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So far we have concentrated on description of the trajectory of a sin-
gle initial point. Our next task is to define and determine the size of
a neighborhood of x(t). We shall do this by assuming that the flow is
locally smooth, and describe the local geometry of the neighborhood
by studying the flow linearized around x(t). Nearby points aligned
along the stable (contracting) directions remain in the neighborhood of
the trajectory x(t) = f t(x0); the ones to keep an eye on are the points
which leave the neighborhood along the unstable directions. As we
shall demonstrate in Chapter ??, in hyperbolic systems what matters
are the expanding directions. The repercussion are far-reaching: As
long as the number of unstable directions is finite, the same theory ap-
plies to finite-dimensional ODEs, state space volume preserving Hamil-
tonian flows, and dissipative, volume contracting infinite-dimensional
PDEs.

4.1 Flows transport neighborhoods

Major combat operations in Iraq have ended.
President G. W. Bush, May 1, 2003

As a swarm of representative points moves along, it carries along and
distorts neighborhoods. The deformation of an infinitesimal neighbor-
hood is best understood by considering a trajectory originating near
x0 = x(0) with an initial infinitesimal displacement δx(0), and letting
the flow transport the displacement δx(t) along the trajectory x(x0, t) =
f t(x0).

4.1.1 Instantaneous shear

The system of linear equations of variations for the displacement of the
infinitesimally close neighbor x + δx follows from the flow equations
(2.5) by Taylor expanding to linear order

ẋi + ˙δxi = vi(x + δx) ≈ vi(x) +
∑

j

∂vi

∂xj
δxj .
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The infinitesimal displacement δx is thus transported along the trajec-
tory x(x0, t), with time variation given by

d

dt
δxi(x0, t) =

∑
j

∂vi(x)
∂xj

∣∣∣∣
x=x(x0,t)

δxj(x0, t) . (4.1)

As both the displacement and the trajectory depend on the initial point
x0 and the time t, we shall often abbreviate the notation to x(x0, t) →
x(t)→ x, δxi(x0, t)→ δxi(t)→ δx in what follows. Taken together, the
set of equations

δ t

Fig. 4.1 A swarm of neighboring points
of x(t) is instantaneously sheared by the
action of the stability matrix A - a bit hard
to draw.

ẋi = vi(x) , ˙δxi =
∑

j

Aij(x)δxj (4.2)

governs the dynamics in the tangent bundle (x, δx) ∈ TM obtained by
adjoining the d-dimensional tangent space δx ∈ TxM to every point
x ∈ M in the d-dimensional state spaceM⊂ R

d. The stability matrix

Aij(x) =
∂vi(x)
∂xj

(4.3)

describes the instantaneous rate of shearing of the infinitesimal neigh-
borhood of x(t) by the flow, Fig. 4.1.

Example 4.1 Rössler flow, linearized:
For the Rössler flow (2.14) the stability matrix is

A =

⎛
⎝ 0 −1 −1

1 a 0
z 0 x− c

⎞
⎠ . (4.4)

4.1.2 Roll your own cigar
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Fig. 4.2 The fundamental matrix J t maps
an infinitesimal spherical neighborhood
of x0 into a cigar-shaped neighborhood
finite time t later.

Taylor expanding a finite time flow to linear order,

f t
i (x0 + δx) = f t

i (x0) +
∑

j

∂f t
i (x0)

∂x0j

δxj + · · · , (4.5)

one finds that the linearized neighborhood is transported by

δx(t) = J t(x0)δx(0) , J t
ij(x0) =

∂xi(t)
∂xj

∣∣∣∣
x=x0

. (4.6)

This Jacobian matrix has inherited the name fundamental solution matrix
or simply fundamental matrix from the theory of linear ODEs. It de-
scribes the deformation of an infinitesimal neighborhood at finite time
t in the co-moving frame of x(t).

As this is a deformation in the linear approximation, one can think of
it as a linear deformation of an infinitesimal sphere enveloping x0 into
an ellipsoid around x(t), described by the eigenvectors and eigenvalues
stability - 30aug2007 ChaosBook.org version11.9.2, Aug 21 2007



4.1. FLOWS TRANSPORT NEIGHBORHOODS 55

of the fundamental matrix of the linearized flow, Fig. 4.2. Nearby trajec-
tories separate along the unstable directions, approach each other along
the stable directions, and change their distance along the marginal di-
rections at a rate slower than exponential, corresponding to the eigen-
values of the fundamental matrix with magnitude larger than, smaller
than, or equal 1. In the literature adjectives neutral or indifferent are often
used instead of ‘marginal,’ (attracting) stable directions are sometimes
called ‘asymptotically stable,’ and so on.

