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Abstract. The conjectured universality of the Hausdorff dimension of the fractal set 
formed by the set of the irrational winding parameter values for critical circle maps is 
shown to follow from the universal scalings for quadratic irrational winding numbers. 
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1. Introduction 

One of the most common and experimentally well explored routes to chaos is the 
two-frequency mode-locking route. A typical example is a dynamical system which 
possesses a natural frequency w1 and is in addition driven by an external frequency 
w2; as the ratio w 1 / w 2  is varied, the system sweeps through infinitely many 
mode-locked states. If the mode-locked states overlap, chaos sets in. Both 
quantitatively and qualitatively this behaviour is often well described by one- 
dimensional circle maps f ( x  + 1) = f ( x )  + 1 restricted to the circle, such as the sine 
map 

k 
2x 

x , + ~  = x,  + M - - sin(2nx,) mod 1. 

Here k parametrizes the strength of the mode-mode interaction, and M 
parametrises the w J w 2  frequency ratio. For k = 0, the map is a simple rotation, and 
M is just the winding number W(k,  Q) = lim,+~x,/n. For 0 d k < 1, the map is 
invertible. Circle maps with zero slope at the inflection point (k = 1 in (1)) are called 
critical: they delineate the borderline of chaos in this scenario. As 52 is varied from 0 
to 1, the iterates of a circle map either mode-lock, with the winding number given 
by a rational number P/Q E (0, l), or wind irrationally. The complement of the set 
of parameter values M for which the map mode-locks is called the set of irrational 
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windings. The measure of mode-locked intervals increases as k increases and at the 
critical line (here k = 1) the intervals fill up the entire B axis?, squeezing the set of 
irrational windings into a Cantor set of zero measure. 

Jensen et a1 [l] have estimated that the Hausdorff dimension of this set is 
DH = 0.870 . . . . What is more remarkable is that their numerical work indicates that 
this dimension is universal for all critical circle maps with the same order of the 
inflection point (for the generic, physically relevant case the inflection is cubic). This 
universality, which applies to the entire critical line in the parameter space, at first 
glance appears to be very different from the earlier examples of universality in 
transitions to chaos [4-61, all of which describe only infinitesimal regions in the 
parameter space. 

The main point of this paper is that the universality of this Hausdorff dimension 
actually follows from the Shenker et a1 [4-61 universality. We establish this by 
relating DH to the circle map renormalisation transformation operators; more 
precisely, to the universal scaling numbers for quadratic irrationals. Such relations 
have been proposed before [7, 81, but their implementation requires both 
renormalisation group computations of many quadratic irrational scaling numbers 
and careful control of convergence, undertaken for the first time here. 

Our construction and the numerical results support the hyperbolicity conjecture 
advocated (in various guises) in [9-141. We derive an elegant formula for the Jensen 
et a1 dimension, equation (14), that is of interest in itself, both as an insight into the 
dynamical systems theory, and in the light of the fact that the universality of this 
dimension has not yet been rigorously established. So far several mechanisms have 
been proposed. The first class of proposals assumes that the infinitesimal neighbour- 
hood of the golden mean winding number can be mapped by a smooth transforma- 
tion onto the entire critical line; as the unstable manifold of the golden mean is 
universal, so should be the ‘thermodynamic’ averages over the associated Cantor set 
[lo, 121. This amounts to picking out from the class of all circle maps with cubic 
inflection a circle map which happens to be universal; it offers no insight into the 
origin of this dimension, and it is more cumbersome for computational purposes 
than the model map (1). In the second class of proposals the ergodicity of the Gauss 
shifts is generalised to a renormalisation operation on the space of critical circle 
maps and the action of the renormalisation group is conjectured to be hyperbolic 
[13]. It is not clear how any numbers are to be extracted out of this scheme. The 
third proposal uses the Farey-tree scaling functions [9]$ which, however, are marred 
by non-universal harmonic tails [9, 141. The Farey tree renormalisation formulation 
[lo, 111 belongs to the first category above, as it resolves this problem by 
renormalising onto the golden mean unstable manifold. Furthermore, all of the 
known formulations exhibit ‘phase transitions’ [ 11, 151 which make establishing 
convergence a delicate problem. 

