Qualitative dynamics, for
pedestrians

The classification of the constituents of a chaos, nothing less is
here essayed.
Herman Melville, Moby Dick, chapter 32

In this chapter we begin to learn how to use qualitative properties of
a flow in order to partition the state space in a topologically invariant
way, and name topologically distinct orbits. This will enable us — in
Chapter 13 — to count the distinct orbits, and in the process touch upon
all the main themes of this book, going the whole distance from diag-
nosing chaotic dynamics to computing zeta functions.

We start by a simple physical example, symbolic dynamics of a 3-disk
game of pinball, and then show that also for smooth flows the qualita-
tive dynamics of stretching and folding flows enables us to partition
the state space and assign symbolic dynamics itineraries to trajectories.
Here we illustrate the method on a 1 — d approximation to Rossler flow.
In Chapter 13 we turn this topological dynamics into a multiplicative
operation on the state space partitions by means of transition matri-
ces/Markov graphs, the simplest examples of evolution operators. De-
ceptively simple, this subject can get very difficult very quickly, so in
this chapter we do the first pass, at a pedestrian level, postponing the
discussion of higher-dimensional, cyclist level issues to Chapter 11.

Even though by inclination you might only care about the serious
stuff, like Rydberg atoms or mesoscopic devices, and resent wasting
time on things formal, this chapter and Chapter 13 are good for you.
Read them.

10.1 Qualitative dynamics

(R. Mainieri and P. Cvitanovict)

What can a flow do to the state space points? This is a very difficult
question to answer because we have assumed very little about the evo-
lution function f*; continuity, and differentiability a sufficient number
of times. Trying to make sense of this question is one of the basic con-
cerns in the study of dynamical systems. One of the first answers was
inspired by the motion of the planets: they appear to repeat their mo-
tion through the firmament. Motivated by this observation, the first
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118 CHAPTER 10. QUALITATIVE DYNAMICS, FOR PEDESTRIANS

attempts to describe dynamical systems were to think of them as peri-
odic.

However, periodicity is almost never quite exact. What one tends to
observe is recurrence. A recurrence of a point zy of a dynamical system

. is a return of that point to a neighborhood of where it started. How
[\ close the point 2y must return is up to us: we can choose a volume
. of any size and shape, and call it the neighborhood My, as long as it

encloses xy. For chaotic dynamical systems, the evolution might bring
the point back to the starting neighborhood infinitely often. That is, the
set

{yeMo: y=flxo), t>to} (10.1)

Fig. 101 A trajectory with itinerary will in general have an infinity of recurrent epis_odes. _
021012. To observe a recurrence we must look at neighborhoods of points.
This suggests another way of describing how points move in state space,
which turns out to be the important first step on the way to a theory of
dynamical systems: qualitative, topological dynamics, or, as it is usu-
ally called, symbolic dynamics. As the subject can get quite technical,
a summary of the basic notions and definitions of symbolic dynamics
is relegated to Section 10.5; check that section whenever you run into
obscure symbolic dynamics jargon.

We start by cutting up the state space up into regions M 4, Mp, ..., M.
This can be done in many ways, not all equally clever. Any such divi-
sion of the state space into topologically distinct regions is a partition,
and we associate with each region (sometimes referred to as a state) a
symbol s from an N-letter alphabet or state set A = {A,B,C,---,Z}.
As the dynamics moves the point through the state space, different
regions will be visited. The visitation sequence - forthwith referred
to as the itinerary - can be represented by the letters of the alphabet
A. If, as in the example sketched in Fig. 10.1, the state space is di-
vided into three regions Mg, My, and M, the “letters” are the inte-
gers {0, 1,2}, and the itinerary for the trajectory sketched in the figure
iS0—2—1—0—~1H~2+---

If there is no way to reach partition M; from partition M, and con-
Fig. 10.2 Two pinballs that start out very  versely, partition M from partition M;, the state space consists of at
close to each other exhibit the same qual-  |egst two disconnected pieces, and we can analyze it piece by piece. An
gsﬂxieci?/nbaﬂlgsu_ezié?:gte)rgsgg:;:grﬁ; interesting partition should be dynamically connected, i.e., one should
growing separation of trajectories with D€ able to go from any region M; to any other region M; in a finite
time, follow different itineraries there- number of steps. A dynamical system with such partition is said to be
after: one escapes after _2313_, the other metrically indecomposable.
one escapes after _23132321_. . . . R

In general one also encounters transient regions - regions to which
the dynamics does not return to once they are exited. Hence we have to
distinguish between (for us uninteresting) wandering trajectories that
never return to the initial neighborhood, and the non-wandering set
(2.2) of the recurrent trajectories.

The allowed transitions between the regions of a partition are en-
coded in the [V x N]-dimensional transition matrix whose elements take
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10.1. QUALITATIVE DYNAMICS 119

values

T, — { 1 ifatransition M; — M; is possible (10.2)

0 otherwise.

The transition matrix encodes the topological dynamics as an invariant
law of motion, with the allowed transitions at any instant independent
of the trajectory history, requiring no memory.

