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Abstract. The eigenvalue spectrum of the period-doubling operator is evaluated both in 
terms of unstable periodic orbits and by a diagonalization at the operator. Cycles up to 
length ten yield the twelve leading eigenvalues; direct diagonalization yields some 50 
eigenvalues. The Feigenbaum 6, the Hausdorff dimension and the escape rate for the 
period-doubling repeller are evaluated to high accuracy. 

In this letter we apply the technique for the extraction of correlation exponents of [ I ]  
to evaluation of the spectrum of the period-doubling renormalization operator. The 
basic idea of relating the Feigenbaum constant 6 to the scaling (or the presentation) 
function is due to Sullivan [2], and is implemented as an eigenvalue spectrum calcula- 
tion in [3-51. We refer the reader to [3, 41 for an introduction to the cycle expansions 
in general, and their application to the evaluation of the stability, the dimension and 
the escape rate of the period-doubling repeller in particular. The Fredholm determinant 
evaluation method and the transfer operator diagonalization [ 11 used here are superior 
to the method of locating zeros of finite products of dynamical 6 functions [6] of [3, 
4, 7 ,  81, and in that sense the present letter supersedes the above references. 

The repeller we study here is the non-wandering set of the period-doubling presenta- 
tion function [9] 

where g ( x )  is the universal period-doubling function which satisfies 

g ( x )  = a g  O g ( x / a ) .  ( 2 )  
The stability [3] of a repeller is probed by perturbing its points by an infinitesimal 
smooth perturbation x + x + h ( x ) ,  Ih(x)l<< 1, and investigating the growth of the per- 
turbation under iterations of the mapping. In one iteration the perturbation h ( y )  
expands tof’(y)h(y);  the total perturbation at the point x is the sum ofthe perturbations 
at its pre-images: 

This relation defines the ‘transfer operator’ 3 ( y ,  x )  = 6 ( y  - f - ’ ( x ) ) f ’ ( y ) .  The period- 
doubling fixed point linear stability equation [ 101 is obtained by substituting g ( x )  + 

A x )  + h n ( g ( x ) )  into ( 2 ) :  

h n - , ( g ( x ) )  = . g ’ ( g ( x / . ) ) h n ( g ( x / a ) ) +  a h f l ( g ( x ) / a ) .  
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Recast [4, 111 into the presentation function form (l) ,  this is a stability perturbation 
of the period-doubling repeller: 

(4) hn- l (x )  = (2'0 h n ) ( x )  = f b ( f o ' ( x ) ) h n ( f o ' ( x ) )  + f ; h n ( f ; ' ( x ) ) .  
The nth iterate perturbation for the entire strange set grows exponentially as (2'" 0 h ) -  
( x ) E  a", where 6 is the leading eigenvalue of the transfer operator 2'. For the period- 
doubling renormalization, 6 is the Feigenbaum 6. 

The spectrum of 2' can be extracted [6, 31 from det(1 - z 2 )  expressed in terms of 
the traces 

( n )  Ai  n - l  

dx S ( x  - f - " ( x ) )  n f ' ( f k ( x ) )  = - 
k = O  i l - l / A i  

de t ( l - z2 )=exp  

m 
= 1 +  E cnzn  

" = I  

where the sum goes over all periodic points xi  of period n, and p are prime (non- 
repeating) cycles. This Fredholm determinant can also be expressed as a Selberg-type 
product [12] over all prime cycles: 

a3 

Z(z )  = det( 1 - z 2 )  = n n ( 1  - z " ~ A ~ - ~ ) , .  
p k = O  

The leading zero z = 1/6 of det( 1 - z 2 )  corresponds to the Feigenbaum 6. Here A, is 
the stability of the p cycle; as the map (1) is everywhere expanding, In,/> 1 for all 
cycles. The symbolic dynamics is unrestricted binary dynamics; for each binary string 
i of length n there exists a cycle of stability 

Ai = f ' ( f k ( x i ) ) .  
k = O  

In particular, the stabilities of the fixed points xo = 1, x 1  = 0 of (1) are A, = a', AI = a, 
where for quadratic maps 

a = -2.502 907 875 095 892 822 283 902 873 . . . 
The stabilities of prime cycles up to length 6 are given in table 2 of [4]. Our cycles 
are computed using Lanford's expansion [13] of g ( x ) ;  this is the main limitation on 
the convergence of the present calculation, and, if needed, the accuracy could be 
improved by recomputing g ( x ) .  