The paper is organised as follows. In section 2 we review the renormalisation 
group prerequisites to our calculation. In section 3 we state the formula for DH, and 
describe its evaluation in section 4. We conclude with several remarks on the 
thermodynamic averages and the associated phase transitions. The calculation of the 
universal scaling numbers is described in the appendix. 

t For the numerical evidence, see [l, 21. The proof that the set of irrational windings is of zero Lebesgue 
measure is given in [3]. 
$The scaling function formalism of [9] is superseded by the cycle expansions discussed in the present 
paper. 
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2. Scaling along the critical line 

The set of the irrational winding parameter values is formed by excluding from the 
critical parameter line the mode-locked intervals Aplg for all rationals P / Q .  A finite 
cover of this set at the 'nth level of resolution' is obtained by selecting a subset 
9, = {i} of rational winding numbers E / Q i  and deleting the corresponding 
mode-locked parameter values. This leaves behind a set of complement intervals of 
widths 

which provide a finite cover for the irrational winding set. Here QeQ, are, 
respectively, the lower (upper) edges of the mode-locking intervals Ap,/Q, (Ap,,Q,) 
bounding li, and i is a symbolic dynamics label; for our purposes a natural labelling 
choice are the entries of the continued fraction representation P / Q  = 
[al, a2 , .  . . , a,] of one of the boundary mode-lockings, i = a 1 a 2 . .  . a,. (The other 
commonly used labelling, the binary Farey labelling [9-11, 141, is equivalent: ai - 1 
is the number of consecutive zeros in a binary Farey label.) 

One possible hierarchy of finite covers 9, is given by the continued fraction 
partitioning. In this partitioning of rationals the 9, = {al} level is obtained by 
deleting from the critical line all mode-lockings whose continued fraction expansion 
is of length 1; their complement are the covering intervals 11, 12, . . . , I,,, . . . which 
contain all windings, rational and irrational, whose continued fraction expansion 
starts with [al, . . .] and is of length at least 2. The Y2 = {ala2} level is obtained by 
deleting from each I , ,  interval all mode-lockings with winding number of the form 
P / Q  = [al, a2 + 11, and so forth?. The object of interest, the set of the irrational 
winding parameter values, is in this partitioning given by 9, = {a1a2a3 . . .}, 
a k  E Z+, i.e. the set of rotation numbers with infinite continued fraction expansions. 
The continued fraction labelling is convenient because of its close connection to the 
renormalisation transformations; the Gauss map 

x = o  

([ ] denotes the integer part) acts as a shift on the continued fraction representation 
of numbers on the unit interval 

x = [ U l ,  a2, a31 . . . ] - + f ( x )  = [a2, a3, * 9 .I (4) 
and maps 'daughter' intervals d = a1a2a3. . . into the 'mother' interval m = 
~ 2 ~ 3 .  . . . Associated with this shift is a renormalisation transformation R*, 
reviewed in the appendix. We shall concentrate here only on the parameter-scaling 
aspect of R*, the scaling function [9-11, 151 

a d  = ld 1 1, (5) 
or, more generally, a transfer operator T multiplicative along a trajectory generated 
by the Gauss shifts (4). The transfer operator appropriate to the evaluation of the 
Hausdorff dimension that we shall use here is 

Tdm = m d  IUdl-'. (6)  
tSee,  for example, figure 13 of [23] for a sketch of continued fraction partitioning cover of the B 
parameter axis. 
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d and m indices run over all irrational numbers 9- = {ala2a3 . . .}, so Tdm is a linear 
operator that acts on an infinite-dimensional vector space. Depending on how the li 
edges are defined in (2), U, might be non-positive; in the present application we 
shall need only the absolute value of U,. The exponent z will soon be related to the 
Hausdorff dimension, and for the time being we set wi = 1. The main reason for 
introducing transfer operators is the observation that, unlike the interval lengths li 
which shrink exponentially with the level of resolution, the transfer matrix entries 
Tdm tend to finite limits [9-111. The simplest example is the sequence of scaling 
ratios ( 5 )  with ~ ~ t ~ . , . ~  = llll...l/lll...l, corresponding to the continued fraction 
approximants to the golden mean winding number Wl = [l, 1, 1, . . .] = (j6 - 1)/2. 
It is the fundamental result of the renormalization theory [5, 61 for critical circle 
maps that these ratios converge to the universal limit u1 = limk,, = l /&; for 
critical circle maps with a cubic inflection point, 6 ,  = -2.833 61 . . . . More 
generally, if the winding number is a quadratic irrational W, whose continued 
fraction expansion has the form of an infinitely repeated block p = ala2 . . . anP 