One of the preferred directions is what one might expect, the direc-
tion of the flow itself. To see that, consider two initial points along a tra-
jectory separated by infinitesimal flight time δt: δx(0) = fδt(x0)− x0 =
v(x0)δt. By the semigroup property of the flow, f t+δt = f δt+t, where

f δt+t(x0) =
∫ δt+t

0

dτ v(x(τ)) = δt v(x(t)) + f t(x0) .

Expanding both sides of f t(f δt(x0)) = f δt(f t(x0)), keeping the leading
term in δt, and using the definition of the fundamental matrix (4.6), we
observe that J t(x0) transports the velocity vector at x0 to the velocity
vector at x(t) at time t:

v(x(t)) = J t(x0) v(x0) . (4.7)

In nomenclature of page 54, the fundamental matrix maps the initial,
Lagrangian coordinate frame into the current, Eulerian coordinate frame.

The velocity at point x(t) in general does not point in the same direc-
tion as the velocity at point x0, so this is not an eigenvalue condition
for J t; the fundamental matrix computed for an arbitrary segment of
an arbitrary trajectory has no invariant meaning.

δ  x
x(T) = x(0)

Fig. 4.3 For a periodic orbit p, any
two points along the cycle are mapped
into themselves after one cycle period T,
hence δx = v(x0)δt is mapped into itself
by the cycle fundamental matrix Jp.

As the eigenvalues of finite time Jt have invariant meaning only for
periodic orbits, we postpone their interpretation to Chapter 8. How-
ever, already at this stage we see that if the orbit is periodic, x(Tp) =
x(0), at any point along cycle p the velocity v is an eigenvector of the
fundamental matrix Jp = JTp with a unit eigenvalue,

Jp(x) v(x) = v(x) , x ∈ p . (4.8)

Two successive points along the cycle separated by δx(0) have the same
separation after a completed period δx(Tp) = δx(0), see Fig. 4.3, hence
eigenvalue 1.

As we started by assuming that we know the equations of motion,
from (4.3) we also know stability matrix A, the instantaneous rate of
shear of an infinitesimal neighborhood δxi(t) of the trajectory x(t). What
we do not know is the finite time deformation (4.6).

Our next task is to relate the stability matrix A to fundamental matrix
J t. On the level of differential equations the relation follows by taking
the time derivative of (4.6) and replacing ˙δx by (4.2)

˙δx(t) = J̇ t δx(0) ,

= Aδx(t) = AJ t δx(0) .
ChaosBook.org version11.9.2, Aug 21 2007 stability - 30aug2007
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Hence the d2 matrix elements of fundamental matrix satisfy the lin-
earized equation (4.1)

d

dt
J t(x) = A(x)J t(x) , initial condition J0(x) = 1 . (4.9)

Given a numerical routine for integrating the equations of motion, eval-
uation of the fundamental matrix requires minimal additional program-
ming effort; one simply extends the d-dimensional integration routine
and integrates concurrently with f t(x) the d2 elements of J t(x).

The qualifier ‘simply’ is perhaps too glib. Integration will work for
short finite times, but for exponentially unstable flows one quickly runs
into numerical over- and/or underflow problems, so further thought
will have to go into implementation this calculation.

So now we know how to compute fundamental matrix Jt given the
stability matrix A, at least when the d2 extra equations are not too ex-
pensive to compute. Mission accomplished.

fast track

Chapter 5, p. 69
And yet... there are mopping up operations left to do. We persist

until we derive the integral formula (4.32) for the fundamental matrix,
an analogue of the finite-time “Green function” or “path integral” solu-
tions of other linear problems.

We are interested in smooth, differentiable flows. If a flow is smooth,
in a sufficiently small neighborhood it is essentially linear. Hence the
next section, which might seem an embarrassment (what is a section
on linear flows doing in a book on nonlinear dynamics?), offers a firm
stepping stone on the way to understanding nonlinear flows. If you
know your eigenvalues and eigenvectors, you may prefer to fast for-
ward here.

fast track

Section 4.3, p. 60

4.2 Linear flows

Diagonalizing the matrix: that’s the key to the whole thing.
Governor Arnold Schwarzenegger

Linear fields are the simplest vector fields. Described by linear differ-
ential equations which can be solved explicitly, with solutions that are
good for all times. The state space for linear differential equations is
M = R

d, and the equations of motion (2.5) are written in terms of a
vector x and a constant stability matrix A as

ẋ = v(x) = Ax . (4.10)

Solving this equation means finding the state space trajectory

x(t) = (x1(t), x2(t), . . . , xd(t))
stability - 30aug2007 ChaosBook.org version11.9.2, Aug 21 2007
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passing through the point x0.
If x(t) is a solution with x(0) = x0 and y(t) another solution with

y(0) = y0, then the linear combination ax(t) + by(t) with a, b ∈ R is
also a solution, but now starting at the point ax0 + by0. At any instant
in time, the space of solutions is a d-dimensional vector space, which
means that one can find a basis of d linearly independent solutions.
How do we solve the linear differential equation (4.10)? If instead of a
matrix equation we have a scalar one, ẋ = λx , with a a real number,
then the solution is

x(t) = etλx0 . (4.11)

