
Physica Scripta. Vol. 32,263-270, 1985. 

Scaling Laws for Mode Lockings in Circle Maps 
Predrag Cvitanovii" 

Laboratory of Atomic and Solid State Physics, Cornel1 University, Ithaca, NY 14853, USA 

Boris Shraiman 

The James Franck Institute, University of Chicago, Chicago IL 60637. USA 

and 

Bo Soderberg** 

Nordita, Blegdamsvej 17 ,  DK-2100 Copenhagen 0. Denmark 

Received April 22, 1985; accepted May 17, 1985 

Abstract 

The self-similar structure of mode lockings for circle maps is studied by 
means of the associated Farey trees. We investigate numerically several 
classes of scaling relations implicit in the Farey organization of mode 
lockings and discuss the extent to which they lead to universal scaling 
laws. 

1. Introduction 

The discovery of the universality for period-doublings in one- 
dimensional iterations [ 11 , [2] has prompted a search for 
universal scalings in other low dimensional dynamical systems 
(the theory and the experimental observations of period doub- 
lings are reviewed in refs. [3-71). 

One class of such problems in which the universality ideas 
have had some success are the transitions to  chaos for diffeo- 
morphisms on the circle (circle maps). Maps of this type model 
a variety of physical systems: we refer the reader t o  refs. [ 8 ] ,  
[9] for a discussion of the physical applications of circle maps. 

A prototype mapping of this type is the sine map 

x ,  + = x ,  + i2 - k/(2n) sin (2nx,) (mod 1) (1.1) 

The circle maps fall into three classes. If the map is mono- 
tonically increasing (k smaller than 1 in ( l . l ) ) ,  it is called 
subcritical. For subcritical maps the asymptotic scaling laws 
turn out to  be trivial: they are given by the shift map ( k  = 0 in 
(1.1)) scalings. For  the shift map 

x,+1 = x ,  + 52' (mod 1) (1.2) 

the parameter i2 is also the winding number of the mapping. 
Mode lockings correspond to  rational windings, so the problem 
of organizing subcritical mode lockings reduces t o  the problem. 
of organizing rationals on the unit interval. There are various 
ways of doing this: we argue that the natural organization is 
given by the Farey tree (section 3). 

If the map is marginally invertible, i.e. if it has inflection 
points with zero slope (k = 1 in ( l . l ) ) ,  it is called critical. This 
is the physically interesting class, as the dynamical systems 

* Permanent address: Theoretical Physics, Chalmers University, S-412 
96 Goteborg, Sweden. 
Address until 1 July 1985: Centre de Physique Thiorique CNRS, 
Luminy, F-13288 Marseille, France. 

* *  

modelled by circle maps in this case exhibit transitions to  chaos 
already on a two-torus. 

Finally, if the map is non-invertible (k larger than 1 in ( l . l ) ) ,  
it is called supercritical. The bifurcation structure of this regime 
is extremely rich. Beyond mode lockings and period doubl ing  
there are infinitely many families of infinite sequences of 
bifurcations which tend to  universal limits. 

In this paper we concentrate on  the critical case. The trivial 
subcritical case is nothing but easy number theory (the Farey 
tree, binary trees, continued fractions), which we use as a 
guide to organization of the non-trivial critical case. Our goal is 
t o  formulate universal scaling laws which characterize the 
critical case, and which have a chance of  being experimentally 
accessible. By saying that a scaling law for mode lockings is 
"universal" we mean that it should apply t o  any critical circle 
map within the given universality class. The universality class of 
a critical map depends on  the power of inflection. The generic, 
physically interesting case corresponds to  the cubic inflection 
(for k = 1 and small x ,  (1.1) is cubic in x ) .  All our calculations 
are done for the critical maps with cubic inflections. 

The first example of a universal scaling for the critical circle 
maps was discovered in a study of mappings with golden mean 
winding number [ 10-121 . While appealing theoretically, the 
golden mean universality describes a very small region of the 
total parameter space and is difficult to  measure experimentally. 