I 

a1 + 
1 

a2+ .  . .- 
an, + Wp 

then the product of scaling functions along np Gauss shifts (4) 
(k) (k-1) (k-n +1) = 

uala2 ... a,pal...~a2...a,,pala2... * * ~ a , , a l f I .  1ala2,..a "P a l . . . / ~ a l . . .  

converges to a universal limit 

(8) (k-1) (k -n  +I) = 
up = lim 4:; 2... anpa ,...u a2 ... anpala2 ... * * . ~ a n p a l p .  l/dp. 

k+- 

If the block repeats, the associated 6 factorizes (for example 62323 = 6z3), so we 
always take p = ala2 . . . anp to be primitive (a non-repeating continued fraction 
block). As 6, is a product (8) of U, along a cycle, it is cyclically symmetric (for 
example, 6137 = 6371 = 

We shall not need the full transfer operator There; our calculation will rely only 
on the following aspects of the 'hyperbolicity conjecture' of [9-11, 13, 141. 

(i) Limits for periodic products (8) exist and are universal. This should follow 
from the renormalization theory developed in [S, 61, though a general proof is still 
lacking. 

so only one 6, per cycle needs to be computed. 

(ii) 6, grow exponentially with n,, the length of the continued fraction block p ,  
(iii) 6, for p = a l a 2 .  . . n with a large continued fraction entry n grows as a 

power of n. According to [1, 9,  161 

This follows from methods akin to those used in describing intermittency [17] and 
could perhaps be turned into a systematic asymptotic expansion. However, in the 
present calculation we shall not use explicit values of the asymptotic exponents and 
prefactors, only the assumption that the growth of 6, with n is not slower than a 
power of n. 
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The 6, for quadratic irrationals with short repeated blocks p and small continued 
fraction entries are easily estimated. Consider the rth rational approximations to a 
quadratic irrational winding number W, whose continued fraction expansion consists 
of r repeats of block p .  Let S Z ,  be the parameter for which the map (1) has 
a superstable cycle of rotation number PJQ, = [ p , p ,  . . . , p ] .  The 6, is found 
from [4] 

SZr - 51,+1= a,,. (10) 

When the repeated block is not large, the rate of increase of denominators Q, is not 
large, and (10) is a viable scheme for estimating the 6 values. However, for long 
repeating blocks, the rapid increase of the Q, makes the Newton method hard to 
implement and leads to a loss of numerical accuracy. Instead, we extract 6 values 
from the unstable manifold of the corresponding renormalization group fixed point. 
The details of this calculation are given in the appendix; the resulting list of values 
of the 6, used in the evaluation of DH in this paper is presented in table 1. 

3. The HausdorB dimension in terms of cycles 

Given the above information, the thermodynamic formalism [18, 191 can now be 
used to relate the Hausdorff dimension of irrational windings to the periodic circle 
map renormalizations. Consider the sum 

r,(z) = C Iiil-". (11) 
i E 9 ,  

In the thermodynamic formalism the Hausdorff dimension DH is given [20] by the 
n+m limit of the values z = -0, for which T,(-D,) = O(1). Strictly speaking, D, 
extracted from (11) converge to DH only if the cover { l i ,  i E 9,) is optimal; if the 
covers are chosen too large, D, provides only an upper bound to DH. The covering 
intervals li defined by (2) are expected to be optimal, as they cover the irrational 
winding parameter values with no slack-they exactly fit the separation between the 
edges of pairs of neighbouring mode-locking intervals. The available numerical 
evidence supports this claim, but we have not proven that DH is indeed attained. In 
any case, even establishing that our formulation yields a rigorous upper bound on 
DH would already be an interesting result from a purely mathematical point of view. 

