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Abstract. Cycle expansions are applied to a series of low-dimensional dynamically generated 
strange sets: the skew Ulam map, the period-doubling repeller, the Henon-type strange 
sets and the irrational winding set for circle maps. These illustrate various aspects of the 
cycle expansion technique; convergence of the curvature expansions, approximations of 
generic strange sets by self-similar Cantor sets, effects of admixture of non-hyperbolicity, 
and infinite resummations required in presence of orbits of marginal stability. A new exact 
and highly convergent series for the Feigenbaum fJ is obtained. 

PACS numbers: 0320, 0545 

1. Introduction 

The goal of this paper is to demonstrate through a series of applications that descrip
tion of low-dimensional chaotic systems in terms of unstable periodic orbits (cycles), 
advocated in the preceding paper [1] (hereafter referred to as I), is not only feasible, 
but that the cycles are indeed a powerful tool for analysis of deterministic chaos. 

Our main tools are the cycle expansions (developed in the preceding paper) of the 
dynamical ( functions [2] : 

1g = II (1 - tp) = 1 - 1>1 - ~>p (1) 
p f p 

which we apply to a series of examples with increasingly richer spectrum of scales. We 
test here the curvature expansions on much of the low-dimensional chaos; 1D repellers, 
1D strange attractors, m period doublings, circle map mode lockings, 2D repellers and 
the Henon strange attractors. The paper is organised as follows. 

In section 2 we test the convergence of cycle expansions on the 'skew Ulam' map, 
which has complete binary symbolic dynamics and full measure but is non-hyperbolic 
and exhibits a first-order phase transition. 

In section 3 we check explicitly the curvature estimates of paper I on an analytically 
tractable fractional linear repeller. 
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The knowledge of locations of the non-leading zeros and poles of ( functions can 
lead to a dramatic improvement in the convergence of cycle expansions. We illustrate 
this in section 4 by applying these techniques to the period-doubling presentation 
function [3]. An unanticipated by-product is a new, highly convergent series for the 
Feigenbaum 1J. 

In section 5 we first apply the cycle expansions to the two-dimensional hyperbolic 
Lozi [4] map with non-trivial scaling and symbolic dynamics. We then test the cycle 
expansions on the non-hyperbolic Henon mapping [5] which is believed to exemplify 
much of the generic structure of intertwining of order and chaos expected in general 
dynamical systems. 

In section -6 we use the circle map mode-locking dynamics as a convenient testing 
ground for the applicability of cycle expansions to problems with coexisting regions of 
stability and chaos. 

2. Skew Ulam mapping 

In this section we apply the cycle expansion to a 'skew' Ulam map (figure 1) of the 
form 

x' = ,1,x(l - x)(l - bx) (2) 

We shall refer here to any unimodal map for which the critical point xc is mapped 
onto the unstable fixed point x0 = 0 as a 'Ulam' map. 
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Figure 1. The skew Ulam map f(x) = ).x(l - x)(l - bx), 1/). = Xc(l - Xc)(l - bxc), is a 
simple example of a strange attractor. Here b = 0.6. 
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In our numerical work we fix (arbitrarily) b = 0.6. Such a map is a convenient 
starting point for testing cycle expansions for several reasons: 

(1) in the b = 0 limit it reduces to the parabola Ulam map (I.37), whose ( function 
is available in explicit analytic form. 

(2) the symbolic dynamics is a complete binary symbolic dynamics, and all cycles 
can be easily determined with a combination of inverse iterations and the Newton 
method; we have computed all cycle eigenvalues up to length 14; 

(3) the nth iterate of the map generates a complete binary cover of the unit interval 
(see I, figure 2). The strange set has the full Lebesgue measure [6], so the cycle 
expansion estimates of the Hausdorff dimension can be tested against the exact value 
DH = 1. 

Due to the quadratic contraction around the critical point xc, the mapping is 
non-hyperbolic. This is already clear from the parabola Ulam map (1.37), for which all 
cycles except O have eigenvalue AP = ±2"P. Taking tP = AP, the nonlinearities (I.59) are 

Nab = log tatb = { In 2 if a or b = 0 (3) 
Aab tab 0 otherwise. 

The exact vanishing of the nonlinearity for the a, b =I- 0 case is an accident due to the 
fact that the Ulam parabola can be conjugated to the Ulam tent map; as we shall 
show here for the skew Ulam map (2), such nonlinearities in general fall off as A-;;l, as 
expected. More interesting is the fact that nonlinearities that involve t0 counterterms 
do not fall off at all. This is the simplest example of the effects of non-hyperbolicity on 
the cycle expansions. The fixed point x0 is singled out by the fact that the critical point 
xc and all its pre-images (non-hyperbolic, as the critical point is supercontracting) map 
onto it. The number of fundamental cycles in the remaining Euler product TI' (1 - tp) 
is infinite, as explained in section 5 of I. Such infinite sequences of fundamental cycles 
have to be resummed before the exponential convergence can be restored. In the Ulam 
example we already have the resummed 1/( in closed form (1.38); in general such 
infinite summations have to be carried out numerically, but for the skew Ulam map 
the effect of non-hyperbolicity can still be accounted for rather easily. Consider the 
sequence of cycles of form 0 ... 01, consisting of k iterates by f O and one iterate by f 1, 

whose x0 ___ 01 cycle points accumulate to the x0 fixed point. Here f 0(x), 0 ;:s; x < xc, is the 
1scending branch off (x) in figure 1, and f 1 (x), xc < x ;:s; 1, is the descending branch. 
fhe distance e = x0 ... 01 - x0 can be estimated by noting that j(kl(x0 ... 01 ) :::::: ~e :::::: xc, 

so e :::::: 1/~. The stability of the cycle A0 ... 01 = f'(x0 ... 01 ) ... f'(x010 ... 0)f'(x10 ... 0) can be 
estimated by noting that Xo1...o, the point closest to xc, is mapped quadratically into e: 
f (x01...0) = c(xc - x 01...0)2 + ... = e, so f' (x01..,0) :::::: .,/i. Hence Ao ... ot :::::: ~-2 ..ji A1 oc A';,12

, 

and the stabilities of sequences of cycles of form 0 ... 01, and more generally Ao ... o1..., 
stabilities of cycles with a finite string of 0s and ls followed by a long string of 0s, 
accumulate toward m, and not toward A k. 