Example 10.1 Complete N-ary dynamics:
All transition matrix entries equal unity (one can reach any region from any
other region in one step):

11 .1
11 .1

T.=|. . . . |. (10.3)
11 1

Further examples of transition matrices, such as the 3-disk transition matrix
(10.5) and the 1-step memory sparse matrix (10.13), are peppered throughout
the text.

However, knowing that a point from M, reaches M; in one step
is not quite good enough. We would be happier if we knew that any
point in M; reaches M ; otherwise we have to subpartition M; into
the points which land in M, and those which do not, and often we
will find ourselves partitioning ad infinitum.

Such considerations motivate the notion of a Markov partition, a parti-
tion for which no memory of preceding steps is required to fix the tran-
sitions allowed in the next step. Dynamically, finite Markov partitions
can be generated by expanding d-dimensional iterated mappings f :
M — M, if M can be divided into N regions { Mg, My,...,Mn_1}
such that in one step points from an initial region M; either fully cover
aregion M, or miss it altogether,

either M;nNf(M;)=0 or M;C f(M,). (10.4)

Let us illustrate what this means by our favorite example, the game of
pinball.

Example 10.2 3-disk symbolic dynamics:
Consider the motion of a free point particle in a plane with 3 elastically re-
flecting convex disks. After a collision with a disk a particle either continues
to another disk or escapes, and any trajectory can be labeled by the disk se-
quence. For example, if we label the three disks by 1, 2 and 3, the two trajec-
tories in Fig. 10.2 have itineraries -2313_, 23132321 _respectively. The 3-disk
prime cycles given in Figs. 1.5 and ?? are further examples of such itineraries.

At each bounce a cone of initially nearby trajectories defocuses (see Fig. 1.8),
and in order to attain a desired longer and longer itinerary of bounces the
initial point zo = (so, po) has to be specified with a larger and larger preci-
sion, and lie within initial state space strips drawn in Fig. 10.9. Similarly,
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Fig. 10.4 The Poincaré section of the
state space for the binary labeled pin-
ball. For definitiveness, this set is gen-
erated by starting from disk 1, preceded
by disk 2. Indicated are the fixed points
0, T and the 2-cycle periodic points 01,
10, together with strips which survive 1,
2, ...bounces. Iteration corresponds to
the decimal point shift; for example, all
points in the rectangle [01.01] map into
the rectangle [010.1] in one iteration. See
also Fig. ?? (b).

B 10.2, page 133
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it is intuitively clear that as we go backward in time (in this case, simply re-
verse the velocity vector), we also need increasingly precise specification of
o = (so,po) in order to follow a given past itinerary. Another way to look
at the survivors after two bounces is to plot M, ., the intersection of M,
with the strips M. obtained by time reversal (the velocity changes sign
sing — —sing). M, s,, Fig. 10.4, is a “rectangle” of nearby trajectories
which have arrived from the disk s; and are heading for the disk s.

We see that a finite length trajectory is not uniquely specified by
its finite itinerary, but an isolated unstable cycle is: its itinerary is an
infinitely repeating block of symbols. More generally, for hyperbolic
flows the intersection of the future and past itineraries, the bi-infinite
itinerary S™.S* = ---s_55_150.518283 - - - Specifies a unique trajectory.
This is intuitively clear for our 3-disk game of pinball, and is stated
more formally in the definition (10.4) of a Markov partition. The defini-
tion requires that the dynamics be expanding forward in time in order
to ensure that the cone of trajectories with a given itinerary becomes
sharper and sharper as the number of specified symbols is increased.

Example 10.3 Pruning rules for a 3-disk alphabet:
As the disks are convex, there can be no two consecutive reflections off the
same disk, hence the covering symbolic dynamics consists of all sequences
which include no symbol repetitions 11, 22, 33. This is a finite set of finite
length pruning rules, hence, the dynamics is a subshift of finite type (see
(10.22) for definition), with the transition matrix (10.2) given by

0 1 1
T =110 1 (10.5)
1 1 0
For convex disks the separation between nearby trajectories increases at ev-
ery reflection, implying that the stability matrix has an expanding eigen-
value. By the Liouville phase space volume conservation (7.23), the other
transverse eigenvalue is contracting. This example demonstrates that finite
Markov partitions can be constructed for hyperbolic dynamical systems which
are expanding in some directions, contracting in others. Further examples
are the 1-dimensional expanding mapping sketched in Fig. 10.4, and more
examples are worked out in Section ??.

Determining whether the symbolic dynamics is complete (as is the
case for sufficiently separated disks), pruned (for example, for touch-
ing or overlapping disks), or only a first coarse graining of the topol-
ogy (as, for example, for smooth potentials with islands of stability)
requires case-by-case investigation, a discussion we postpone to Sec-
tion 10.3 and Chapter 11. For the time being we assume that the disks
are sufficiently separated that there is no additional pruning beyond
the prohibition of self-bounces.