The next example of universality was discovered by M. H. 
Jensen et  al. [13] .  They have observed that the fractal dimen- 
sion of  the parameter values corresponding to  the irrational 
windings is (numerically) universal, D = 0.87 . . . . Unlike the 
golden mean universality, this is a global statement about the 
whole parameter range, and D is easily extracted from experi- 
mental data. 

Clearly, there is much more universality to  be mined from 
circle maps. In this paper, motivated by the desire to  extract as 
much scaling information as possible, and thus have a stronger 
hand in confronting the experiments, we propose and investi- 
gate numerically a number of different scaling laws which 
characterize all mode lockings. 

2. Circle maps 

A circle map is a mapping of a circle onto itself of form 
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x + x ’  = f ( x )  (mod 1) 

f ( x  + 1) = f ( x )  + 1 

f ( x )  is assumed to be continuous, have continuous first deriva- 
tive, and in addition have continuous second derivative at the 
inflection points. One example of a circle map is the sine 
mapping (1.1). Another example of such map is a (piecewise) 
cubic map 

52 + 4x:  0 < x ,  < 1/2 
xn+1 = (2.2) 

52 + 1 + 4 ( ~ ,  - 1)3 1/2 < X ,  < 1 

The winding number 

w = lim ( f ” ( x )  - x ) / n  
n-+- 

describes the average rotation per iteration. For invertible maps 
and rational winding numbers, w = P/Q, the asymptotic iterates 
of the map converge to a unique Q-cycle attractor 

f Q ( x i )  = x j + P  i = 0 , 1 , 2  , . . . ,  Q - 1  (2.4) 
where xi  is the i t h  cycle point. 

For any rational winding number, there is a finite interval of 
parameter values for which the iterates of the circle map are 
attracted to the P/Q cycle. We call this interval the stability 
interval of the P/Q cycle. The stability of the P/Q cycle is 
defined as 

For a stable cycle, I SI lies between 0 (the superstable value, the 
center of the stability interval) and 1 (the ends of the stability 
interval). A critical map has a superstable P/Q cycle for any 
rational P/Q, as the stability of any cycle that includes the 
inflection point equals zero. 

For the shift map (k = 0), the stability intervals are actually 
points. As the “non-linearity’’ parameter k increases, they 
become wider, and for the critical maps (k = 1) they fill out the 
whole interval [ 131 . A plot of winding number o as a function 
of the shift parameter 52 is a convenient way of representing the 
mode-locking structure of circle maps. It yields a monotonic 
“devil’s staircase” (see ref. [ 131 , for example) whose self- 
similar structure we wish to unravel here. 

We compute the stability intervals by the method due to 
J .  Myrheim [ 141. This is a two-dimensional Newton-Raphson 
method which determines 52 and x o  required for a P /Q cycle 
(2.4) of given stability (2.5). The initial guess for the value of 
52 corresponding to the superstable cycle is easily obtained by 
halving 52 intervals, as x Q  is a monotonic function of 52. The 
stability (2.5) as a function of 52 is roughly an ellipse whose 
width is well estimated by its curvature 

at the superstable (or if k < 1, the maximally attractive) point. 
This width is then used to start the Newton-Raphson iteration 
for determining the ends of the stability interval. The curvature 
(2.6) is an interesting object in itself, as it provides a local 
measure of the scale of the mode-locking intervals. 

We expect universal scalings, because mode-lockings possess 
rich self-similarity structure. Essentially, a metric self-similarity 
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will arise because iterates of critical maps are themselves critical, 
i.e. they also have cubic inflection points. This situation is 
reminiscent of period-doubling universality, where interates of 
quadratic polynomials are themselves locally quadratic, and 
where this local self-similar structure leads to the universal 
scaling laws. 

3. Farey trees 

The self-similar structure of the devil’s staircase [ 131 , suggests a 
systematic way of separating the mode lockings of a circle map 
into a hierarchy of levels. 