In order to solve the d-dimensional matrix case, it is helpful to rederive
the solution (4.11) by studying what happens for a short time step δt. If
at time t = 0 the position is x(0), then

x(δt) − x(0)
δt

= λx(0) , (4.12)

which we iterate m times to obtain Euler’s formula for compounding
interest

x(t) ≈
(

1 +
t

m
λ

)m

x(0) . (4.13)

The term in parentheses acts on the initial condition x(0) and evolves
it to x(t) by taking m small time steps δt = t/m. As m → ∞, the term
in parentheses converges to etλ . Consider now the matrix version of
equation (4.12):

x(δt) − x(0)
δt

= Ax(0) . (4.14)

A representative point x is now a vector in R
d acted on by the matrix

A, as in (4.10). Denoting by 1 the identity matrix, and repeating the
steps (4.12) and (4.13) we obtain Euler’s formula for the exponential of
a matrix:

x(t) = lim
m→∞

(
1 +

t

m
A

)m

x(0) = etAx(0) . (4.15)

We will use this expression as the definition of the exponential of a
matrix.
How do we compute the exponential (4.15)?

in depth:

Appendix ??, p. ??

fast track

Section 4.3, p. 60

Example 4.2 Fundamental matrix eigenvalues, diagonalizable case:
Should we be so lucky that A happens to be a diagonal matrix with real
eigenvalues (μ1, μ2, . . . , μd), the exponential is simply

Jt = etA =

⎛
⎜⎝

etμ1 · · · 0

. . .
0 · · · etμd

⎞
⎟⎠ . (4.16)

Next, suppose that A is diagonalizable and that U is a nonsingular matrix
that brings it to a diagonal form AD = U−1AU . The transformation U is a

ChaosBook.org version11.9.2, Aug 21 2007 stability - 30aug2007
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linear coordinate transformation which rotates, skews, and possibly flips the
coordinate axis of the vector space. Then J can also be brought to a diagonal
form (insert factors 1 = UU−1 between the steps of the product (4.15)):4.2, page 67

Jt = etA = UetADU−1 . (4.17)

The action of both A and J is very simple; the axes of orthogonal coordinate
system where A is diagonal are also the eigen-directions of both A and J t,
and under the flow the neighborhood is deformed by a multiplication by an
eigenvalue factor for each coordinate axis.

Throughout this text the symbol Λk will always denote the kth eigen-
value (in literature sometimes referred to as the multiplier) of the finite
time fundamental matrix J t. Symbol λk will be reserved for the kth
characteristic exponent or characteristic value, with real part μk and νk the
kth phase

Λk = etλk = et(μk+iνk) . (4.18)

The J t(x0) depends on the initial point x0 and the elapsed time t. For
notational brevity we tend to omit this dependence, but in general

Λk = Λk(x0, t) , λk = λk(x0, t) , νk = νk(x0, t) , · · · ,
depend on both the trajectory traversed and the choice of coordinates.
Conventionally we label eigenvalues Λ in decreasing order

|Λ1| ≥ |Λ2| ≥ . . . ≥ |Λd|
Since |Λj | = etμj , this is the same as

μ1 ≥ μ2 ≥ . . . ≥ μd

Section 8.1.1←−
As A has only real entries, it will in general have either real eigen-

values, or complex conjugate pairs of eigenvalues. That is not surpris-
ing, but also the corresponding eigenvectors can be either real or com-
plex. All coordinates used in defining the flow are real numbers, so
what is the meaning of a complex eigenvector?

Example 4.3 Complex eigenvalues:
To develop some intuition about that, let us work out the behavior for the
simplest nontrivial case, the 2−d/ case

A =

(
A11 A12

A21 A22

)
. (4.19)

The eigenvalues λ1, λ2 of A are the roots

λ1,2 =
1

2

(
trA±

√
(trA)2 − 4 detA

)
(4.20)

of the characteristic equation

det (A− z1) = (λ1 − z)(λ2 − z) = 0 , (4.21)∣∣∣∣∣
∣∣∣∣∣ A11 − z A12

A21 A22 − z

∣∣∣∣∣
∣∣∣∣∣ = z2 − (A11 + A22) z + (A11A22 − A12A21) .

stability - 30aug2007 ChaosBook.org version11.9.2, Aug 21 2007
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For the distinct eigenvalues case λ1 �= λ2, he eigenvectors are obtained by
applying to an arbitrary vector x ∈ R

2 the projection operators

P1 =
A− λ21

λ1 − λ2
, P2 =

A− λ11

λ2 − λ1
. (4.22)

The qualitative behavior of eA for real eigenvalues λ1, λ2 ∈ R differs from
the case that they form a complex conjugate pair,

λ1 = μ1 + iν1 , λ2 = λ∗
1 = μ1 − iν1 .

