximation yields the desired generating function (5) The trace

$$
\begin{equation*}
\operatorname{tr} \mathcal{L}^{t}=\int d x \delta\left(x-f^{t}(x)\right) \int \frac{d \theta}{2 \pi} \exp \left(\beta t\left|\hat{x}_{t}(\omega, x)\right| \cos \theta\right) \tag{32}
\end{equation*}
$$

can pick up contributions only from the periodic points $x=f^{\prime}(x)$ Every periodic point x belongs to some prime cycle $p, x \in\left\{x_{p 0}, x_{p, 1}, \quad, x_{p, \tau_{p}-1}\right\}$, where τ_{p} is the mınımal period of x under f, and $x_{p, m}=f^{m}\left(x_{p 0}\right)$ The Fourier transform of a single traversal of a prime cycle is given by

$$
\hat{x}_{p}(\omega)=\frac{1}{\tau_{p}} \sum_{m=0}^{\tau_{p}-1} x_{p, m} e^{i m \omega}
$$

and the Fourier transform of the r-th repeat, $t=\tau_{p} r$, by

$$
\begin{equation*}
\hat{x}_{t}(\omega, x)=\frac{1}{r \tau_{p}} \sum_{\ell=0}^{r-1} \sum_{m=0}^{\tau_{p}-1} x_{p, m} \exp \left(\iota\left(m+\tau_{p} \ell\right) \omega\right)=\hat{x}_{p}(\omega) \frac{1}{r} \sum_{\ell=0}^{r-1} \exp \left(\iota \tau_{p} \ell \omega\right) \tag{33}
\end{equation*}
$$

As $\hat{x}_{r}\left(\omega, x_{p, m}\right)=e^{-\epsilon \omega m} \hat{x}_{t}\left(\omega, x_{p, 0}\right),\left|\hat{x}_{p}(\omega)\right|$ is the same for all cycle points belongıng to the prime cycle p, but the cycle weight depends on the initial cycle point through the phase factor $e^{-1 \omega m}$ However, as the trace (32) is invariant under θ translations, this dependence can be rotated away, so the Fourier cycle weight depends only on the cycle, and not on the initial cycle point

If the frequency is irrational, the last sum in (33) in the $t \rightarrow \infty$ limit traces out a circle in the complex plane, and averages to zero However, for a rational frequency of form $\omega=2 \pi n / t, \quad n=0, \quad, t-1$, the sum projects out resonant periodic orbits,

$$
\frac{1}{r} \sum_{f=0}^{r-1} e^{2 \pi n k / r}=\delta_{n k r}, \quad k=0, \quad, \tau_{j}-1
$$

Here n, t can share common divisors Thus, $\hat{x}_{p}(\omega)$ contributes its own value to (32)

$$
\left|\hat{x}_{t}\left(\omega, x_{p, m}\right)\right|=\left\{\begin{array}{cll}
\left|\hat{x}_{p}(\omega)\right| & \text { if } \tau_{p} \mid t \text { and } \omega=2 \pi k / \tau_{p} \tag{34}\\
0 & \text { otherwise }
\end{array}\right.
$$

Integrating (32) over x yields the trace formula of Ref [22]

$$
\begin{aligned}
& \operatorname{tr} \mathcal{L}^{t}=\left.\sum_{p} \tau_{p} \sum_{r=1}^{\infty} \frac{\delta_{t, \tau_{p} r}}{\left|\operatorname{det}\left(\mathbf{1}-\mathbf{J}_{p}^{r}\right)\right|} \exp \left(\beta t\left|\hat{x}_{t}(\omega)\right|\right)\right|_{p}, \\
& \left.\exp \left(\beta t\left|\hat{x}_{t}(\omega)\right|\right)\right|_{p}= \begin{cases}2 \pi & \int_{0}^{2 \pi} \frac{d \theta}{2 \pi} e^{\beta r \tau_{p}\left|\hat{x}_{p}(\omega)\right| \cos \theta}=J_{0}\left(\imath \beta r \tau_{p}\left|\hat{x}_{p}(\omega)\right|\right) \\
\text { if } \omega=2 \pi k / \tau_{p} \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