Intuitively, the longer the cycle, the finer the tuning of 
parameter 52 required to attain it. For example, we will show in 
section 7 that the size of the stability interval corresponding to 
l/Q-cycle is of order The crucial observation is that 
roughly halfway between any two large stability intervals (such 
as 1/2 and 1/3) there is the next largest stability interval (such 
as 2 / 5 ) .  Of all the rationals in this range of winding number 
values we are interested in the one with the smallest denomi- 
nator. Hence we need an interpolation scheme which organizes 
rational numbers P /Q into self-similar levels of increasing cycle 
lengths Q. Such scheme is provided by Farey numbers [ 151, 

The Farey mediant [17] ,  [18] interpolates between two 
[I61 ’ 

rationals, 

P/Q @ P’/Q’ = (P + P‘MQ + e’>, (3.1) 

yielding the fraction with the smallest denominator lying 
between P/Q and P’/Q’. That the Farey composition describes 
the mode-lockings of not only the trivial shift map (1.2), but 
also the mode-lockings of the subcritical and critical circle maps, 
follows from their monotonicity. For the nontrivial maps the 
Q + Q‘ cycle can be found in the following manner. Start with a 
fake (P + P’)/(Q + Q’) cycle which consists of Q interations of 
the map corresponding to the superstable P/Q cycle, followed 
by Q’ interactions of the map corresponding to the superstable 
P‘lQ’ cycle: 

!L 
I 2 

Fig. 1. The Farey tree. The double line indicates the Fibonacci sequence 
of rational approximations to the golden mean. The dashed lines are 
sequences of approximations to 0/1 of form P/Q, P fixed, Q large. 



Scaling Laws for Mode Lockings in Circle Maps 265 

If we increase S 2 p / Q ,  the Qth  iterate overshoots completing the 
Q-cycle by a positive amount (as the map is assumed monotone); 
The composed map can still have a Q + Q’ cycle if we compensate 
for this overshoot by decrementing ilP,,~,. We can repeat this 
procedure until the two parameter values coincide. Hence the 
parameter interval between P/Q and P‘/Q‘ cycles always contains 
the ( P  + P‘)/(Q + Q’) cycle. 

The Farey tree is obtained by starting with the ends of the 
unit interval written as Oil and l / l ,  and interpolating by means 
of Farey mediants. The first level of the Farey tree is 112, the 
second 113, 213, the third 1/4,  215, 315, 3/4 and so forth, see 
Fig. 1. 

The following alternative construction of the Farey tree 
makes the self-similarities more explicit. Replace each Farey 
number by its continued fraction representation P/Q = [ j ,  k ,  1, 
’ ’ . , ml 9 

[ j , k , l ,  . . . ,  m] = (3.3) 
1 

1 
1 

1 
I +  ___ 

1 . . . + -  
m 

i +  
k f  

with j ,  k ,  I ,  . . . , m positive integers. Clearly 

[ . . . ,  m , l ]  = [ . . . ,  m f l ] .  (3.4) 

The level of a Farey number is given by the sum of coefficients 
of its continued fraction expansion. The next level of the Farey 
tree is obtained by replacing the “last 1”  in the continued 
fraction by either 2 or 1/2: 

[i, k ,  1, . . . , ml 
\ (3.5) ,....... 

....‘ 
[ j , k , l ,  . . . ,  m +  11 

The resulting Farey tree is given in Fig. 2. The continued 
fraction representation shows explicitly that each branch of the 
Farey tree is similar t o  the entire tree, and suggests scaling laws 
for the associated mode lockings. 

It is clear that sequences converging t o  different rational or 
irrational numbers, such as the l/N approximations t o  011, 
Fig. 1, and the N / ( 2 N +  1) approximations t o  112, Fig. 3 ,  are 

[ j , k , l ,  . . . ,  m - l , 2 ]  

Fig. 2. A continued fraction representation of the Farey tree. The dotted 
and the full lines indicate substitutions by 2 and 1/2, respectively. 

\ 

7 

Fig. 3. Sequences of approximations to 1 / 2  of form 1/(2 + M / N ) .  

similar t o  each other, and that implicit in the Farey tree struc- 
ture are scaling laws that relate mode-locking intervals. In order 
t o  describe these scalings more precisely, we need to  first discuss 
the rationals on the unit interval in more detail. 

4. Operators on the rationals 

In this section we define a few elementary operations which 
implement various symmetries of the Farey tree, and are there- 
fore useful in describing the scalings of the associated mode- 
locking intervals. 