These two possibilities are refined further into sub-cases depending on the
signs of the real part. The matrix might have only one eigenvector, or two
linearly independent eigenvectors, which may or may not be orthogonal.
Along each of these directions the motion is of the form xk exp(tλk). If the
exponent λk is positive, then the component xk will grow; if the exponent λk

is negative, it will shrink.

We sketch the full set of possibilities in Fig. 4.2 (a), and work out in
detail the case when A can be brought to the diagonal form, and the
case of degenerate eigenvalues.

Example 4.4 Complex eigenvalues, diagonal:
IfA can be brought to the diagonal form, the solution (4.15) to the differential
equation (4.10) can be written either as(

x1(t)
x2(t)

)
=

(
etμ1 0
0 etμ2

)(
x1(0)
x2(0)

)
, (4.23)

or (
x1(t)
x2(t)

)
= etμ

(
eitν 0
0 e−itν

)(
x1(0)
x2(0)

)
. (4.24)

In the case μ1 > 0, μ2 < 0, x1 grows exponentially with time, and x2 con-
tracts exponentially. This behavior, called a saddle, is sketched in Fig. 4.2 (b),
as are the remaining possibilities: in/out nodes, inward/outward spirals,
and the center. Spirals arise from taking a real part of the action of J t on a
complex eigenvector. The magnitude of |x(t)| diverges exponentially when
μ > 0, and contracts toward 0 when the μ < 0, whereas the imaginary phase
ν controls its oscillations.

In general J t is neither diagonal, nor diagonalizable, nor constant
along the trajectory. As any matrix, J t can also be expressed in the
singular value decomposition form

J = UDV T

where D is diagonal, and U, V are orthogonal matrices. The diagonal
elements Λ1, Λ2, . . ., Λd of D are the eigenvalues.

Under the action of the flow an infinitesimally small ball of initial
points is deformed into an ellipsoid: |Λi| is the relative stretching of
the ith principal axis of the ellipsoid, the columns of the matrix V are
the principal axes ei of stretching in the Lagrangian coordinate frame,
and the orthogonal matrix U gives the orientation of the ellipse in the
Eulerian coordinates.

Now that we have some feeling for the qualitative behavior of eigen-
vectors and eigenvalues of linear flows, we are ready to return to the
nonlinear case.
ChaosBook.org version11.9.2, Aug 21 2007 stability - 30aug2007
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Fig. 4.4 (a) Qualitatively distinct types of exponents of a [2×2] fundamental matrix. (b)
Streamlines for several typical 2-dimensional flows: saddle (hyperbolic), in node (attract-
ing), center (elliptic), in spiral.

4.3 Stability of flows

Mopping up operations are the activities that engage most sci-
entists throughout their careers.
Thomas Kuhn, The Structure of Scientific Revolutions

How do you determine the eigenvalues of the finite time local deforma-
tion Jt for a general nonlinear smooth flow? The fundamental matrix
is computed by integrating the equations of variations (4.2)

x(t) = f t(x0) , δx(x0, t) = J t(x0)δx(x0, 0) . (4.25)

The equations are linear, so we should be able to integrate them–but in
order to make sense of the answer, we derive it step by step.

4.3.1 Stability of equilibria

xy

z

 0

 20

 40

-40
-20

 0

Fig. 4.5 Two trajectories of the Rössler
flow initiated in the neighborhood of the
‘+’ or ‘outer’ equilibrium point (2.15).
(R. Paškauskas)

For a start, consider the case where x is an equilibrium point (2.7). Ex-
panding around the equilibrium point xq , using the fact that the stabil-
ity matrix A = A(xq) in (4.2) is constant, and integrating,

f t(x) = xq + eAt(x− xq) + · · · , (4.26)

we verify that the simple formula (4.15) applies also to the fundamental
matrix of an equilibrium point,

J t(xq) = eAt , A = A(xq) . (4.27)

Example 4.5 Stability of equilibria of the Rössler flow.
The Rösler system (2.14) has two equilibrium points (2.15), the inner equilib-

rium (x−, y−, z−), and the outer equilibrium point (x+, y+, z+). Together
2.8, page 38 with their exponents (eigenvalues of the stability matrix) the two equilibria

now yield quite detailed information about the flow. Figure 4.5 shows two
trajectories which start in the neighborhood of the ‘+’ equilibrium point. Tra-
jectories to the right of the outer equilibrium point ‘+’ escape, and those to

stability - 30aug2007 ChaosBook.org version11.9.2, Aug 21 2007
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the left spiral toward the inner equilibrium point ‘−’, where they seem to
wander chaotically for all times. The stable manifold of outer equilibrium
point thus serves as a attraction basin boundary. Consider now the eigenval-
ues of the two equilibria