Assuming no drift, the power spectrum is given by

$$
\begin{equation*}
\left.D(\omega)=\left.\lim _{t \rightarrow \infty} \frac{t}{2}\langle | \hat{x}_{t}(\omega)\right|^{2}\right\rangle=\left.\frac{1}{2} \frac{\partial^{2} Q}{\partial \beta^{2}}\right|_{\beta=0} \tag{35}
\end{equation*}
$$

so the second derivative with respect to β yields the cycle averaging formula for the power spectrum

$$
\begin{equation*}
D(\omega)=\frac{1}{2} \frac{1}{\langle\tau\rangle_{p}} \sum^{\prime} \frac{(-1)^{k+1}}{\left|A_{p_{1}} \quad \Lambda_{p_{k}}\right|}\left(\tau_{p_{1} \mid}\left|\hat{x}_{p_{1}}(\omega)\right|+\quad+\tau_{p_{k}}\left|\hat{x}_{p_{k}}(\omega)\right|\right)^{2} \tag{36}
\end{equation*}
$$

Only those prime cycles p whose whose periods τ_{p} are integer multuples of the frequency $\omega=2 \pi k / n$ denominator n contribute to the numerator of the cycle expansion (36) All cycles contribute to the denominator. but the denominator is a frequency-independent normalization factor which needs to be computed only once

A power spectrum cycle averaging formula has been checked by Pikovsky [11] for several 1D mappings, and it works well However, it should be noted that the above formalism is inadequate for evaluation of power spectra of continuous time flows, as it hinges on the time in (28) being discrete, and picking out sets of orbits that resonate at rational frequencies For contınuous time flows, there is generally no reason to expect such resonant sets

5. How reliable are cycle averaging formulas?

51 Cycle expansions vs log-log fits

The thermodynamic formalısm [1-3] takes the parameter β seriously, as a kind of mathematician's temperature, refers to $Q(\beta)$ as a "pressure", "free energy" or something sımılarly puzzling, and studies the function $Q(\beta)$, defined implicitly by the condition (16), for ranges of β This makes it possible to plot a variety of smooth curves which can be helpful in understanding gross features in the distribution of scales in dynamically generated Cantor sets Various approximations to the trace formula (13) are in physics literature called the Reny1 [23], the generalized dimensions [24], the "multufractal" [25] or the f-of- α formalism [26] The idea is to stare at rectangles stretched and squeezed by the flow, and estimate, from the stability of nearby periodic orbit p or by other means, their size to be proportional to the inverse of local stretching, of order of $1 /\left|\Lambda_{p}\right|$, for example, for large t the weight in (13) is dominated by the product of expanding eigenvalues, $\operatorname{det}\left(1-\mathbf{J}_{p}\right) \rightarrow \Lambda_{p}$ In such approximations one replaces the exact trace formula (13) by

$$
\operatorname{tr} \mathcal{L}^{t} \simeq Z^{t}(\beta)=\sum_{i}^{(t)} \frac{1}{\left|\Lambda_{t}\right|} e^{\beta \phi_{t}},
$$

where the sum goes over all periodic points x_{t} of period t (In the multufractal literature the "time" t is taken discrete, but one can also model continuous flows by introducing a "time ceiling function" [3]) The finite time t estimate of the average is then

$$
\begin{equation*}
\langle\phi\rangle_{t}=\frac{1}{t} \frac{\sum_{t}^{(t)} \Phi_{t} /\left|\Lambda_{t}\right|}{\sum_{t}^{(t)} 1 /\left|\Lambda_{t}\right|}=\left.\frac{1}{t} \frac{\partial}{\partial \beta} \ln Z^{t}(\beta)\right|_{\beta=0}, \tag{37}
\end{equation*}
$$

which (by \log-log extrapolations from the finte t data) leads to a $t \rightarrow \infty$ estımate of the expectation value $\langle\phi\rangle$ Such average is an approximate sum built by partitioning the phase space into neighborhoods of periodic points of period t In contrast, cycle averaging formulas (21) are exact $t \rightarrow \infty$ sums over all prime cycles

As shown in the Ref [4], the prefactors (-1$)^{k}$ enforce the curvature (shadowing) cancelations (18), and accelerate the convergence of finte cycle length truncations of cycle expansions

As for dynamical systems evaluation of the exact trace (21) and the approximate trace (37) requires the same amount of labor, nothing is gained by the approximation The utility of the f-of- α formalism lies not in its applications to the deterministic dynamical systems (where the original Bowen-Sinat-Ruelle theory is much more powerful), but in its applications to numerical evaluations of averages over random objects, such as fractal aggregates and noisy experımental data, where no dynamical theory exists