The most trivial symmetry of the Farey tree is the replace- 
ment o+ 1 - U ,  which flips the Farey tree around 112, its 
root. In terms of continued fractions, this is given by 

[ l , n l  - l , n 2 : n 3 . .  .] if n l  > 1 

in2  + l , n 3 , .  ‘ . I  if n ,  = 1 
1 - o  = (4.1) 

Clearly w and its flip partner 1 - o belong t o  the same level of 
the Farey tree. 

By the Farey rule (3.1) each rational is a daughter of two 
“parents”. We shall refer t o  the parent on the level immediately 
above the daughter as the “mother”, and to  the more distant 
parent as the “father”. If we take all Farey numbers up  t o  a 
given level and order them monotonically, than the two success- 
ive Farey numbers P / Q ,  P’/Q’ satisfy 

P’/Q’ -Pi& = l / Q ’ Q  (4.2) 

P’IQ’ -P/Q = 3IQ‘Q (4.3) 
The “left parent” of a rational P/Q on the unit interval is given 
by 

L o  = P’/Q‘ (4.4) 

Any two “sisters” in (3.5) satisfy 

where P’ and Q’ are determined by (4.2): 

PQ’ = P’Q+ 1,  

The continued fraction rule for determining the left parent 
follows from (3.5): 

0 < Q‘ < Q 
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[ n l , .  . . 5nk-11 if k odd [ n , ~ ]  [x] = [nx + 11 

[n l ,  . . . , n k  - 1 ,  nk - 11 if k even 
L [ n l , .  . . ,nk  -1 ,nkl  = 

The result is 

(4.14) 

(4.5) ~’(0) = (- l)k/Qz (4.15) 
If nk - 1 = 1, replace [ .  . . , f lk  -1, 11 by [ .  . . , nk - 1 + 11. 

For  example (see Fig. l ) ,  the left parent of 5 /14  = [2, 1 , 4 ]  
i s 1 / 3 =  [3],andtheleftparentof9/14= [ I ,  1, 1 , 4 ]  i s7 /11  = 

and the infinitesimal neighborhood of w is given by 

o(x)  = w + ( - l ) ’ x / Q 2 + X 2 0 ” ( 0 ) / 2 + . . .  (4.16) 

[ I ,  ~ ~ 3 1 .  

by 

D o  = Q‘/Q (4.6) 

The dual of a rational w = P/Q on the unit interval is defined 

where Q’ is the denominator of the left parent, or, equivalently, 
the mod Q inverse of P: 

PQ’ = l ( m o d Q ) ,  

The continued fraction of the dual is obtained by reversing the 
continued fraction of w :  

0 < Q’ < Q 

If n l  = 1, replace [ .  . . , n 2 ,  11 by [ .  . . , n 2  + 11. For w = Oil ,  
Do = w.  

For example (see Fig. l ) ,  the dual of 5 / 1 4 =  [2, 1, 41 is 
3/14 = [4, 1, 21, and the dual of 9 /14  = [ l ,  1, 1 , 4 ]  is 11/14 = 

The dual operation is idempotent and it commutes with the 
[ I ,  3 ,  1 , 2 1 .  

flip (4.1): 

DD = 1 

D ( l - U )  = 1 - D W  

The dual D w  belongs to  the same Farey level as w.  
The Gauss transformation is defined as 

Gw = { l / w }  

where { 
dual equivalent of the left parent is defined as 

} stands for the fractional part {x}= x - Int(x). The 

T = D L D  (4.9) 

and it can be shown t o  be identical t o  T = 1 - G. 
The continued fraction rule for the operation T i s  given by 

(4.10) 

Forexample (see Fig. l ) ,  T(5/14) = T[2,1,4]  is l / 5  = [ 5 ]  = 
{- 14/5},and T(7/16)  = T[2,3 ,2]  is 5 /7  = [1 ,2 ,2]  = {-16/7}. 