These estimates are borne out by the numerical results (figure 2). The effect of the 
non-hyperbolicity is to isolate the O fixed point, and the cycle expansion for the skew 
Ulam map is a slight generalisation of the exact 1/( function (I.38) for the Ulam map: 

(1 - to) rr' 1/((z) = (l-r,) (1-tp) 
0 p 

(4) 

where the cycle expansion of Il~(l - tp) is a complete binary expansion, but with t0 
replaced by to, where to is the accumulation value t00 ... 01 oc fok. 
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Figure 2. The distribution of the skew Ulam cycle Lyapunov exponents µp = log IApl/np, 
Due to the non-hyperbolic nature of the quadratic critical point Xc, µo is isolated and all 
other cycle Lyapunov exponents are distributed between µ1 and µo/2. 

As the first numerical check of the convergence of the cycle expansion (I.29) we 
compute then-cycle estimates Dn of the Hausdorff dimension (I.84) by determining the 
leading zero of polynomial truncations of the cycle expansions of O = Il~(l - IApl-Dtt) 
(figure 3). The geometric convergence of the Dn to the asymptotic value is evident, and 
relatively few cycles lead to extremely accurate estimates. 

As the next check, we compute the thermodynamic functions q(r) and s(µ) of I, 
section 9, with the equipartition measure tP = eµ,, 2-n,q. For the Ulam map (1.37) 
the thermodynamic behaviour can be immediately read off from the ( function (1.38); 
q(r) consists of two straight lines crossing at r = 1, where the zeros coincide, and 
a first-order phase transition takes place. The q(r) function for the skew Ulam map 
is essentially the same; the slight spread of the cycle stabilities is more visible in the 
s(µ) = f (a)/a plot (figure 4). The computation off (a) functions is straightforward, 
but the result is hardly as informative as the input information, the cycle stabilities 
(figure 2). 

Parenthetically, while the above phase transition is a triviality from the ( function 
point of view, the finite level sums "f. Pi /Ii converge only logarithmically at the phase 
transition point [7] and the phase transition can be easily missed altogether in such 
averaging. 
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Figure 3. The convergence of the cycle expansion estimates of the Hausdorff dimension 
of the skew Ulam map strange attractor, evaluated by polynomial truncations. Plotted 
is the estimate error log10 11 - Dnl as a function of the cycle length n. In spite of the 
non-hyperbolicity of the attractor, the convergence is exponential. 

3. Curvature evaluation 

In this section we check the curvature estimates of I, section 7 by explicit computation. 
Consider a two-branch repeller of fractional linear form 

f 0 (x) = A0x/(1 + bx) 
(5) 

This is a repeller similar to the one depicted in I, figure 5. b parametrises the nonlinearity 
of the map: for b = 0 the repeller is a simple two-scale Cantor set (1.30). Fractional 
linear maps are well suited to analytical and numerical investigations, as their iterates 
remain fractional linear in form, and their periodic points are easily determined by 
solving quadratic equations (see section 6 for explicit examples). As an example we 
evaluate here the too .. .1 - t0t0 .. .1 term in the curvature expansion (1.29). Let a = 0 ... 1. 
The Oa = 00 ... 1 cycle consists of k iterates by f 0 

b = A~-lb 
k Ao-1 

followed by a single / 1 iterate. The x0a = x00 ... 1 periodic point is a root of the quadratic 
equation 

(6) 
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Figure 4. s(µ) = q(-r) - -rµ(-r) against µ(-r) = dq/d-r for the skew Ulam map with the 
equipartition measure Pi = 2-n. In the thermodynamics extracted from finite L Pi I I; sums 
the right branch of s(µ) = !((1,)/(1, is masked by the phase transition. 

The stability of the Oa iterate is given by 

Solving (6) to the leading orders in A0k yields 

Xoa = - A1Y (1 + _1_ (1 + bA1Y )] + O(Ao3k) 
Aoa Aoa Ao-1 

b 
Aoa = f~a(Xoa) = ~A,y2 + 0(1) y = 1 + Ao - 1 · (7) 

The two intervals on which the nonlinearity (I.59) is evaluated are ax0a = x0 - xaa = 
-x0a and axaa = xa - Xao = -(1/ A6a)A0A1 (A0 - l)y. The nonlinearity (I.60) depends 
on the choice of the weighting function cp(x). If we take cp(x) = f'(x), t0 = Ao, the 
nonlinearity (I.60) is 

Substituting 

f" (x) 
N(x) dx = f'(x) dx. (8) 

(9) 
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Figure 5. The distribution of the prime cycle eigenvalues for the period-doubling repeller 
(11), table 2: plotted are the cycle Lyapunov exponents µP = log i\p/np log 2 against the 
inverse cycle length 1/np, The regular structure arises from the approximate factorisation 
i\p = A::0 A7', where no (n1) is the number ofOs (ls) in the cycle p (compare with I, figure 3). 
A few shadowing estimates from shorter cycles, such as Jlol + µo ~ /lOOI, are indicated by 
x: the difference µoo1 - Jlol - Jlo is a graphic illustration of curvatures (or the nonlinearity, 
in this case log(i\011\0/ J\ooi)). 

into (1.59) we find that the curvature tends to a constant: 

(10) 

The numerical verification of this estimate is given in table 1. Here toal Aoa = 1, so the 
constant limit is in agreement with the estimate (1.62). This estimate can be trivially 
extended to weights such as tP = IAPl1

. The curvatures for the period-doubling repeller 
studied in the next section converge similarly, but in that case we lack explicit analytic 
expressions for the limits. 