The convergence of the Z(z )  = Z, Cnzn expansion can be estimated as follows. The 
Fredholm determinant (6) is a product of dynamical zeta functions [6] 1/&(z)=  
lIp (1 - zmpA;-'). In the piecewise-linear approximation to the repeller ( l ) ,  we keep 
only the fixed points and drop all curvature terms in the cycle expansion [3] of 

+ (a2)1-k)z  - . . . . For large k, 1/&(z) = 1 - ~al-~. In this approxima- 
tion, the spectrum of the Selberg product (6) is given by 

= 1 - 

By this simple estimate the eigenvalues Sk should fall off exponentially as and 
the coefficients in the Z(z )  = Z, Cnz" expansion of the Fredholm determinant (5) 
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should fall off faster than exponentially, as ICn[ = . In contrast, the cycle 
expansions [4] of truncated Selberg products fall off 'only' exponentially; the difference 
is illustrated in figure 1. The above spectrum of 2 for the piecewise-linear approximate 
map is only indicative of the spectrum for the exact nonlinear map; the details are 
subtle and the reader is referred to [14] for more careful convergence estimates. 

Actual calculation is straightforward. We substitute the eigenvalues of prime cycles 
up to length N into the Fredholm determinant cycle expansion ( 5 )  Z ( z )  = 
exp(-Xr=, b,z") and then expand the exponential to obtain a polynomial approxima- 
tion Z ( z )  = 1 +Xy=, C,Z". The zeros can be easily determined by standard numerical 
methods. 

The first twelve eigenvalues are listed in table 1. They agree with the estimates of 
Eckmann and Epsteint. The odd eigenvalues correspond to the smooth conjugacies 
and are given by & = a i - & .  This fact provides a useful check of the calculation. 
Conversely, by dividing ( 5 )  by the product of the known eigenvalues 

" Z n  1 
k = O  n 1 - a  

m 

we obtain the Fredholm determinant for the non-trivial eigenvalues only, with conver- 
gence improved by replacement (Y + a2  in the estimate (7). This yields more eigenvalues 
to considerably higher accuracy, see table 1. The convergence of the leading eigenvalue 

A 
2 4 6 8 10 12 

n 

Figure 1. The convergence of the Fredholm determinant cycle expansions ( 5 )  for the 
Feigenbaum S. Plotted is the estimate log,,lS(,, - SI error as a function of the cycle length 
n, where S is our best estimate of the Feigenbaum S. Filled dots: S,,, computed from the 
full Fredholm determinant ( 5 ) .  Open dots: S,,, computed from the Fredholm determinant 
with 'trivial' roots (8) divided out. For comparison, the squares are the best estimates of 
S,,, taken from figure 7 of [4] based on truncated l / l k  products, which converge exponen- 
tially, in contrast to the a:"* convergence of the Fredholm determinant expansion. To go 
beyond cycle length 10 (respectively 8) would require extending the precision of the input 
function g(x). 

t We are grateful to H Epstein and J-P Eckmann for providing us with their unpublished results for the 
spectrum. The number of eigenvalues obtained here is also comparable to the (unpublished) results of M 
J Feigenbaum (private communication). 
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Table 1. Second column: the spectrum of the period doubling operator, computed by 
including cycles up to length 10 into the Fredholm determinant (5) and determining its 
zeros. The eigenvalues are numerically stable (and real) to the digits quoted. The leading 
eigenvalue is the Feigenbaum S .  Third column: deviation of SA from U ' - ' .  Since the odd 
eigenvalues are given exactly by Szkt l  = a-'', these deviations provide a check on the 
convergence of the finite cycle length expansions. The even eigenvalues converge toward 
the asymptotic estimate (7). Fourth column: the even eigenvalues computed from the 
Fredholm determinant with 'trivial' roots (8) divided out. Last column: the eigenvalues 
obtained through diagonalization of the transfer operator in the polynomial representation. 