4.4, page 67
(μ−

1 , μ
−
2 ± i ν−2 ) = (−5.686, 0.0970 ± i 0.9951 )

(μ+
1 , μ

+
2 ± i ν+

2 ) = ( 0.1929, −4.596 × 10−6 ± i 5.428 )
(4.28)

Outer equilibrium: The μ+
2 ± i ν+

2 complex eigenvalue pair implies that
that neighborhood of the outer equilibrium point rotates with angular pe-
riod T+ ≈

∣∣2π/ν+
2

∣∣ = 1.1575. The multiplier by which a trajectory that
starts near the ‘+’ equilibrium point contracts in the stable manifold plane
is the excrutiatingly slow Λ+

2 ≈ exp(μ+
2 T+) = 0.9999947 per rotation. For

each period the point of the stable manifold moves away along the unstable
eigen-direction by factor Λ+

1 ≈ exp(μ+
1 T+) = 1.2497. Hence the slow spi-

raling on both sides of the ‘+’ equilibrium point.

Inner equilibrium: The μ−
2 ± i ν−2 complex eigenvalue pair tells us that

neighborhood of the ‘−’ equilibrium point rotates with angular periodT− ≈
∣∣2π/ν−2 ∣∣ =

6.313, slightly faster than the harmonic oscillator estimate in (2.11). The mul-
tiplier by which a trajectory that starts near the ‘−’ equilibrium point spirals
away per one rotation is Λradial ≈ exp(μ−

2 T−) = 1.84. The μ−
1 eigenvalue

is essentially the z expansion correcting parameter c introduced in (2.13). For
each Poincaré section return, the trajectory is contracted into the stable man-
ifold by the amazing factor of Λ1 ≈ exp(μ−

1 T−) = 10−15.6 (!).
Suppose you start with a 1 mm interval pointing in the Λ1 eigen-direction.
After one Poincaré return the interval is of order of 10−4 fermi, the furthest
we will get into subnuclear structure in this book. Of course, from the math-
ematical point of view, the flow is reversible, and the Poincaré return map is
invertible. (Rytis Paškauskas)

4.3.2 Stability of trajectories

Next, consider the case of a general, non-stationary trajectory x(t). The
exponential of a constant matrix can be defined either by its Taylor se-
ries expansion, or in terms of the Euler limit (4.15):

Appendix ??

etA =
∞∑

k=0

tk

k!
Ak (4.29)

= lim
m→∞

(
1 +

t

m
A

)m

. (4.30)

Taylor expanding is fine if A is a constant matrix. However, only the
second, tax-accountant’s discrete step definition of an exponential is ap-
propriate for the task at hand, as for a dynamical system the local rate
of neighborhood distortion A(x) depends on where we are along the
trajectory. The linearized neighborhood is multiplicatively deformed
along the flow, and the m discrete time step approximation to Jt is
therefore given by a generalization of the Euler product (4.30):

J t = lim
m→∞

1∏
n=m

(1 + δtA(xn)) = lim
m→∞

1∏
n=m

eδt A(xn) (4.31)

ChaosBook.org version11.9.2, Aug 21 2007 stability - 30aug2007
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= lim
m→∞ eδt A(xn)eδt A(xm−1) · · · eδt A(x2)eδt A(x1) ,

where δt = (t− t0)/m, and xn = x(t0 + nδt). Slightly perverse in-
dexing of the products indicates that in our convention the successive
infinitesimal deformation are applied by multiplying from the left. The
two formulas for Jt agree to leading order in δt, and the m → ∞ limit
of this procedure is the integralAppendix ??

J t
ij(x0) =

[
Te

∫
t
0 dτA(x(τ))

]
ij

, (4.32)

where T stands for time-ordered integration, defined as the continuum
limit of the successive left multiplications (4.31). This formula for J isAppendix ??

the main result of this chapter.
It is evident from the time-ordered product structure (4.31) that the

fundamental matrices are multiplicative along the flow,

J t+t′(x) = J t′(x′)J t(x), where x′ = f t(x) . (4.33)

in depth:

Section ??, p. ??