Quantities associated with a given interval, such as Ilnlaza3... I-', are recovered 
from transfer operators in terms of matrix products 

By the usual thermodynamic arguments [18], the sum (11) can be related to 
products of transfer operators r, a T" and is dominated by its leading eigenvalue 

r,(t) a qt). 
The leading eigenvalue A of T is given by the leading zero of det(1- zT). This 
determinant can be expressed in terms of the traces tr T" and written as the Euler 
product over periodic orbits in the standard way [18, 221 



Table 1. A list of the values of the 6 for short cycles, used in the numerical estimates of 
DH in this paper. SP are numerically stable under the renormalization 12-term truncation 
transformations of the appendix to the digits quoted. 6,-6, from [32]. 

?P P 6, 

t1 

4 2  

412 

123 

422 

?1112 

1132 

f112, 

41112 

t34 

[142 

t223 

t1213 

t1132 

t1222 

t1121z 

t11122 

tlllll, 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 2  
1 3  
1 4  
1 5  
1 6  
1 7  
1 8  

1 1 2  
1 1 3  
1 1 4  
1 1 5  

2 3  
2 4  
2 5  
2 6  

1 2 2  
1 2 3  
1 2 4  

1 1 1 2  
1 1 1 3  
1 1 1 4  

1 3 2  
1 3 3  
1 1 2 2  
1 1 2 3  

1 1 1 1 2  
1 1 1 1 3  

3 4  
1 4 2  
2 2 3  
1 2 1 3  
1 1 3 2  
1 2 2 2  
1 1 2 1 2  

-2.833 610 6560 f lo-'' 
-6.799 225 161 f 2 X 
- 13.760 282 37 f 3 X lo-' 
-24.620 347 98 f 7 x lo-* 
-40.386 913 f 2 x 
-62.140 406 f 2 X 
-90.995 97 f 1 0 - ~  
- 128.080 11 f 5 x lov5 
-174.5198 f 2 x 
-231.439 f 2 x 10W3 

17.669 
31.621 
50.809 
76.012 

108.06 
147.91 
196.44 

-52.044 
-98.324 
- 165.89 
-259.18 

91.290 
157.08 
246.75 
365.40 

- 122.76 
-234.41 
- 398.49 

145.42 
269.08 
444.99 

-234.41 
-449.86 

356.28 
689.77 

-414.52 
-774.08 

335.53 
-396.88 
-624.07 

562.90 
689.31 
831.52 

- 924.02 
1 1 1 2 2  -1000.3 
1 11 11 2 1171.7 
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Here the index p runs through all distinct prime cycles (8). For the Hausdorff 
dimension calculation (6), (ll), the weight associated with the p cycle is tp = 
z " p  18p1". In order to satisfy the Hausdorff dimension condition r, = 1, we need to 
find the smallest value of z for which A ( t )  = 1. Substituting z = A = 1, t = -DH into 
(13), we obtain 

o =  n (1 - l/lbPplD"). 
P 

This formula is one of our two main results (the other is table 1); it relates 
the Hausdorff dimension of irrational windings to the universal parameter scaling 
ratios 8,. 

4. Cycle expansions 

We now turn to the evaluation of DH from this relation, using the cycle expansion 
technique of [21-231. Expanding (13) as a power series in z, we obtain 

a = l  a=2 a = a k  

The sums in (16) extend over all a,, a2,  . . . and have to be truncated in 
numerical evaluations. The underlying idea behind cycle expansions is very simple; 
when the expansion is arranged well, the dominant terms in the expansion are 
accounted for first, and the subdominant terms are combined into small curvature 
corrections. Table 1 illustrates the size of contributions to (15). The weights we shall 
use will be of form 18p1-o.87.... At that value of the exponent, the infinite fixed point 
sequence dl, d2, a 3 , .  . . dominates; other subsequences, such as a12, 8 1 3 ,  d I 4 , .  . . , 
dl12, 8113, al14, . . . are exponentially suppressed, roughly by powers of 6,. 
The fact that the terms in these series fall off only by power laws, not exponentially, 
makes the estimates as delicate as evaluations of the Riemann zeta function. 
We evaluate lp by splitting them into a head C,"=, tu, to be evaluated directly, 
and the tail R N  = C y = N + l  tu, to be estimated asymptotically in a. According to 
(9), 8,=a3 for large a, so 2, can be estimated from a finite number of 8, by 
matching them up with an a3 tail. However, in practice we do not do such 
matchings, as in the cases we have studied we obtain the best numerical convergence 
by using the Levin logarithmic convergence acceleration method [15, 24, 251 to 
estimate the tails. 