52 Convergence

When the dynamical system's symbolic dynamics does not have a finte grammar, and we are not able to arrange its cycle expansion into curvature combinations (18), the series is truncated by including all pseudocycles such that $\left|\Lambda_{p_{1}} \quad \Lambda_{p_{k}}\right| \leq\left|\Lambda_{P}\right|$, where P is the most unstable prime cycle included into truncation The truncation error should then be of order $O\left(e^{h \tau_{r}} \tau_{P} /\left|\Lambda_{P}\right|\right)$, with h the topological entropy, and $e^{h \tau \rho}$ roughly the number of pseudocycles of stability $\approx\left|A_{P}\right|$ In this case the cycle averaging formulas do not converge significantly better [16,21] than the approxımations such as the trace formula (37) Even that is not the worst case scenario, generic dynamical systems are plagued by intermittency and other nonhyperbolic effects, and methods that go beyond cycle expansions need to be developed [27] However, for smooth hyperbolic flows with finite symbolic dynamics grammar the convergence as function of the cycle length truncation can be dramatically better, even faster than exponential [28,5]

Numerical results (see for example the plots of the accuracy of the cycle expansion truncations for the Hénon map in $\mathrm{Re}^{\text {. [[12]) indicate that the truncation error of most averages tracks closely the fluctuations due to the }}$ irregular growth in the number of cycles It is not known whether one can explott the sum rules such as the probability conservation (23) to improve the accuracy of dynamical averaging

53 Mathematical caveats

The periodic orbit theory is learned in stages At first glance, it seems totally impenetrable After basic exercises are gone through, it seems totally trivial, in practice all that is at stake are elementary manipulations with traces, determinants, derivatives Still, from the mathematical point of view, the theory is full of perils

Birkhoff's 1931 ergodic theorem [29] states that the time average (3) exists almost everywhere, and, if the flow is ergodic, it implies that $\langle\phi(x)\rangle=\langle\phi\rangle$ is a constant for almost all x The problem is that the above cycle averaging formulas implicitly rely on ergodic hypothesis they are strictly correct only if the dynamical system is locally hyperbolic and globally mixing If one takes a β derivative of both sides of (9)

$$
\rho_{\beta}(y) e^{t Q(\beta)}=\int_{M} d x \delta\left(y-f^{t}(x)\right) e^{\beta \phi^{\prime}(x)} \rho_{\beta}(x),
$$

and integrates over y

$$
\left.\int_{M} d y \frac{\partial}{\partial \beta} \rho_{\beta}(y)\right|_{\beta=0}+\left.t \frac{\partial Q}{\partial \beta}\right|_{\beta=0} \int_{M} d y \rho_{0}(y)=\int_{M} d x \Phi^{\prime}(x) \rho_{0}(x)+\left.\int_{M} d x \frac{\partial}{\partial \beta} \rho_{\beta}(x)\right|_{\beta=0},
$$

one obtans

$$
\begin{equation*}
\left.\frac{\partial Q}{\partial \beta}\right|_{\beta=0}=\int_{M} d y \rho_{0}(x)\langle\phi(x)\rangle \tag{38}
\end{equation*}
$$

This is the expectation value (10) only if the time average (3) equals the space average (4) $\langle\phi(x)\rangle=\langle\phi\rangle$ for all x except a subset $x \in M$ of zero measure, if the phase space is foliated into non-communicating subspaces $M=M_{1}+M_{2}$ of finte measure such that $f^{t}\left(M_{1}\right) \cap M_{2}=\emptyset$ for all t, this fals In other words, we have tacitly assumed ergodicity We have also glossed over the nature of the "phase space" M For example, if the dynamical system is open, such as the 3 -disk pinball, M in the expectation value integral (6) is a Cantor set, the closure of the union of all periodic orbits Alternatively, x can be considered continuous, but then the measure ρ_{0} in (38) is highly singular The beauty of the periodic theory is that instead of using an arbitrary coordinatization $x \in M$ it partitions the phase space by the intrinsic topology of the dynamical flow and builds the correct measure from cycle invariants, the stability eigenvalues of periodic orbits

Were we to restrict the applications of the formalism only to systems which have been rigorously proven to be ergodic, we would not have much to do For example, even for somethıng as simple as the Hénon mapping we do not know whether the asymptotic time attractor is strange or periodic Physics applications require a more pragmatic attitude In the cycle expansions approach we construct the invariant set of the given dynamical system as a closure of the union of periodic orbits, and investigate how robust are the averages computed on this set This turns out to depend very much on the observable being averaged over, dynamical averages exhibit "phase transitions" [30], and the above cycle averaging formulas apply in a "hyperbolic phase" where the average is dominated by exponentially many exponentially small contributions, but fail in a phase dominated by few margınally stable orbits

Still, in spite of all the caveats, periodic orbit theory is a beautiful theory, and the cycle averaging formulas are the most elegant and powerful tool available today for evaluation of dynamical averages for low dimensional chaotic deterministic systems