4.4 Neighborhood volume
Section ??←−

Remark ?? Consider a small state space volume ΔV = ddx centered around the
point x0 at time t = 0. The volume ΔV ′ = ΔV (t) around the point
x′ = x(t) time t later is

ΔV ′ =
ΔV ′

ΔV
ΔV =

∣∣∣∣det
∂x′

∂x

∣∣∣∣ΔV =
∣∣det J(x0)t

∣∣ΔV , (4.34)

so the |det J | is the ratio of the initial and the final volumes. The deter-
minant det J t(x0) =

∏d
i=1 Λi(x0, t) is the product of the Floquet mul-

tipliers. We shall refer to this determinant as the Jacobian of the flow.4.1, page 67

This Jacobian is easily evaluated. Take the time derivative and use the
matrix identity ln det J = tr ln J :

d

dt
ln ΔV (t) =

d

dt
ln det J = tr

d

dt
ln J = tr

1
J

J̇ = tr A = ∂ivi .

(Here, as elsewhere in this book, a repeated index implies summation.)
As the divergence ∂ivi is a scalar quantity, the integral in the exponent
needs no time ordering. Integrate both sides to obtain the time evolution
of an infinitesimal volume

det J t(x0) = exp
[∫ t

0

dτ tr A(x(τ))
]

= exp
[∫ t

0

dτ ∂ivi(x(τ))
]

. (4.35)

All we need to do is evaluate the time average

∂ivi = lim
t→∞

1
t

∫ t

0

dτ
d∑

i=1

Aii(x(τ))
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=
1
t

ln

∣∣∣∣∣
d∏

i=1

Λi(x0, t)

∣∣∣∣∣ =
d∑

i=1

μi(x0, t) (4.36)

along the trajectory. If the flow is not singular (for example, the tra-
jectory does not run head-on into the Coulomb 1/r singularity), the
stability matrix elements are bounded everywhere, |Aij | < M , and so
is the trace

∑
i Aii. The time integral in (4.35) grows at most linearly

with t, hence ∂ivi is bounded for all times, and numerical estimates of
the t→∞ limit in (4.36) are not marred by any blowups.

Even if we were to insist on extracting ∂ivi from (4.31) by first mul-
tiplying fundamental matrices along the flow, and then taking the log-
arithm, we can avoid exponential blowups in Jt by using the multi-
plicative structure (4.33), det J t′+t(x0) = det J t′(x′) det J t(x0) to restart
with J0(x′) = 1 whenever the eigenvalues of J t(x0) start getting out of
hand. In numerical evaluations of Lyapunov exponents, λi = limt→∞ μi(x0, t),⇒ Section ??the sum rule (4.36) can serve as a helpful check on the accuracy of the
computation.

The divergence ∂ivi is an important characterization of the flow -
it describes the behavior of a state space volume in the infinitesimal
neighborhood of the trajectory. If ∂ivi < 0, the flow is locally contracting,
and the trajectory might be falling into an attractor. If ∂ivi(x) < 0 ,
for all x ∈ M, the flow is globally contracting, and the dimension of the
attractor is necessarily smaller than the dimension of state spaceM. If
∂ivi = 0, the flow preserves state space volume and det J t = 1. A flow
with this property is called incompressible. An important class of such
flows are the Hamiltonian flows considered in Section 5.2.

But before we can get to that, Henri Roux, the perfect student always
on alert, pipes up. He does not like our definition of the fundamental
matrix in terms of the time-ordered exponential (4.32). Depending on ⇒ Section ??the signs of Floquet exponents, the left hand side of (4.35) can be either
positive or negative. But the right hand side is an exponential of a real
number, and that can only be positive. What gives? As we shall see
much later on in this text, in discussion of topological indices arising in
semiclassical quantization, this is not at all a dumb question.

in depth:

Appendix ??, p. ??

4.5 Stability of maps

The transformation of an infinitesimal neighborhood of a trajectory un-
der the iteration of a map follows from Taylor expanding the iterated
mapping at discrete time n to linear order, as in (4.5). The linearized
neighborhood is transported by the fundamental matrix evaluated at a
discrete set of times n = 1, 2, . . .,

Mn
ij(x0) =

∂fn
i (x)

∂xj

∣∣∣∣
x=x0

. (4.37)
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64 CHAPTER 4. LOCAL STABILITY

We shall refer to this Jacobian matrix as the monodromy matrix, in order
to include the case where the map is a Poincaré return map for a flow.
Derivative notation Jt(x0) → Df t(x0) is frequently employed in the
literature. In this book Λk denotes the kth eigenvalue of the finite time
monodromy matrix Mn(x0), and μk the real part of kth eigen-exponent

|Λ| = enλ , Λ± = en(μ±iν) .

For complex eigenvalue pairs the phase ν describes rotational motion
in the plane defined by the corresponding pair of eigenvectors.