SA SA - a1-A S A ,  k even SA 

0 
1 1.000 000 000 000 00 2.5 x 1 .o 
2 -0.123 652 712 553 
3 0.159 628 440 3827 -3.1 X IO-" 1.596 284 403 826 99 x l o - '  

5 0.025 481 239 1.5 X lo-'' 2.548 123 897 901 31 x lo-' 
6 -0.0101458 -3.5 X -0.010 145 805 67 -1.014 580 567 208 85 x 
7 0.004067 -2.9 x io- '  4.067 530 437 238 72 X 

8 -0.001 63 -1.6X lo- '  -0.001 625 278 -1.625 278 165 366 60 X 

9 0.0007 2.3 x 6.492 935 399 055 78 x 
10 -6.3 X IO-' -0.000 2588 -2.587 772 471 663 93 X 

12 -4.1 X IO-' -0.000 041 -4.131 11801044664X lo- '  

4.669 201 609 102 99 4.669 201 609 102 99 

-0.123 652 712 552 6870 -1.236 527 125 526 87 X l o - '  

4 -0.057 307 021 1 6.5 x -0.057 307 021 066 68 -5.730 702 106 668 18 X 

as a function of the maximal cycle length is shown in figure 1-only 71 cycles up to 
length 8 suffice to determine 6 to 25 significant figures. 

Given the cycle eigenvalues, one can with equal ease evaluate other averages 
associated with the repeller. For example, the escape rate [15] y I  and the correlation 
exponents y n - y ,  are given by [l ,  31 the eigenvalues of the operator Z ( y , x ) =  
S(y  - f ( x ) ) ,  i.e. the zeros z = ey  of the determinant [3]: 

The Hausdorff dimension DH can likewise be extracted [3] from the leading zero 
T =  -DH of the Fredholm determinant for the transfer operator ZT(x ,y )=  
S(X --f-"If'(x)lT: 

cc 

de t ( l -Z7)=  n n ( 1-- 
k = O  p 

The convergence of the eigenvalue spectrum of (9) and (10) is comparable to that of 
the stability spectrum ( 6 ) ,  and all the eigenvalues computed are again real. 

As an independent check, we also compute the spectrum by exploiting the analyticity 
of the map to represent the linearized period-doubling operator in terms of even 
polynomial basis vectors (i.e. with the trivial a'-2k eigenvalues excluded) 

Z e n  = emLmn. 

Setting a =0.7 (the spectrum is rather insensitive to the precise value of a )  and 
diagonalizing the 150 x 501 truncation of L,,, we obtain the first 50 eigenvalues to the 
machine precision. As the eigenvalues fall off as the zeroth eigenvalue is given 
to some 30 digits, with the number of significant digits falling off to one digit by the 

e,(x) = (x'- a)"  
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49th eigenvalue. All the computed eigenvalues are real within the accuracy of the 
calculation (though we do not know why this should be so). 

To summarize: cycle expansions of the Fredholm determinants applied to the 
period-doubling repeller converge extremely well. Including cycles up to length 8, we 
obtain our best estimate of the Feigenbaum 6, the Hausdorff dimension and the escape 
rate for the period-doubling repeller, 

6 = 4.669 201 609 102 990 671 853 2038. . . 
DH = 0.538 045 143 580 549 911 671 415 567. .  . (11) 

y=0.554613533486294443341193309 . . .  
(all numbers stated here are numerically stable to the digits quoted). The Hausdorff 
dimension estimate has nearly three times as many significant figures as the most 
accurate estimates available in the literature [6,7, 18, 191, in agreement with the recent 
claims [20]. The direct diagonalization of the transfer operator yields an even better 
spectrum, but an implementation in a more general setting might be less straightforward 
than the cycle expansion approach. The point of the above exercises is not so much 
the pleasure of owning DH to 30 digits, as developing the confidence in the cycle 
expansions to be used in contexts where convergence is much harder to check and 
where the entire spectrum is of physical interest, such as in the evaluation of quantum 
spectra of classically chaotic systems. 

PC thanks IHES, Bures-sur-Yvette, for the hospitality, and the Carlsberg Foundation 
for the support. Live and electronic discussions with E Aurell have been very profitable. 
The above calculation has been inspired by the work of R Artuso, E Aurell, M J 
Feigenbaum, G Paladin, D Ruelle, D Sullivan and F Tangerman. 
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