Acknowledgements

The author is grateful to M J Feigenbaum for hospitality and encouragement, to the Carlsberg Foundation for the support, and P Dahlqvist, B Eckhardt, G Tanner, H H Rugh and N Sørensen for critical reading of the original manuscript The paper was originally written as a tutorial for EGD Cohen, but is to considerable extent inspired by the work of and discussions with R Artuso, B Eckhardt, A S Pikovsky, J-P Eckmann, M J Feıgenbaum, P Gaspard, R Mamıerı, G Vattay, E Aurell, L Rondonı, V Baladı, and H H Rugh

References

[^1]|15| P Cvitanović, J -P Eckmann and P Gaspard, Niels Bohr Institute prepnnt (May 1991), Chaos, Solitons and Fractals 4 (1994), to appear
[16] P Cvitanović, P Gaspard and T Schreıber, CHAOS 2 (1992) 85
[17] See Section 62 of P Cvitanović and B Eckhardt. Nonhneanty 6 (1993) 277
[18] B Eckhardt, Phys Lett A 172 (1993) 411
|19| Z Kaufmann and P Cvitanović, in preparation
|20| R Artuso, G Casatu and R Lombard, Phys Rev Lett 71 (1993) 62
[21] GP Morriss and L Rondont, J Stat Phys 75 (1994) 553.
J Lloyd, L Rondoni and G P Morriss, The Breakdown of Ergodic Behaviour in the Lorentz Gas (submitted),
L Rondoni. G P Mortiss, J P Lloyd, M Niemeyer and EGD Cohen, Lorentz Gas, Periodic Orbit Expansions, Partitions, and Ergodicity, Chaos, Solitons \& Fractals (in press),
GP Morriss, L Rondonı and EGD Cohen, A Dynamical Partition Function for the Lorentz Gas (submitted),
J Lloyd, M Niemeyer, L Rondoni and G P Morriss, The Nonequilibnum Lorentz Gas, Univ of New South Wales preprnt (Sept 1994)
[22] P Cvitanović, M J Feıgenbaum and A S Pikovsky, Recycling Power Spectra of Chaotic Systems, Niels Bohr Instatute prepnnt, unpublished (Sept 1992)
[23| J Balatonı and A Renyı, Publı Math Inst Hung Acad Scı 1 (1956) 9, (English translation 1 (Akademia Budapest, 1976)) p 588
[24| P Grassberger, Phys Lett A 97 (1983) 227, H GE Hentschel and I Procaccia. Physica D 8 (1983) 435
[25| R Benzı, G Paladin. G Panisı and A Vulpıanı, J Phys A 17 (1984) 3521
[26] TC Halsey, M H Jensen LP Kadanoff, 1 Procaccia and B I Shraman, Phys Rev A 107 (1986) 1141
127| G Tanner, unpublished,
P Dahlqvist, Nonlineanty, to appear
[28| H H Rugh, Nonlneanty 5 (1992) 1237
[29] G D Birkhoff, Collected Math Papers, Vol 11 (Amer Math Soc. Providence R I, 1950)
[30] P Cvitanović, Proceedings of the XV International Colloquium on Group Theoretical Methods in Physics (World Scientific, Singapore, 1987),

R Artuso, P Cvitanović and B G Kenny, Phys Rev A 39 (1989) 268

[^0]: ${ }^{1}$ Permanent address Center for Chaos and Turbulence Studies, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

[^1]: [1] D Ruelle, Statistical Mechanics, Thermodynamic Formalism, (Addison-Wesley, Reading MA, 1978)
 [2| Ya G Sinal, Russ Math Surveys 166 (1972) 21
 [3] R Bowen, Equilbnum states and the ergodic theory of Anosov-diffeomorphisms. Springer Lecture Notes in Math 470 (1975)
 [4] R Artuso, E Aurell and P Cvitanović, Nonlınearity 3 (1990) 325
 [5] P Cvitanović, PE Rosenqvist, H H Rugh and G Vattay, CHAOS 3 (1993) 619
 [6] P Cvitanović and B Eckhardt, J Phys A 24 (1991) L237
 [7] See for example P Cvitanović, Physica D 51 (1991) 138
 [8] S Grossmann and S Thomae Z Naturforsch 32 a (1977) 1353, reprinted in Ref [9]
 [9] Universality in Chaos, 2nd edition, P Cvitanović, ed (Adam Hılger, Bnstol 1989)
 [10] B Eckhardt and S Grossmann, Phys Rev E, Nov 1994
 [11] A S Pikovsky, unpublished
 [12] R Artuso, E Aurell and P Cvitanović, Nonlinearty 3 (1990) 361
 [13] P Cvitanović and G Vattay, Phys Rev Lett 71 (1993) 4138
 |14| R Artuso, Phys Lett A 160 (1991) 528