The last s integer entries in the continued fraction [n , ,  n 2 ,  
. . . , nk, m,, m, - 1 ,  . . . , m l ]  can be replaced by the correspond- 
ing rational x : 

(4.11) 

By the definition of the continued fraction (3.3) 

[ .  . . , m , n ,  l/x] = [ .  . . , m , n  + X I  
We can evaluate ”(0) recursively using identities 

d 2d 
- [m,  n ,  . . . , X I  = - [m,  n ,  . . . , X I  - [n,  . . . , X I  
d x  dx 
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(4.12) 

(4.13) 

w = P/Q = [ n l , n z , .  . . ,nk]  (4.17) 

5. Scaling functions 

The physically interesting question about mode lockings is the 
question of what mode lockings are the dominant ones, and 
what are their relative scales. The Farey tree guides us t o  the 
answers: it organizes all mode lockings into a hierarchy of levels, 
and suggests scaling laws. A scaling law is a statement of self- 
similarity: it says that asymptotically every branch of  the Farey 
tree resembles some other branch. In this sense there is an 
infinity of scaling laws. However, most of them are redundant: 
if we know how the scale changes from a level to  the next level, 
we can compute the scaling connecting any two levels. Hence 
the main object of interest is the ratio of the local scale of a 
“mother” mode-locking t o  the local scale of a “daughter” mode 
locking. As every Farey number has two “parents” (3.1), it is 
natural t o  compare the scale of the daughter to the scale of 
either parent: 

A(daughter) 
A(parent) 

U =  

From now on we shall refer t o  this ratio as the scaling function. 
The scale associated with a given mode locking can be defined in 
a variety of ways. As each Farey number has two daughters, one 
can use the separation between the maximally stable (for critical 
circle maps, the superstable) parameter values of the two 
daughters as a measure of the local scale: 

nd -ad’ (5 4 Acent = 

We shall call this the centroid splitting. Another, experimentally 
more accessible measure of the scale associated with a given 
mode locking, is the mode-locking interval size, i.e. the differ- 
ence between the parameter values corresponding t o  the left and 
t o  the right edges of the P/Q mode-locking region: 

% - nI. (5.3) Aint = 

A trully local measure of the scale associated with a super-stable 
cycle is the curvature (2.6). The centroid, the interval and the 
local scaling functions are in general not equal. 

Our next problem is t o  decide what is (5.1) a function of. A 
glance at the Farey tree Fig. 1 reveals that at every branching 
there is a slow and a rapid change of scale, corresponding t o  the 
two extremes in denominator growth rates: 

If we follow the tree down along the outside, dotted 
branches, the denominators grow harmonically, i.e. as N ,  where 
N is the level of the Farey tree. The corresponding mode-locking 
intervals decrease slowly, and the associated daughter/mother 
ratios tend to 1. 

The other extreme is obtained by zig-zagging down the 
center of the tree. The successive denominators grow geo- 
metrically, gaining a golden mean factor a t  each level. The corre- 
sponding mode-locking intervals decrease by the universal 
Shenker’s factor [ l o ]  6 .  Hence we already know that the 
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scaling function (5.1) is universal for at least one winding 
number, the golden mean. Furthermore, as this universality 
follows from the periodicity of the associated continued 
fraction expansion, we know that for any finite interval on the 
winding number axes there are infinitely many windings for 
which the scalings are of the golden mean type. Interspersed 
between them are winding numbers of harmonic type, so it 
clearly makes n o  sense to  define the scaling function as a 
monotonic function of the daugher’s winding number. 

T o  discover more sensible labelings of the scaling function 
(5.1), we turn t o  the shift map (1.2). The separation of the 
two daughters (5.2) is given by (4.3), so the centroid scaling 
function for the shift map is 

(5.4) 

All of the above Q’s can be expressed in terms of the mother- 
daughter pair Q, Q’: 

Q“ = 3 9 - Q ’  

Q& = 2 Q ’ - Q  

d - Q’Q’ Q” - 

and (5.4) becomes 

3 ~ -  1 
u(x) = 

(2-x) ( l  +x)  

X QmotherIQdaughter, 1 > X > 112 

Hence the trivial circle map suggests that the daughter scaling 
should be plotted as a function of the dual (4.6) of its rotation 
number [ 191 . 