4. Period-doubling repeller 

In this section we apply the cycle expansions to evaluation of the stability and the 
dimension of the period-doubling repeller. This strange set is interesting in its own 
right, but in the present context it is a convenient model for illustrating how the cycle 
expansions can be improved by using the information about the analytic structure of 
( functions. 
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Table 1. A comparison of the cycle eigenvalues Ap, the associated curvatures Cp and the 
estimate Ceo from (10) for the fractional linear map (5), with parameters b = -0.237 915 26, 
Ao= -6.2645 and A1 = 2.5029. 

p Ap Cp 

100 -89.8514 -1.500 7569 
1000 -561.2843 -1.593 9161 

10000 -3 514.5827 -1.609 8959 
100000 -22 015.6588 -1.612 4773 

1000000 -137 916.5350 -1.612 8902 
10000000 -863 983.1172 -1.612 9587 

10 ...... 000 00 -1.612 9687 

The period-doubling repeller is generated by the orbit of the critical point of a 
unimodal map at a 200 parameter value. In the dynamical xn+l = f (xn) variable, this 
set can be thought of as the n --+ oo limit of 2" attractive cycles in a period-doubling 
sequence. Alternatively, this set is the repeller of the period-doubling presentation 
function [3] • 

where g(x) is the universal period-doubling fix-point function which satisfies 

g(x) =ago g(x/a). 

The stabilities 

oF;-1(xp) 
AP = ox 

(11) 

(12) 

of the fixed points x0 = 1, x1 = 0 of (11) are A0 = a2, A1 = a, where, for quadratic 
critical points, a = -2.502 907 .... The stabilities of prime cycles up to length 6 are 
given in table 2 and figure 5. The presentation function (11) generates a nice hyperbolic 
repeller with complete binary symbolic dynamics, the variation in cycle stabilities is 
small (the slope of the F01 branch is essentially a2), and the cycle expansions are 
expected to converge swiftly. 

4.1. The stability 

In Sullivan's formulation of the period-doubling universality [8], the period-doubling 
repeller stability eigenvalue (as defined in I, section 8) is the Feigenbaum constant 
<5. This is easily checked by recasting the period-doubling fixed point linear stability 
equation [9], (obtained by substituting g(x) --+ g(x) + hn (g(x)) in (12)): 

hn-l (g(x)) = ag' (g(x/o:)) hn (g(x/o:)) + o:hn (g(x)/a) (13) 

into the presentation function form [3, 10]: substituting g(x/o:) = g-1 (g(x)/a) = 
F0 (g(x)), (1/a)g(x) = F1 (g(x)), we have 

h ( ) = dFo-'(xom) h ( ) dF1'(x1m) h ( ) 
n-1 Xm dx n Xom + dx n X1m (14) 
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This is precisely the mother-daughter relation that led to the cycle expansion (1.71) for 
the stability of a strange set. In this context the cycle expansion 

(15) 

is a new exact expansion for the Feigenbaum /J. Accurate estimates of /J are obtained 
by substituting values of short cycle eigenvalues ix, A01 , A001 , A011 , ... (table 2). Using 
cycle expansions up to length 8, improved with the tail estimates, we obtain /J(S) = 
4.669 201 60 .... 

Table 2. The cycle eigenvalues and the associated curvatures (curvatures are defined in 
I, table 1) for the period-doubling presentation function. While the eigenvalues grow 
exponentially with the cycle length, the curvatures are roughly constant, in agreement with 
the estimate Cp ::::: tp/ Ap, 

p Ap Cp 

1 -2.502 907 875 095 89 
0 6.264 547 83121704 

10 -13.369 876 879 005 5 -2.3097 
100 -81.008 962 761 421 4 -2.7473 
101 35.886 950 967 061 1 -2.4234 

1000 -504.636 468 497 686 -2.8481 
1001 222.899 012 688 299 -4.9597 
1011 -87.409 121 049 762 8 -2.4126 

10000 -3158.453 902 269 83 -2.8654 
10001 1394.604 985 033 63 -5.3719 
10010 1085.441 987 656 44 -2.3621 
10011 -538.946 844 738 312 -3.8349 
10101 -476.192 593 472 314 -3.6115 
10111 221.198 178 025 952 -2.4212 

100000 -19783.417 348 711 2 -2.8682 
100001 8734.837 324 055 16 -5.4395 
100010 6766.865 377 238 58 -5.1403 
100011 -3367.974 049 464 22 -5.4395 
100101 -2921.150 935 784 99 

-11.3358 
100110 -2938.097 905 469 20 
100111 1368.351 975 458 55 -4.2499 
101110 1165.198 205 064 12 -5.5883 
101111 -551.220 145 243 815 -2.4185 

The numerical work supports the curvature estimates of I, section 7; table 2 
illustrates the effect of replacing the cycle eigenvalues by the curvatures. While the 
cycle eigenvalues grow exponentially, in the present example the curvatures 'tend to 
constants. 

The cycle expansions can be significantly improved by using information about the 
analytic structure of the ( function. The curvatures of table 2 are individually small, 
but fluctuating. However, their sums are strikingly uniform, and the curvature ratios 
converge smoothly as cn+dcn ➔ 2, in agreement with the conjecture of I, section 8, 
that 1/( has a pole at z = 1/2. As illustrated in figures 6 and 7, the convergence of 
the (1 - 2z)/( expansion is considerably better than that of the 1/( expansions, with 
the estimated radius of convergence now extended to /J ~ -4.57. (1 - 2z)/( expansion 
indicates the next zero at /J1 = 1. We interpret this as the /J1 = 1 marginal eigenvalue 
[9] of (13), corresponding to a constant rescaling g(x) ➔ (1.+ h)g(x/(1 + h)). Dividing 
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Figure 6. Incorporating the non-leading zeros and poles of C functions into the cycle 
expansion for the Feigenbaum ci improves the convergence of the leading pole z = 1/ci 
estimates. Full curve: the tail extrapolated n = 8 cycle expansion of the 1 g function 
(15) for the stability of the period-doubling repeller. Broken curve: the cycle expansion 
of (1 - 2z)/C with the z = 1/2 pole removed. Chain curve: the cycle expansion of 
1 - 2z/(l - z)C with the non-leading zero at z = 1 removed as well. 

explicitly out that root and expanding (1-2z)/(1-z)( as a power series in z we obtain 
a highly convergent expansion for the Feigenbaum l, : 

(16) 

Keeping only the terms up to l, 2 already yields three significant digits of l,: l,(2) = 
4.6647 ... , as a root of a quadratic equation. Including the cycles up to length 8 and 
improving the convergence by tail estimates yields 

()(8) = 4.669 201 609 102 991 .... (17) 

The convergence of the above cycle expansions is illustrated in figure 7; clearly, these 
are highly convergent expansions for determining the Feigenbaum· l,. 