Example 4.6 Stability of a 1-dimensional map:
Consider a 1-d map f(x). The chain rule yields the stability of the nth iterate

Λ(x0, n) =
d

dx
fn(x0) =

n−1∏
m=0

f ′(xm) , xm = fm(x0) . (4.38)

The 1-step product formula for the stability of the nth iterate of a
d-dimensional map

Mn(x0) = M(xn−1) · · ·M(x1)M(x0) ,

M(x)kl =
∂

∂xl
fk(x) , xm = fm(x0) (4.39)

follows from the chain rule for matrix derivatives

∂

∂xi
fj(f(x)) =

d∑
k=1

∂

∂yk
fj(y)

∣∣∣∣
y=f(x)

∂

∂xi
fk(x) .

If you prefer to think of a discrete time dynamics as a sequence of
Poincaré section returns, then (4.39) follows from (4.33): fundamental
matrices are multiplicative along the flow.??, page ??

Example 4.7 Hénon map monodromy matrix:
For the Hénon map (3.15) the monodromy matrix for the nth iterate of the
map is

Mn(x0) =
1∏

m=n

(
−2axm b

1 0

)
, xm = fm

1 (x0, y0) . (4.40)

The determinant of the Hénon one time step monodromy matrix (4.40) is
constant,

detM = Λ1Λ2 = −b (4.41)

so in this case only one eigenvalue Λ1 = −b/Λ2 needs to be determined. This
is not an accident; a constant Jacobian was one of desiderata that led Hénon
to construct a map of this particular form.

fast track

Chapter 5, p. 69
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4.5.1 Stability of Poincaré return maps

(R. Paškauskas and P. Cvitanović)

We now relate the linear stability of the Poincaré return map P : P → P
defined in Section 3.1 to the stability of the continuous time flow in the
full state space.

The hypersurface P can be specified implicitly through a function
U(x) that is zero whenever a point x is on the Poincaré section. A
nearby point x + δx is in the hypersurface P if U(x + δx) = 0, and
the same is true for variations around the first return point x′ = x(τ),
so expanding U(x′) to linear order in δx leads to the condition

d+1∑
i=1

∂U(x′)
∂xi

dx′
i

dxj

∣∣∣∣
P

= 0 . (4.42)

In what follows Ui is the gradient of U defined in (3.3), unprimed
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x(t)

v’ tδ
x’

U(x)=0

x

x(t)+δ x(t)

Jδ

U’

Fig. 4.6 If x(t) intersects the Poincaré sec-
tion P at time τ , the nearby x(t) + δx(t)
trajectory intersects it time τ + δt later.
As (U ′ · v′δt) = −(U ′ · J δx), the dif-
ference in arrival times is given by δt =
−(U ′ · J δx)/(U ′ · v′).

quantities refer to the starting point x = x0 ∈ P , v = v(x0), and the
primed quantities to the first return: x′ = x(τ), v′ = v(x′), U ′ = U(x′).
For brevity we shall also denote the full state space fundamental matrix
at the first return by J = Jτ (x0). Both the first return x′ and the time of
flight to the next Poincaré section τ(x) depend on the starting point x,
so the fundamental matrix

Ĵ(x)ij =
dx′

i

dxj

∣∣∣∣
P

(4.43)

with both initial and the final variation constrained to the Poincaré sec-
tion hypersurface P is related to the continuous flow fundamental ma-
trix by

dx′
i

dxj

∣∣∣∣
P

=
∂x′

i

∂xj
+

dx′
i

dτ

dτ

dxj
= Jij + v′i

dτ

dxj
.

The return time variation dτ/dx, Fig. 4.6, is eliminated by substituting
this expression into the constraint (4.42),

0 = ∂iU
′ Jij + (v′ · ∂U ′)

dτ

dxj
,

yielding the projection of the full space (d + 1)-dimensional fundamen-
tal matrix to the Poincaré map d-dimensional fundamental matrix:

Ĵij =
(

δik − v′i ∂kU ′

(v′ · ∂U ′)

)
Jkj . (4.44)

Substituting (4.7) we verify that the initial velocity v(x) is a zero-eigen-
vector of Ĵ

Ĵv = 0 , (4.45)

so the Poincaré section eliminates variations parallel to v, and Ĵ is a
rank d matrix, i.e., one less than the dimension of the continuous time
flow.
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66 Further reading

Summary

A neighborhood of a trajectory deforms as it is transported by a flow. In
the linear approximation, the stability matrix A describes the shearing/-
compression/expansion of an infinitesimal neighborhood in an infinites-
imal time step. The deformation after a finite time t is described by the
fundamental matrix

J t(x0) = Te
∫

t
0 dτA(x(τ)) ,

where T stands for the time-ordered integration, defined multiplica-
tively along the trajectory. For discrete time maps this is multiplication
by time step fundamental matrix M along the n points x0, x1, x2, . . .,
xn−1 on the trajectory of x0,

Mn(x0) = M(xn−1)M(xn−2) · · ·M(x1)M(x0) ,

with M(x) the single discrete time step fundamental matrix. In this
book Λk denotes the kth eigenvalue of the finite time fundamental matrix
J t(x0), and μk the real part of kth eigen-exponent

|Λ| = enλ , Λ± = en(μ±iν) .