The centroid scaling function (5.6) is not a particularly 
pretty object because the centroid splitting (5.2) is a very crude 
measurement of the scale of the neighborhood of P/Q. The 
unique local scale can be defined by studying the splitting 
between two harmonic sequences approaching P/Q: the sequence 
that approaches PIQ f rom below, with Q‘ = Q’ + NQ, and the 
sequence that approaches P/Q from above, with Q” = Qf‘ + NQ. 
In the large N limit the splitting is given by (see (40.17)) 

(5.7) 

and the corresponding trivial local scaling functions is given by 

a(x) = x2 (5.8) 
where x = Dw is the dual (4.6) of the daughter winding number 
w .  

6 .  The binary-labelled scaling function 

The structure of the Farey tree suggests an alternative labelling 
of the mode-locking intervals: the binary labeling [201. Assign 
0 to all “slow” branches (dotted lines in Fig. l), 1 to  all “fast” 
branches (full lines in Fig. l),  and assign t o  each Farey number a 
binary coordinate, obtained by reading the bits starting with the 
corresponding branch and continuing u p  the tree. This has the 
virtue that all the numbers whose continued fractions asymp- 
totically look like the golden mean continued fraction lie 
together at the end of the unit interval, while the other extreme, 
the harmonic sequences with denominators growing like the 
Farey level, lie a t  the beginning of the interval. We have plotted 

-+ 
C 

ti- 

8 + 
0.0 0.2 0.4 0.6 0.8 1.0 

binary label 

Fig. 4. The binary-labelled scaling function: ratio of daughter/mother 
stability intervals (5.3) is plotted as the function of daughter’s binary 
label. The rightmost point corresponds to the golden mean winding 
number: there the value of the scaling function is Shenker’s 6 .  The left- 
most point corresponds to the 1/N harmonic sequence: there the scaling 
function approaches 1. 

a binary-labelled scaling function in Fig. 4. A binary-labelled 
scaling functions is discontinuous at  every binary rational, and 
self-similar in a way that makes it resemble a flock of seagulls. 
This self-similar structure is solely an artifact of the binary 
labelling. The corresponding trivial scaling function obtained by 
plotting (5.8) as the function of the binary label (rather than 
the dual of the daughter’s winding number) is visually indis- 
tinguishable from the nontrivial scaling function of Fig. 4. 

Shenker’s [ 101 6 is a statement of the self-similarity of mode 
lockings for the Fibonacci approximations to  (fi - 1)/2, the 
golden mean. The binary-labelled scaling function is an 
extension of scaling by Shenker’s 6 to  all mode lockings: it 
states that not only the sequence of Fibonacci approximations 
is self-similar, but  that the entire neighborhood of the golden 
mean is self similar. Such scaling function organizes the mode- 
locking intervals around the golden mean: it is an example of a 
scaling function which concentrates on  the geometric scaling. 

The doubling structure of the Farey tree, its binary labeling, 
and the resulting scaling function are strikingly reminiscent of 
period doublings. Indeed, they look so much like period doub- 
lings that M. J .  Feigenbaum [21] ,  following our proposal [ 2 2 ] ,  
has actually succeeded in turning the binary labeled Farey tree 
into a period-doubling dynamics (in the parameter space, this 
time). Shenker’s 6 plays here the same role that the universal 
scaling number a: plays for period doubling, and the universality 
of the binary-labeled scaling function follows from the machin- 
ery developed for the period-doubling theory and the previous 
work on  the golden mean universality [ 1 I ]  , [ 121 . 

As the binary labelled scaling functions are discussed in detail 
in ref. [21], we concentrate in this paper on  the dual-labelled 
scaling functions of type (5.8). Dual labellings result in some- 
what smoother and perhaps more “natural” scaling functions. 
The binary- and the dual-labelled scaling functions are related 
by a trivial relabelling, and our numerical results are equally 
significant for either version. 
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7 .  Harmonic sequences and the separation between the centres of the two consedutive 

The binary labelled scaling function is a precise statement of the 
similarity of the successive subtrees obtained by zigzagging 
down the center of the Farey tree - it is the simplest example 
of geometric scaling for mode lockings. 