4.2. The Hausdorff dimension 

DH, the Hausdorff dimension of the period-doubling repeller, is determined by (1.84): 

where AP are the prime cycle eigenvalues listed in table 2. The cycle expansions 
converge very well-as we have already discussed at length this convergence, we here 
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Figure 7. The convergence of the cycle expansions for the Feigenbaum /J, evaluated by 
polynomial truncations (6, x, 'i7) and by tail extrapolations (0, +, ◊) from the cycle 
expansions of figure 6. Plotted is the estimate log10 I/Jn - {JI error as a function of the cycle 
length n, where {J = 4.669 201 609 102 991. .. is our best estimate of the Feigenbaum /J. 
Note that the analytically improved cycle expansion (16) yields about eight times as many 
significant digits as the simple polynomial truncation of 1/(. 

simply state the result. Including cycles up to length 8 and improving the convergence 
by tail estimates we get 

D~l = 0.538 045 1435 ... 

in agreement with the most accurate estimates available in the literature [11-14]. 
To summarise: cycle expansions applied to the period-doubling repeller converge 

extremely well, significantly faster than any other numerical evaluation of DH and 
J that we are familiar with. In addition they yield a new exact expansion for the 
Feigenbaum a. 

5. Henon-type strange sets 

The Henon map [5] 

(18) 

is the prototype of the stretching and folding dynamics that leads to deterministic chaos. 
It is a generic dynamical system, with arbitrarily complicated symbolic dynamics and 
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a mixture of hyperbolic and non-hyperbolic behaviours; the usefulness of the cycle 
expansions stands or falls on the extent to which they are applicable to such systems. 
We test them here in three steps: (1) on a purely hyperbolic Lozi map, with approximate 
symbol dynamics of a finite subshift type; (2) on a Henon repeller with exact symbol 
dynamics of a finite subshift type; (3) on the canonical non-hyperbolic Henon 'strange 
attractor', with no known finite grammar. 

5.1. Lozi map 

The piecewise linear Lozi map [4] is defined by 

(19) 

For this map the existence of a hyperbolic strange attractor has been rigorously 
established [15]. A binary symbolic dynamics is given by they axis: we associate the 
symbol en = 1 with xn > 0, and en = 0 with xn < 0. A detailed analysis of the symbolic 
dynamics is contained in [16] to which we address the reader for further details: the 
main result that we rely on here is that it is possible to find parameter values for which 
we can approximate the strange set by symbol dynamics of a finite subshift type. In 
particular, for parameter values a = 1.694 6978 and b = 0.064 262 36 (which correspond 
to the simultaneous inverse bifurcation of the 100, TIIT and 10011, 10010 cycles) the 
rules amount to forbidding the blocks _00100_, _01100_, _1000_ and _1001 L. We have 
worked out this symbolic dynamics in I, section 5, example 6; the fundamental cycles 
are I, 10, 10100 and 1011100, so we expect that the topological noisiness is absent with 
inclusion of the fundamental cycles, and for n ~ 7 we expect exponentially convergent 
curvature corrections. 

This is confirmed by the Hausdorff dimension calculations, summarised in figure 8. 
As the attractor is hyperbolic, the measure is continuous along the unstable direction 
and the Hausdorff dimension is determined by a one-dimensional computation of the 
partial dimension (1.81) along the stable direction, DH = 1 + Ds, with Ds given by 

0 = II (1 - IAtlDs). (20) 
p 

Here A~ is the contracting (stable) eigenvalue of the cycle p. The hyperbolicity of the 
Lozi attractor guarantees good convergence of finite estimates for thermodynamical 
functions in their whole range: we have checked this numerically for q = q(r) defined 
by 

0 = II (1 - e-npq(r)IAtl-'). 
p 

As illustrated by figure 9, the thermodynamic functions such ass(µ) = q(r) - rµ(r), 
µ(r) = dq/dr (see (1.83)) are smooth and exponentially convergent over their entire 
range. 

The Lozi map (19) with b = 0.064 2636 is almost one dimensional, so the excellent 
convergence of the above DH calculation might be taken for granted. In fact, this 
convergence is by no means automatic, and depends crucially on the correct imple
mentation of the symbolic dynamics (the topology) of the pruned strange set. This is 



Recycling of strange sets I I 

0-,----------------------. 

(/)---

0 

-2.0 

I -4.0 
(/) 

C: 
Q_ 
~ 

0, 
0 

...J 

-6.0 

-8.0 

□ □ □ 

□ 
□ 

□ □ 

□ 

□ 

-10. 0 -r---r----,----,-~---.--.---,----,------! 
2 J 5 6 7 8 9 10 11 

n 

373 

Figure 8. The convergence of polynomial truncations of the cycle expansion for the 
Hausdorff dimension of the Lozi map (19) strange attractor for parameter values a = 
1.694 6978, b = 0.064 262 36. According to the grammar of I, section 5, example 6, the 
longest fundamental cycle is of length 7. With its inclusion, the curvature corrections take 
over, and the accuracy of the transverse dimension (20) estimate improves by 7 significant 
digits (Ds = 0.159 954 0649 ... ). 

the essential ingredient in applying the cycle expansions; as we shall see in the He:non 
example discusssed below, the difference between a piecewise linear map, such as the 
Lozi map, and a continuous map, such as the Henon map, is of secondary importance. 