For complex eigenvalue pairs the phase ν describes rotational motion
in the plane defined by the corresponding pair of eigenvectors.

The eigenvalues and eigen-directions of the fundamental matrix de-
scribe the deformation of an initial infinitesimal sphere of neighboring
trajectories into an ellipsoid a finite time t later. Nearby trajectories
separate exponentially along unstable directions, approach each other
along stable directions, and change slowly (algebraically) their distance
along marginal directions. The fundamental matrix J t is in general
neither symmetric, nor diagonalizable by a rotation, nor do its (left or
right) eigenvectors define an orthonormal coordinate frame. Further-
more, although the fundamental matrices are multiplicative along the
flow, in dimensions higher than one their eigenvalues in general are
not. This lack of multiplicativity has important repercussions for bothAppendix ??

classical and quantum dynamics.

Further reading

Linear flows. The theory of linear flows and their
stability is only sketched in Section 4.2. They are pre-
sented at length in many textbooks. We liked the dis-
cussion in chapter 1 of Perko [1] and chapters 3 and 5
of Glendinning [2]. The nomenclature is a bit confusing.

Sometimes A, the stability matrix (4.3) which describes
the instantaneous shear of the trajectory point x(x0, t) is
referred to as the ‘Jacobian matrix,’ a particularly unfor-
tunate usage when one considers linearized stability of
an equilibrium point (4.27). What Jacobi had in mind in
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his 1841 fundamental paper [3] on the determinants to-
day known as ‘jacobians’ were transformations between
different coordinate frames. More unfortunate still is re-
ferring to J t = etA as an ‘evolution operator,’ which here

(see Section ??) refers to something altogether different.
In this book fundamental matrix Jt always refers to (4.6),
the linearized deformation after a finite time t, either for a
continuous time flow, or a discrete time mapping.

Exercises

(4.1) Trace-log of a matrix. Prove that

det M = etr ln M .

for an arbitrary finite dimensional matrix M .

(4.2) Stability, diagonal case. Verify the relation (4.17)

Jt = etA = U−1etADU , where AD = UAU−1 .

(4.3) State space volume contraction in Rössler flow.

(a) Compute the Rössler flow volume contraction
rate at the equilibria.

(b) Study numerically the instantaneous ∂ivi

along a typical trajectory on the Rössler attrac-
tor; color-code the points on the trajectory by
the sign (and perhaps the magnitude) of ∂ivi.
If you see regions of local expansion, explain
them.

(c) Compute numerically the average contraction
rate (4.36) along a typical trajectory on the
Rössler attractor.

(d) (optional) color-code the points on the trajec-
tory by the sign (and perhaps the magnitude)
of ∂ivi − ∂ivi.

(e) Argue on basis of your results that this attrac-
tor is of dimension smaller than the state space
d = 3.

(f) (optional) Start some trajectories on the escape
side of the outer equilibrium, color-code the
points on the trajectory. Is the flow volume
contracting?

(4.4) Topology of the Rössler flow. (continuation of
Exercise 3.1)

(a) Show that equation |det (A − λ1)| = 0 for
Rössler system in the notation of Exercise 2.18
can be written as

λ3+λ2c (p∓−ε)+λ(p±/ε+1−c2εp∓)∓c
√
D = 0
(4.46)

(b) Solve (4.46) for eigenvalues λ± for each equi-
librium as an expansion in powers of ε. Derive

λ−
1 = −c+ εc/(c2 + 1) + o(ε)
λ−

2 = εc3/[2(c2 + 1)] + o(ε2)
θ−2 = 1 + ε/[2(c2 + 1)] + o(ε)
λ+

1 = cε(1 − ε) + o(ε3)
λ+

2 = −ε5c2/2 + o(ε6)

θ+2 =
√

1 + 1/ε (1 + o(ε))

(4.47)

Compare with exact eigenvalues. What are
dynamical implications of the extravagant
value of λ−

1 ? (continued as Exercise 11.7)

(Rytis Paškauskas)

(4.5) A contracting baker’s map. Consider a contract-
ing (or ‘dissipative’) baker’s map, acting on a unit
square [0, 1]2 = [0, 1] × [0, 1], defined by

(
xn+1

yn+1

)
=

(
xn/3
2yn

)
yn ≤ 1/2

(
xn+1

yn+1

)
=

(
xn/3 + 1/2

2yn − 1

)
yn > 1/2 .

This map shrinks strips by a factor of 1/3 in the x-
direction, and then stretches (and folds) them by a
factor of 2 in the y-direction.

By how much does the state space volume contract
for one iteration of the map?
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