Here we turn to the other extreme: scalings for harmonic 
sequences, such as 1/2 -+ 1/3 -+ . . , -+ l / N +  1 / (N+  1) (or any 
sequence that follows a dotted line in Fig. 1). The interval 
between l / (N+  1) and l/N contains an entire Farey subtree 
(the first level l / (N+  1/2). the second consists of 1 / (N+  1/3), 
1/(N + 2/3), and so on) parametrized by 

O < x < l  (7.1) 
1 

N + l - x ’  
w =  

stability intervals drops off as 2n2/(a2N3). The entire stability 
intervals must be fitted into these gaps, so their widths must 
fall off at least as fast as l /N3 .  As argued in section 2, for 
critical maps we furthermore expect the stability intervals 
and their neighborhoods to be self-similar, i.e. scale in the 
same way as the gaps. This agrees with the numerical evidence 

For every rational there is an infinity of harmonic sequences 
(7.5). 

approximating it. We denote a member of such sequence by 

( N +  1)PQ-PQ‘  -P’Q 
( N  + I )QQ - QQ‘ - Q’Q ( w , N ,  a+ = 

or 

(7.9) 

(7.10) 

Here w = P/Q is the limiting rational and w = P’/Q’ is its left 
parent. ij = p/Q is the tail of the continued fraction expansion 
(it labels the particular harmonic sequence), 6’ =P“’/Q‘ is its left 
parent, and N is the growing coefficient in the continued 
fraction expansion. + or - indicates that w is being approached 
from above, resp. below. Furthermore, we define 

If such subtrees approach a limit for large N ,  we say that they 
exhibit harmonic scaling. For the trivial circle map they indeed 
do scale: reparametrize the shift map (1.2) by 

( N  - 1)PQ + PQ’ + P’Q 
( N -  ~ ) Q Q  + QQ’ + Q‘Q 

( w , N , G ) -  = 

1 P 
= Q l + L + ( % l - % l + l ) P  = N++N(N+ 1 ) ’  (7 .2)  

The winding number (2.3) for the trivial map is 

(7.3) 
X - -  - l +  1 

w =  
( w , N ,  l)? = ( w , N T  1,0)*  

( l , N ,  ij)* = 1 + ( 0 , N i  1,  ij)* 

N +  1 -x N +  1 ( N +  1 -x)(N+ 1) 
(7.1 1) 

The argument leading to (7.5) can be generalized to any 
harmonic sequence, leading to a cubic power law for the widths 
of the stability intervals: 

so 

(7.4) P = N + l - x  

For large N the Farey subtree between l / ( N +  1) and 1,” is a 
replica of the entire tree, rescaled by the factor N-’. 

A numerical analysis of the stability intervals (5.3) for the N3A(w,N,  G)* -+ const. as N -+ (7.12) 
1/N mode lockings shows that asymptotically 

Our numerical results are in agreement with this estimate. For 
N 3 ~ ( i / N ) - , c o n s t .  as N - + w  (7.5) example, in Fig. 5 it can be seen that the expression (7.12) 

N 
x = x + O ( l / N )  

(here A is any of the scale indicators (5.2), (5.3) or (2.6)). 
This power law behaviour can be explained by the same 

argument as those used in modelling of intermittency [23]. For 
1/N cycles the value of the parameter R lies just above RR,  the 
right edge of the Oil stability interval. The corresponding circle 
map (2.1) almost touches they  = x line, leaving only a tiny gap 
to x * ,  the fixed point corresponding to the right edge of the Oil 
stability interval. In the neighborhood of x* we can approxi- 
mate f(x) by 

f ( x )  ‘x + E’ + a2(x  -x*)’ 

a’ = f ” ( ~ * ) / 2 ,  E’ = a - R R  

For small E we can approximate the above iteration by a differ- 
ential equation in terms of a rescaled variable y = (x -x*)/e 
and “time” variable t = ne, 

(7.7) 
dY - = 1 + (ay)’ 
d t  

with the solution t = a-l arctan (ay). 
The time required to pass through the trough is r ia ,  correspond- 
ing to N = n/(ae) iterations. Hence the parameter values corre- 
sponding to the large N cycles approach the edge of the Oil 
stability interval as 