The problem is that the Lozi map is not structurally stable; any change of 
parameters, no matter how minute, can destroy or generate an infinity of cycles, 
and our symbol dynamics of a finite subshift type is only approximate. Violations 
are expected for long cycles; in this case none were found [17] up to cycle length 
17. The implementation of the approximate symbol dynamics also requires some 
care. In particular, the pruning rules used here forbid the 100 and 10011 cycles, but 
require the companion 101 and 10001 cycles. For the Lozi map the pairs 100, 101 and 
10011, 10001 are generated simultaneously precisely at the parameter values we work 
with. Furthermore, for the Lozi map the period-doubling cascades [17] such as the 
100101, 100101100100, ... , period doublings of 100, are forbidden by the pruning rules, 
but are generated together with the 100, 101 bifurcation. The good convergence of the 
calculation (20) depends on implementing the finite subshift type symbolic dynamics, 
in this case by 

(i) excluding the isolated O cycle from the cycle expansion 
(ii) manually excluding the grammar violations 100, 10011, 100101, ... from the 

cycle expansion. 
This is an example of implementing our strategy of approximating a generic (struc
turally unstable) strange set by a self-similar Cantor set. 
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Figure 9. The s(µ) = /(a)/a, µ = 1/a plot for the Lozi map (19) strange attractor, 
a = 1.694 6978, b = 0.064 262 36. 

5.2. A Henon repeller with a finite grammar 

As the next test of the applicability of the cycle expansions we consider the Henon map 
(18) at parameter values a = 1.812 5797, b = 0.022 8643, introduced in [16]. At these 
parameter values the Henon map has the same topology as the example just discussed 
above but, perhaps suprisingly, the Henon map is easier to deal with than the Lozi 
map. 

The difference is that here, unlike for the Lozi map, the strange set is a structurally 
stable repeller, and the grammar of I, section 5, example 6, is believed to be exact 
[18]. The reason is that at these parameter values both 100, 101 and the 10011, 10010 
pairs exist, but only TIIT and 10010 are unstable; the 100, 10011 are attractive cycles, 
enveloped by their immediate basins of attraction. These basins are conjectured to be 
sufficiently wide to cover all neighbouring primary folds, so that all remaining cycles 
are hyperbolic. The numerical work supports this; for example, with inclusion of the 
fundamental cycles the partial dimension (20) converges very well, see figure 10. 

5.3. The Henon strange attractor 

The Henon map (18), for Henon's original choice of parameters a = 1.4, b = 0.3, 
is an example of a 'generic' dynamical system. It behaves numerically as a strange 
attractor, though the existence of a strange attractor at these parameter values is 
still a conjecture. A binary symbolic dynamics can be constructed using the primary 
turnbacks, or homoclinic tangencies [19]. No finite grammar is known to reproduce 
exactly the allowed symbol sequences and finite approximate grammars of increasing 
complexity that we advocate here have not yet been constructed. That means that 
at present the topology of the Henon attractor is not under control. This is already 
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Figure 10. Cycle expansion estimates of the topological entropy (e) and the partial 
dimension (II) of the Henon map (18) repeller for parameter values a = 1.812 5797, b = 
0.022 8643. The topological entropy computed from the topological ( function (1.47) 
becomes exact with the inclusion of all fundamental cycles (here with n ~ 7), while the 
(logN.)/n estimate (0) continues oscillating irregularly for all n. The estimates of the 
partial dimension (1.86), (20) for the Henon repeller follow the n < 7 oscillations of the 
topological entropy; for n ~ 7 the exponential convergence of the curvature corrections 
sets in (Ds ~ 0.1205). 

reflected in the mediocre convergence of the topological entropy estimates (figure 11); 
the cycle expansion convergence is now not significantly better than the crude direct 
estimate hn = log(N.)/n. 

The Henon a = 1.4, b = 0.3 strange attractor exemplifies the ways in which a cycle 
expansion applied blindly to a generic dynamical system fails to converge significantly 
better than other methods. This does not mean that the cycle expansions do not work; 
it simply means that a more careful analsis of the symbolic dynamics, beyond the scope 
of the present paper, is required. 

The thermodynamic averages suffer from the same 'topological' noisiness as h., 
but in addition they are also affected by the non-hyperbolicity of the map; there are 
occasional longer and longer orbits which come closer and closer to turnbacks, and have 
anomalously low unstable eigenvalues and anomalously high measure. This is clearly 
illustrated by the figure 12 plot ofµ = dq/r against r for the partial dimension cycle 
expansion (1.81); from the cycle length 12 truncation to the cycle length 13 truncation 
of the cycle expansion, µ( r) goes through a violent jump for positive r. This is caused 
by the nearly stable 13-cycle 1001110100110 = 3112312 (for a = 1.399 452 14, b = 0.3 
this cycle becomes a sink). In a generic non-hyperbolic system such anomalously 
nearly stable or stable cycles cannot be controlled, as infinitesimally small parameter 
changes can move arbitrarily long cycles onto contracting folds. However, for averages 



376 R Artuso, E Aurell and P Cvitanovic 

0.29 ,' 0.500 ,' ,, 
,' ,' 
'' '' '' Q '' 
~ I 

I 

' ,., 
l 

0.27 ;l: I 
0.475 I 

' ' 
,, 

' 
,, 

' 
,, ,, 

.·•· ,, ,, 
C)_ -l···•<;,r.>-:·::e s 

,, 
Dn 

,, , ,, .· -o - --e hn ,, ,, ' ,, ' , ,. ... ,, 
' , 

0.25 ,, ' ,, ' 0.450 ,, 
~I ,, ,, ,, ,, ,, ,, ,, ,, 

': 
0.23 0.425 

•=OS 
o = L2g (Nn)/n 
• = hn 

0.21 0.400 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 

n 

Figure 11. Cycle expansion estimates of the topological entropy (e) and the partial 
dimension (II) of the Henon strange attractor, a = 1.4, b = 0.3. As the symbolic dynamics 
is not of a finite subshift type, the cycle expansion for the topological entropy does 
not converge significantly better than the direct (logN.)/n estimate (0). Note that the 
oscillations in the estimates of the partial dimension (l.86), (20) track closely the oscillations 
in estimates of the topological entropy; non-hyperbolicity effects play a secondary role in 
controlling the convergence. Our estimate DH = 1.274±0.003 is in agreement with previous 
estimates [36]. 

evaluated in the 'hyperbolic phase' [16, 20] (the parameter r values for which the 
thermodynamic averages are dominated by the positive entropy of maximally unstable 
orbits) such nearly stable cycles are exponentially suppressed and cause only small 
perturbations. The maximally unstable orbits are under control, as they are smoothly 
bounded from above by regions of maximal expansion in the flow. For example, the 
13-cycle estimate of the Hausdorff dimension DH for the Henon attractor is only a 
few per cent away from the best asymptotic estimate, in spite of the presence of the 
anomalous cycle. 