In the fixed-points approximation the cycle expansion (15) is given by 

Using the first N = 10 fixed points of table 1, together with the Levin method 

t See, for example, table 3 of [23]. 
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estimate [15, 

we obtain 
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24, 251 of R N  in 

O =  1 - 2 l ~ a l - D ~ )  + RN 
N 

a = l  

Dg) = 0.8416 f 0.0003 

(throughout this paper the numerical results quoted are numerically stable to the 
digits specified). This number is already within 5% of DH = 0.870. . . , the best 
estimate available [ l ,  151. In contrast, without the tail estimate the N =  10 
truncation yields Dg) = 0.76. . . , i.e. N term truncations of sums like (17) lead to 
catastrophically slow convergence (familiar from the theory of Riemann 5; functions) 
of order N-3D“. Good accuracy in the determination of the fixed-points estimate 
Dg) is a prerequisite for our next step, evaluation of the curvature corrections. 

As (15) is a typical curvature expansion of [22] (longer cycles contribute in the 
form of deviations from their approximations by shorter cycles), we expect fast 
convergence, provided that every infinite series C t..., in (16) is summed up in the 
same way as f, before being included into the cycle expansion (15). The curvature 
expansions are expected to converge exponentially, as each counterterm sequence is 
dominated by its head (low-a terms in the t . . .a series). We estimate the leading 
curvature corrections to the fixed-points approximation (17) by considering succes- 
sive truncations of (15): 

5;‘2’(2, t) = 1 - 11 - (?12 - tlZz) 
(19) 5 ; ( 3 ) ( ~ ,  t) = 1 - f, - (t12 - tl&) - (f,,, - t1112), . . . 

Dg) = 0.876 f 0.003 

These truncations, supplemented by the Levin method estimates yield, respectively 

DE) = 0.867 f 0.003 (20) 
in agreement with previous estimates [ l ,  151. The convergence of Dg) with k is in 
qualitative agreement with our expectations of exponential convergence. However, 
it should be emphasized that the numerical algorithms we use have no reliable error 
estimates, and better methods for estimating sums like (17) need to be developed. 

Beyond the Hausdorff dimension discussed above, we have explored a variety of 
‘thermodynamic’ averages over the irrational winding set. In the thermodynamic 
formalism [18, 191 a function t ( q )  is defined by the requirement that the n - m limit 
of generalized sums (11) 

q t ,  4) = < 
isy,, llil 

is finite. The q = q ( t )  function is 
weights t,, into the cycle expansion 
zeros. Both the ‘level of resolution’ 
hierarchical 
organization 

(21) 

evaluated by substituting the available cycle 
of the Euler product (13) and determining its 
n and the weights pi  in (21) are arbitrary, as  a 

presentation of the irrational winding set depends on the choice of 
[15] of rationals on the unit interval. As this Cantor set is generated by 

scanning the parameter space, not by dynamical stretching and kneading, there is no 
‘natural’ measure, and a variety of measures have been investigated [I, 10, 15, 19, 
251. In the present continued fraction thermodynamics example pi  = ePnq, where n is 
the length of the corresponding continued fraction block. We have explored other 



Universality for  critical circle maps 881 

choices of pi in (21), such as the Farey tree partitioning introduced in [9, 27-29] 
whose associated thermodynamics is discussed in detail in [lo, 11, 151. The Farey 
tree and the continued fraction partitioning of the unit interval differ only in the 
choice of measure (or the multiplicative weight wp in the transfer operator (6), or 
the definition of the topological cycle length.) For the Farey tree partitioning the nth 
level consists of all quadratic irrationals f whose repeated block continued fraction 
entries add up to n. The corresponding prime cycle weight in the cycle expansion 
(15) is 

"P 

tp = 2" IS,[" . = E a j  (22) 
j=1 

The problem with the 'Farey tree thermodynamics' is that a phase transition 
occurs precisely at the Hausdorff dimension [8, 1-51, and our estimates are 
unreliable. We have estimated the Hausdorff dimension level by level, and used a 
polynomial fit to extrapolate to DH = 0.870 f 0.005. 