R( I /N)  a R  + n’/(aN)’ (7.8) 

indeed approaches constant limit for various harmonic sequences. 
If we define 6 (Pie) = Q3A(P/Q), this can be expressed as 

t j(w,N,G)*+C*(w,ij) ,  as N + m  (7.13) 

The effect of the operators defined in the preceding section 
on a member of a harmonic sequence is as follows: 

D ( w ,  N ,  G)? = (G, N ,  w)* (7.14) 

L (0, N ,  a)* = (U, N ,  TG)? , G f 0 , l  

U, G = O  (7.15) 

( w , N - l , G ) * ,  ij = 1 

T ( w , N ,  ij)* = (Tw,N, a>*, w f 0, 1 

DG , w = o  (7.16) 

( w , N -  l , G ) * ,  w = 1 

Due to the symmetry between w and 1 - w  the width coef- 
ficients (7.13) satisfy 

C*(w, G) = C,(l-  w ,  1 - G) (7.17) 

8. Numerical results 

We have computed the scaling functions (5.1) for the critical 
sine (1.1) and cubic (2.2) maps, and plotted them as functions 
of the (4.6), the dual of the daughter’s winding number 
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0.0 0.1 0.2 0.3 0.4 0.5 
P/Q 

Fig. 5. Plot of log(Q3A(P/Q)). A few of the harmonic sequences are 
indicated. 

or 

The corresponding trivial scaling function (5.8) obeys a simple 
power law. For sine map (1.1) this scaling function is numeri- 
cally almost smooth, as can be seen in Fig. 6. A striking feature 
of this scaling function is its “roof tiling” structure, which is 
still more apparent in the plot of u(x)/x3, Fig. 7, which shows 
that while different harmonic sequences do converge to 0, as 
expected from the cubic scaling for harmonic sequences (7.12), 
these limits are not universal. 

From the arguments of the preceding section we know that 
the harmonic sequences have smooth left and right limits to 
each rational. However, different harmonic sequences have 
different limits: this is illustrated by Fig. 8 and Fig. 9, where 
we have plotted the values of the scaling function for 8 

/’ I 
I I I 

0.0 0.2 0.4 0.6 0.8 1.0 

X 

Fig. 6. The dual-labelled scaling function (8 .2) ,  plotted as a function of 
the ratio of daughter’s denominator with the left parent’s denominator. 

I ! I I 

0.0 0.2 0.4 0.6 0.8 1.0 
X 

Fig. 7. Plot of a ( x ) / x 3 ,  a rescaled version of the scaling function of 
Fig. 6 .  

“Fibonacci” levels of harmonic sequences of type (1, 1 , .  . . , 
N ,  41 -+ 1/4. Harmonic sequences approximating any other 
rational have the same general structure: 

1. The limit of an arbitrary harmonic sequence (for example, 
[ N ,  41 in Fig. 8 or Fig. 9) is not universal: it depends on 
the particular circle map. 

2. For a given daughter winding number and a given circle 
map, the values of the centroid (5.2), the interval (5.3) 
and the local (2.6) scaling functions are in general differ- 
ent. 

3. The left and the right limits to a given rational are in 
general not the same, so the dual-labelled scaling functions 
(8.2) are discontinuous at every rational. 

4. Universal scaling functions associated with the golden 
mean winding can be obtained by computing (8.2) only 
on the winding numbers [ l ,  1, 1 , .  . . , 1,  N ,  l /x] suf- 
ficiently close to the golden mean. This follows from the 
existence of the unstable manifold for the circle maps 
[24], [25] and is illustrated by the harmonic sequences 

ro 
N 
0 

8 
0 
0 ro 

C O  
d o  

b- 

c 

6 

8 4 

0.245 0.250 

X 

0.255 

Fig. 8. The dual-labelled local (2.6) scaling’function (8.2) for (1) [ N ,  41, 
(2) [ l ,  N ,  41, (3)  11, 1, N ,  41. (4) [ l ,  1, 1, N ,  41, etc., harmonic 
sequences evaluated for the cubic map (2.2). 
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-- 1 by Farey trees are the universal scaling laws for complex I iterations [28-321. 
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