We conclude that the cycle expansions for thermodynamic averages are expected 
to converge even for non-hyperbolic systems, provided that the average is evaluated in 
the hyperbolic phase. However, the presence of marginal orbits has important effects 
on the convergence of cycle expansions-we shall undertake a detailed investigation of 
such convergence in the next section. 

6. Inclusion of marginal cycles 

In this section we apply cycle expansions to a strange set with a mixture of hyperbolic 
and marginal orbits. The model that we shall use (the shift map, or the distribution of 
rationals on the unit interval) might at first glance appear trivial, but we find it very 
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lously low instability) of the Henon attractor on thermodynamic averaging; µ(t) = dq/dt 
is dominated by the anomalous cycle for large positive t, but barely affected by it for t 
values in the 'hyperbolic phase'. 

instructive: it illustrates how the cycle expansions developed here apply to strange sets 
with mixtures of hyperbolic and marginal stabilities. In such systems there are orbits 
that stay 'glued' arbitrarily close to stable regions for arbitrarily long times. This is a 
generic phenomenon in physically interesting dynamical systems, such as the Hamil
tonian systems with coexisting elliptic islands of stability and hyperbolic homoclinic 
webs, and development of good computational techniques is here of utmost practical 
importance. The derivation of the dynamical C functions requires hyperbolicity, so only 
the cycles with expanding eigenvalues can be included into the cycle expansions. In 
our approach the presence of marginally stable cycles will be accounted for indirectly, 
in terms of infinite sums of cycles; for a different approach see [21). 

In order to arrive at the example of such sums that we shall investigate here, we 
first have to introduce the 'mode-locking dynamics'. This unfortunatelly necessitates 
some notational detail, and cycle expansions and curvature corrections will resurface 
only at the end of this section. 

The physical motivation behind study of circle maps is following; a typical island of 
stability in a Hamiltonian 2D map is an infinite sequence of concentric tori and chaotic 
rings. In the crudest approximation, the radius can be treated as an external parameter 
n, and the angular motion can be modelled by a map periodic in the angular variable, 
such as 

(21) 

By losing all of the 'island-within-island' structure of real systems, such approximations 
skirt the problems of determining the symbolic dynamics for a realistic Hamiltonian 
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system, but they do retain some of the essential non-hyperbolicity of such systems in 
form of sequences of cycles accumulating toward the borders of stability. 

In a Hamiltonian system we would be interested in sequences of KAM tori; in the 
circle map model their role is played by the irrational winding set, the set of parameter 
values for which the winding number W = limn--+oo xn/n takes irrational values. This 
set is of some experimental and theoretical interest in its own right. We shall study it 
here in the 'number-theoretic' limit k ➔ 0, with (21) reduced to the shift map 

mod 1. (22) 

This map has a cycle of length Q for every rational n = P / Q. If a nonlinear term is 
added to (22), the parameter region in which the winding number W maintains the 
rational value opens into a mode-locked interval [22] llp /Q· Deletion of a set of such 
mode-locked intervals llP,/Q; leaves behind a set of complement intervals IP,/Q; which 
provide a finite cover for the irrational winding set. For the shift map (22), the covering 
intervals are simply the differences of the consecutive rationals in the set of deleted 
{P/Qi}; 

(23) 

A hierarchical presentation of the irrational winding set depends on the choice 
of organisation [23] of rationals on the unit interval. We describe here briefly two 
superficially rather distinct organisations; the Farey tree and the continued fraction 
partitioning of the unit interval. Actually, as we shall see, they are the same organisation, 
differing only in the choice of measure. 

6.1. Farey tree partitioning 

The Farey tree partitioning is a systematic bisection of rationals: successive levels are 
obtained by deleting from each subinterval the rational with the smallest denominator. 
It was introduced in [24-27] and its thermodynamics is discussed in detail in [3, 23], so 
here we simply state the rule that generates the tree; each rational (conveniently written 
in the continued fraction representation as P / Q = [a1 a2 ... ad) has 2 'daughters' 

[ .. . ,a] 

[ ... , a - 1, 2] , [ ... ,a+l]. 

The nth level of the tree consists of all continued fractions satisfying Lai = n + 2; 
the nth level irrational winding cover consists of the 2n-l intervals Ii obtained by 
deleting the corresponding mode-lockings up to the nth level. These intervals can be 
generated by iterating the Farey presentation function [3] : 

f 0(x) = x/(1 - x) 

f 1 (x) = (1 - x)/x 

0 :S X < 1/2 

1/2 < X :S 1 
(24) 

in the same way in which the unimodal map of I, figure 2 generates the covers of 
a two-branch repeller, and with the same binary symbolic dynamics. However, there 
is one crucial difference between the hyperbolic repeller of I, figure 2, and the Farey 
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presentation function; here the fix point x0 = 0 has marginal stability Ao = 1, and 
has to be excluded from the cycle expansions because it violates the hyperbolicity 
assumption used in the derivation of the C functions in I, section 2. Pruning O (setting 
t0 = 0) unbalances all curvature combinations of form t00 ... 1 - t0t0 ... 1, and turns t00 ... 1 
into fundamental cycles (cycles not shadowed by shorter cycles). The cycle expansion 
(1.29) becomes 

As there is an infinity of fundamental cycles, the binary Farey notation no longer 
seems particularly natural; a better choice is the continued fraction labelling. The 
transcription from the binary Farey labels to the continued fraction labels follows 
from the mother-daughter relation above; each block 1 ... 0 ('l' followed by a - 1 
zeros) corresponds to entry [ ... ,a, ... ] in the continued fraction label. Functionally 
this corresponds to replacing the binary Farey presentation function / 0 in (24) by an 
infinity of branches 

1 1 
--<x~
a-1 a 

and replacing the pruned binary expansion (25) by 

(26) 

1/C = 1-ti -(t12 -t1t2)-(t112 -t1td-(t23 -tit3)-(t122 -t1it2)-(t1112 -t1t112)- ·· · 