Furthermore we have computed a variety of q ( z )  and f(&) functions for the 
Farey tree, continued fractions partitioning and other choices of weights pi, checked 
the locations of phase transitions, and studied the ways in which they affect the 
convergence. All versions of the thermodynamic formalism that we have examined 
here exhibit phase transitions. For example, for the continued fraction partitioning 
choice of weights tp ,  the cycle expansions (15) behave as hyperbolic averages only 
for sufficiently negative values of z; hyperbolicity fails at the 'phase transition' [15, 
251 value z = - 3 ,  due to the power-law divergence (9) of the harmonic tails 
a,.,, = n3. In the above investigations we were greatly helped by the availability of a 
number theory model [15, 261: the k = 0 limit of (1) is just the Gauss map (3), for 
which the universal scaling ratios S p  reduce to quadratic irrationals. This is very 
useful in testing the quality of our estimates [25]; the associated thermodynamics is 
discussed in detail in [23]. 

Unlike DH, the thermodynamic functions depend explicitly on the choice of p i  in 
(21), and as we know of no physical guiding principle for such choice, we forgo here 
further detailed discussion of such functions. 

The point of the above exercises is not to obtain the best estimate of the 
Hausdorff dimension; that can be done more directly from the map ( l ) ,  and in any 
case even the most careful experimental measurements [30] cannot yield DH to more 
than one or two significant figures. Our motivation was to check that the relation 
(14) between the Shenker et a1 and the Jensen et a1 universality is indeed a 
convergent relation. 

In summary, we have stablished here that the universality of the critical 
irrational winding Hausdorff dimension follows from the universality of quadratic 
irrational scalings. The formulae we have used here are formally identical to those 
used for description of dynamical strange sets [22], the deep difference being that 
here the cycles are not dynamical trajectories in the coordinate space, but 
renormalization group flow in the parameter space. The 'cycle eigenvalues' are in 
the present context the universal quadratic irrational scaling numbers. The crucial 
insight is the observation that the Hausdorff dimension can be expressed in terms of 
the renormalization group cycles. The implementation of this relation requires the 
unstable manifold renormalisation methods (see the appendix), the zeta function 
formalism, and control of the logarithmic convergence of DH estimates from finite 
numbers of scaling ratios 4. 
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Appendix. The unstable manifold renormalization 

According to [5 ,  61 the renormalization group appropriate to cubic critical circle 
maps at winding number W, = [n, n, n, . . .] acts on pairs of functions F = ( 5 ,  q), 
where 5 is defined on the interval [q(O), 01, q on [0, 5(0)], satisfying the following 
conditions: 

(To make connection with the dynamics of a single circle map h ( x ) ,  define 
C ( x )  = h(x) ,  q ( x )  = h ( x )  - 1. Then if h is smooth and has a cubic inflection point at 
the origin, S; and q will satisfy (Al).) Acting on these functions, the renormalization 
transformation is 

where CY satisfies 

It can be shown that conditions (Al) are preserved under R,. 
Acting on a map with winding number [al, u2, u3, . . .I, R,, yields a map with 

winding number [a2,  u3,. . .I, so a fixed point of R ,  has a quadratic irra- 
tional winding number W, = [n, n, n, . . .]. R ,  has exactly one [ 5 ,  61 relevant direc- 
tion with eigenvalue 6,. Similarly, the renormalization transformation 
ROnp . , , Ra,Ra, = R,np,..al has a fixed point of winding number W, = 
[al, a2, . . . , unP, al,  u2, . . .I, with a unique relevant eigenvalue 6,. 

The object of our calculation is to compute the (one-dimensional) unstable 
manifold of Rp = Ranp,.,, , ,  from which will follow 6,. The strategy is simple in 
concept, and becomes complicated only in the details. Essentially, we represent the 
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functions 5; and q as power series in both the argument x and the parameter (Q in 
(l), denoted U here). However, since Rp has a relevant direction, repeated 
application will expand the range of rotation numbers, and reduce the range (and 
hence precision) of parameters for a given range of rotation numbers. This 
reduction in the range of parameters can be avoided by the application of R;, which 
reparametrizes the family of functions after the application of R p ,  R,* is defined 
below, and under its application, the family of functions converge to the unstable 
manifold of Rp (see [31] for a more complete explanation of R,*). 

Explicitly, we represent 5; and q by 
m m 

f(u, x )  = c ajjx3'o' q(u, x )  = 2 b i j X 3 1 d ,  (A4) 
i , j=O i , j=O 

(note we only need terms in x 3  since we are interested in maps with a cubic 
inflection point [6]). For implementation on the computer we truncate these series 
to N terms. This creates the problem that application of R* no longer preserves all 
of the conditions (Al); we will have to make corrections to ensure that these 
boundary conditions are maintained. We rescale the parameter axis at each iteration 
so that the winding numbers satisfy 

W(F(-oo, x ) )  = [PI W(F(woI4  x ) )  = [ p ,  PI (4 
where p = ala2. . . unp is the repeated block in question. 6 is its value from the 
previous iteration. We now apply R,* to give the new F, p, by the following steps. 

(i) Find U*  such that W ( F ( o * ,  x ) )  = [ p ,  p ,  p ] .  
(ii) Rescale U by a linear transformation h(u) such that 

h(-uo) = uo /6  h ( u * )  = -00. ( 4  
(iii) Apply Rp to F(u*, x ) ,  using equation (A2). This gives p. 
(i)-(iii) define R,* and contain the expansion of the family of functions along the 

unstable manifold. The particular rescaling of the parameter axis, (A5), was chosen 
so that U *  will be close to 0 as the procedure is iterated. Once p is obtained, the 
new coefficients a', and 6, can be found by first taking N values of x (chosen to be 
distributed evenly in x 3 ) ,  for a given ok, and solving 

N N 

for A ( u k )  and B ( u k ) ;  then from N values of uk, solve for a', and 6ij via 
N N 

A i ( o k )  = 6,di Bi(Uk)  = 2 6;ju$. (A81 
j = O  j = O  

It is here that we must make corrections so that equalities (vi) and (vii) of (Al) 
are obeyed. We do this by altering the coefficients of x 3 ( N - 1 )  and x 3 N  by the 
appropriate amounts. Thus we write 

flc = 4 + C N - 1 x 3 ( N - ' )  + C N x 3 N  (A9) 
where f jc  is the corrected 4. (We require two unknowns, C N - 1  and cN,  since we are 
imposing two conditions, (vi) and (vii) of (Al). It is easily found that condition (vi) 
requires 

WO) A 3 W " l )  + A 3 N  = 
c N - l  0 N 0 &(BO)-q(AO) 
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and (vii) requires 

3(N - l ) ~ ~ - ~ A y - ~  + ~ N c ~ A : ~ - ~  = BIE’(Bo)/Al - @’(Ao). 

These linear equations are solved for cNWl and cN,  which are then used to update 4. 
When this correction has been made, we have completed the iteration: we now have 
a new set of coefficients for g and r ] ,  which are then iterated in the same way. This 
procedure converges to a universal unstable manifold for each p ,  independent of the 
initial 5 and r ]  (provided they are within the basin of attraction). At each iteration, 6 
is determined from U * ;  as g and r ]  converge to the unstable manifold, 6 converges 
to its universal value. In this way, we determine 6, for each p .  

N is chosen large enough so that the coefficients aij and b ,  are small for i, j close 
to N ,  but small enough so that the computation does not take too long. Typically, 
we used N = 12, though we also tried other values. For p corresponding to a large 
denominator in continued fraction [ p ] ,  the method runs into precision problems 
when trying to find o*, since finding the cycle with winding number [ p , p , p ]  
involves fairly large numbers of iterations (of order lo3). We were able to go to the 
tenth level, using 80 bit reals on a 68020 based ‘super-micro’ computer. This is, 
however, far deeper than one could go by taking differences to determine the 6 
values. 
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