(27) 

where tP stands for tP together with its infinite tail sequence of cycles of form (see I, 
table 3) 

00 

t ="t . a1 .. ,ak-1ak i.J a1 .. ,ak-1a (28) 
a=ak 

The thermodynamic sum (1.6) is in this context the sum over all rationals, labelled 
by binary Farey labels; transcribed to the continued fraction labelling it becomes 

00 00 

O(z, -r) = L L zn1;;;:2.,.ak (29) 
k=l a1,a2, .. ,ak 

The corresponding prime cycle weight in the cycle expansion (27) is 

(30) 

The associated thermodynamic functions and the slow convergence at the phase transi
tion point for this thermodynamics are studied in detail in [23, 28]; we refer the reader 
to the above references for details of the Farey level thermodynamics and concentrate 
here on the Gauss partitioning. 
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6.2. Gauss map partitioning 

An alternative to the Farey tree organisation of rationals is the continued fraction par
titioning of the unit interval, obtained by deleting successively mode-locking intervals 
(points in our case) corresponding to continued fractions of increasing length. The first 
level is obtained by deleting A111 , A121 , ... , Alnl• ... mode-lockings; the second by deleting 
A11,21, A11,3J• A12,21 , A12,31, ... , A1n,mJ• ... and so on (see figure 13). As in I, section 2, we 
form a partition sum over all levels 

where 

00 00 

Q(z,r) = Lzn L 
n=I a1a2 .. ,a.=I 

la1a2 ... a. = I [a1, a2, ..• 'an] - [ai, a2, ... ' an+ 1] I 
1 

0 

2 

=-------
Q(a1, .. ,,a.]Q[a1, ... ,a.+I]. 

13 12 
, ••••••• ; ... 11---- ------

62 

1,,1 1,,2 
f·······················I -- •-•H•~l-++····1 

6 12 

(31) 

(32) 

Figure 13. Continued fraction partitioning of the irrational winding set. At level n = 1 all 
mode locking intervals t.[a] with winding numbers 1/1, 1/2, 1/3, ... , 1/a, ... are deleted, and 
the cover consists of the complement intervals /0 • At level n=2 the mode locking intervals 
t.[a,2], t.[a,3], ... are deleted from each cover la, and so on. 

In contrast to the Farey tree case (30), in this continued fraction thermodynamics the 
infinity of intervals obtained by deleting continued fractions of length n are given the 
same weight zn = e-nq. The cycle expansion is (27), with the prime cycle weight 

t = znlA J'. p a1a2 ... an 
(33) 

The intervals la1a2 
... a. partition the parameter axis n, not the dynamical coordinate of 

the underlying circle map; still there exists a map that acts on the parameter space and 
generates the partition into intervals la

1
a

2 
... a.· This map is known as the Gauss map (29] 

(see figure 14) 

/(x)-u-m 
x=fO 

(34) 

X =0. 
Here [ ... ] denotes the integer part, and we note that this is actually the map (26) 
already introduced for the Farey tree. The Gauss map acts as a left shift on the 
continued fraction representation of numbers on the unit interval: 

x = [a1, a2, a3, .. . ] - f (x) = [a2, a3, .. . ] (35) 

so it maps 'daughter' intervals laiai ... a. into the 'mother' interval la2 ... a. (see I, section 3). 
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Figure 14. The Gauss map (34), with the fixed points x1, x2 and the 12-cycle indicated. 

6.3. ( function from the Gauss measure 

For this simple toy model the transfer matrix (1.13) can be evaluated explicitly, using 
elementary properties of continued fractions. Let Pn/Qn = [a1, a2, ... an] be the leading 
edge of the la

1
a

2 
... a •• Then 

(36) 

and 

We can take advantage of the ergodicity of the Gauss map and approximate the 
distribution of Pk/Qk by an integral over the Gauss measure [29]. This yields a 
geometric series 

The corresponding ( function [30] is 

1 z 
00 1' dy ((m+l+y)(m+y))' 

((z,,)=l-log2; o l+y l+y 
(39) 
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For r = -1, C (z, -1) has a simple pole at z = e-q = 1: i.e. the Hausdorff dimension 
(1.84) of the set of irrational numbers in the unit interval is 1, as it should be. 

The above estimate of the C function was made possible by availability of the 
Gauss measure in explicit analytic form. However, as such measures are in general 
not available, we now return to the cycle expansion technique, in order to test its 
convergence in this analytically tractable model. 

6.4. Cycles of the Gauss map 

Given a symbol sequence a1, a2, ... , an, the corresponding cycle of the Gauss map can 
be computed by iterating the inverse Gauss map 

1 1-1(x)=-
a a+x 

0 ;:S; X < 1 a E z+ (40) 

where /;;1 is the inverse of the a = [1/x] branch off in (34). The stability and the 
nonlinearity (I, section 7) of 1-1 are 

r;;'(x)' = 

The cycle points satisfy 

1 
(a+ x)2 

J;;'(x)" 
J;;'(x)' 

2 
=---

a+x 

the periodic points are determined by solving quadratic equations 

1 
Xa1a2 .. ,a. = X = _____ 1 __ _ 

a,+--~-
a2 +···a +x 

n 

(41) 

(42) 

(43) 

and the Gauss map a1 a2 ... an cycle eigenvalue follows from (41) and (42) by the chain 
rule 

(44) 

For example, the x
0 

fixed points (quadratic irrationals with xa = [a, a, a ... ] infinitely 
repeating continued fraction expansion) are given by 

-a+va2+4 
X = 

a 2 (45) 

and the xab = [a, b, a, b, a, b, .. . ] 2-cycles are given by 

-ab + ✓(ab) 2 + 4ab 
Xab = 2b (46) 

A -( )_2 _(ab+2+ ✓ab(ab+4))2 

ab - XabXba - 2 • 

This completes our discussion of the mode-locking dynamics; now we have all the 
ingradients necessary for evaluation of cycle expansions. 
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6.5. Cycle expansions 

In the fixed-points approximation the cycle expansion (27) is given by 
00 

((ll(z, -r) = 1 - Z L IAalt. 
a=l 

383 

(47) 

The large a behaviour is the same as for the Riemann ( function ( (-2-r) = L~i a2t. 
Indeed, (47) can be expanded as a finite sum plus a series of truncated Riemann ( 
functions: 

((ll(z,-r) = 1-z [ f IAalt +(N(-2-r)+2-r(N(2-2-r)+(4-r -3)-r(N(4-2-r)+o(N6~2t)] 
a=l , 

00 

(N(s) = L a-s. (48) 
a=N+l 

In realistic situations, when ta are available only as numerical estimates, we evaluate 
such sums by splitting them into a head :E:=l ta, to be evaluated directly, and the 
tail RN = L~N+I ta, to be estimated asymptotically in a. Now it is perhaps easier to 
understand the effects of pruning of the x0 fixed point that had lead to (27). Where 
Ao f. 1, the fixed point approximation (47) would have been simply 

(49) 

However, as A0 = 1 is marginal, the effect of the x0 fixed point is nonlinear and is 
probed instead by the infinity of cycles which accumulate to x0 : 

(50) 

The large a behaviour of ta can be estimated from the leading nonlinear term of the 
mapping at the marginal fixed point (or cycle), by the same methods as those employed 
in studying intermittency [31), and then the head and the tail in (47) can be matched 
up. In practice we find it most expedient to estimate the tail contribution by the 
logarithmic convergence acceleration algorithms [23,32). How well does that work? 
For example, with the Levin estimate [32) for RN, the Hausdorff dimension (I.84) 

N 

0 = 1- L IAal-DW + RN (51) 
a=I 

estimated from the first N = 10 fixed points is within 4% of the correct DH = 1 value 

DW = 0.963 396... (52) 

The fixed-point estimate converges equally well for the non-trivial critical circle map 
irrational winding set [33). Even though DW is 4% off the correct answer, high 
accuracy in the determination of the fixed-points estimate D~) is a prerequisite for 
embarking upon evaluation of the curvature corrections. In contrast, without the tail 
estimate, the N = 10 truncation yields DW = 0.89 ... , i.e. simple truncation of sums 
like (47) leads to catastrophically slow convergence (familiar from the theory of the 
Riemann ( functions) of order 1/N. The lesson is that the prerequisite to reliable 
computations in generic dynamical systems (systems with a mixture of hyperbolic and 
stable regions) are effective methods for summations over infinite families of periodic 
points accumulating towards marginal cycles. 
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6.6. Curvature corrections 

In order to understand why the accuracy of the fixed-point estimate was so good, we 
next estimate the leading curvature correction t12 - t1 t2 in (27) 

-I A1Aa -1 A 21 a+ ✓a2+4 
Nia - og -A - og 1 + og 2 ✓ ( 4) 

la a+ + a a+ 

= logA1 - ~ + 
8
2 + 0 (~). 

a a a 
(53) 

Unlike for the hyperbolic case (1.64), the nonlinearities do not fall off with cycle length, 
but go to a constant. This implies that every tP counterterm series (28) has to be 
estimated and summed up in the same way as (47) before being included into the cycle 
expansion (27). Nevertheless, the curvature expansions still converge exponentially fast, 
for the following reason; each counterterm sequence is dominated by its head (low a 
terms in the t. .. a series), and the head is essentially hyperbolic, as all its cycle points are 
far away from the marginal fixed point. For example, the leading curvature corrections 
to the Hausdorff dimension cycle expansion (27) are (taking -r = -1): 

00 

~)Aia - JA, Aal') ~ 0.006 26 + 0.008 54 + 0.008 15 + 0.007 11 + 0.006 07 + ... 
a=2 

to be compared with the largest term in the sum, A1-J = 0.071 79 . . .. The first term 
is of order t12 / A12 ~ 0.005 ... , in agreement with the hyperbolic estimate (1.64): for 
the successive terms the curvature cancellations increasingly fail, but the series still 
converges monotonically due to a crossover from a hyperbolic to a power fall-off of 
A ... a oc a-2. The exact location of the crossover depends on the curvature series and 
the value of -r; for -r negative and large, the convergence is fast. As -r --+ -1/2, the 
convergence worsens; all counterterms series diverge (Riemann ( function in (48) has 
a pole at -r = -1/2), and the thermodynamic averages go through a phase transition 
[28, 34, 35] (illustrated in figure 15). 

The Levin estimates from (27) truncated to 0 = 1 - t1 - (t12 - t1 [i) and 0 = 
1- t1 - (t12 - t1t2) - (t112 - t1tu) are respectively 

(2) - 004 2 DH - 1. 91 ... (3) 
DH = 0.997 624 .... 

and the convergence of D~l with k is fast and in qualitative agreement with our 
expectations of geometric convergence. The estimates are numerically stable to 5 or 
6 decimal places, but it should be noted that the numerical stability of logarithmic 
convergence acceleration algorithms can be rather deceptive, and better methods for 
evaluation of above sums are needed. 

To summarise; dynamical systems with marginally stable cycles require summations 
of infinities of cycles accumulating to the marginal ones. If such summations are 
correctly carried out, the cycle expansions again converge exponentially, as long as 
the averaging is performed in the hyperbolic phase, i.e. the average is dominated by a 
positive entropy of unstable cycles. A non-trivial application of above methods to the 
critical circle maps mode-locking set is given in [33]. 
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Figure 15. The function q(,) for the 'continued fraction' thermodynamics. DH = 1. For 
this choice of measure there is a phase transition at, = -½, 

7. Summary and conclusions 

We have tested here the applicability of cycle expansions on a series of low-dimensional 
chaotic dynamical systems. We find that the first prerequisite for convergence of cycle 
expansions is control of the topology (symbolic dynamics) of a dynamical system; for 
averages evaluated in the 'hyperbolic' phase, the effects of non-hyperbolicity play a 
secondary role. In other words, omitting parts of a Cantor set does more violence 
to averaging than approximating a smooth flow on the Cantor set by a piecewise
linear patches. Knowledge of the analytic structure of dynamical ( functions can 
lead to considerable further improvement of convergence. Provided that the above 
requirements are met, description of sets in terms of unstable cycles can be very 
effective, with a few cycles yielding accurate estimates of averages over the strange set. 
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