If there are no restrictions on symbols, the symbolic dynamics is com-
plete, and all binary sequences are admissible itineraries. As this type
of symbolic dynamics pops up frequently, we list the shortest binary
prime cycles in Table 10.1.
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Np P |

3 001
011

W~

0001
0011
0111

5 00001
00011
00101
00111
01011
01111

6 000001
000011
000101
000111
001011
001101
001111
010111
011111

7 0000001
0000011
0000101

121

Np p Tp p
7 0001001 8 00001111
0000111 00010111
0001011 00011011
0001101 00011101
0010011 00100111
0010101 00101011
0001111 00101101
0010111 00110101
0011011 00011111
0011101 00101111
0101011 00110111
0011111 00111011
0101111 00111101
0110111 01010111
0111111 01011011
00111111
8 00000001 01011111
00000011 01101111
00000101 01111111

00001001

00000111 9 000000001
00001011 000000011
00001101 000000101
00010011 000001001
00010101 000010001
00011001 000000111
00100101 000001011

Tp p Np p

9 000001101 9 001001111
000010011 001010111
000010101 001011011
000011001 001011101
000100011 001100111
000100101 001101011
000101001 001101101
000001111 001110101
000010111 010101011
000011011 000111111
000011101 001011111
000100111 001101111
000101011 001110111
000101101 001111011
000110011 001111101
000110101 010101111
000111001 010110111
001001011 010111011
001001101 001111111
001010011 010111111
001010101 011011111
000011111 011101111
000101111 011111111
000110111
000111011
000111101

Table 10.1 Prime cycles for the binary symbolic dynamics up to length 9.
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122 CHAPTER 10. QUALITATIVE DYNAMICS, FOR PEDESTRIANS

Inspecting the Fig. 10.9 we see that the relative ordering of regions
with differing finite itineraries is a qualitative, topological property of
the flow, so it makes sense to define a simple “canonical” representative
partition which in a simple manner exhibits spatial ordering common
to an entire class of topologically similar nonlinear flows.

’ in depth:
” Chapter ??, p. ??
10.2 Stretch and fold

Symbolic dynamics for N-disk game of pinball is so straightforward
that one may altogether fail to see the connection between the topology
of hyperbolic flows and their symbolic dynamics. This is brought out
more clearly by the 1-dimensional visualization of ‘stretch & fold’ flows
to which we turn now.

Suppose concentrations of certain chemical reactants worry you, or
the variations in the Chicago temperature, humidity, pressure and winds
affect your mood. All such properties vary within some fixed range,
and so do their rates of change. Even if we are studying an open sys-
tem such as the 3-disk pinball game, we tend to be interested in a finite
region around the disks and ignore the escapees. So a typical dynami-
cal system that we care about is bounded. If the price for keeping going
is high - for example, we try to stir up some tar, and observe it come
to a dead stop the moment we cease our labors - the dynamics tends to
settle into a simple limiting state. However, as the resistance to change
decreases - the tar is heated up and we are more vigorous in our stirring
- the dynamics becomes unstable.

If a flow is locally unstable but globally bounded, any open ball of
initial points will be stretched out and then folded back.

At this juncture we show how this works on the simplest example:
unimodal mappings of the interval. The erudite reader should skim
through this chapter and then take a more demanding path, via the
Smale horseshoes of Chapter 11. Unimodal maps are easier, but phys-
ically less motivated. The Smale horseshoes are the high road, more
complicated, but the right tool to generalize what we learned from the
3-disk dynamics, and begin analysis of general dynamical systems. It
is up to you - unimodal maps suffice to get quickly to the heart of this
treatise.

10.2.1 Temporal ordering: itineraries

In this section we learn how to name (and, in Chapter 13, how to count)
periodic orbits for the simplest, and nevertheless very instructive case,
for 1-dimensional maps of an interval.

Suppose that the compression of the folded interval in Fig. 10.2 is
so fierce that we can neglect the thickness of the attractor. For ex-
ample, the Rdossler flow (2.15) is volume contracting, and an interval
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Fig. 10.5 (a) A recurrent flow that stretches and folds. (b) The ‘stretch & fold’ return map
on the Poincaré section.

transverse to the attractor is stretched, folded and pressed back into a
nearly 1-dimensional interval, typically compressed transversally by a
factor of ~ 10'3 in one Poincaré section return. In such cases it makes
sense to approximate the return map of a ‘stretch & fold’ flow by a 1-
dimensional map.

The simplest mapping of this type is unimodal; interval is stretched
and folded only once, with at most two points mapping into a point in
the refolded interval. A unimodal map f (x) is a 1-dimensional function
R — R defined on an interval M € R with a monotonically increasing
(or decreasing) branch, a critical point (or interval) z. for which f(x.)
attains the maximum (minimum) value, followed by a monotonically
decreasing (increasing) branch. Uni-modal means that the map is a one-
humped map with one critical point within interval M. A multi-modal
map has several critical points within interval M.

Example 10.4 Complete tent map, quadratic map:
The simplest examples of unimodal maps are the complete tent map, Fig. 10.4 (a),

F)=1-2v-1/2], (10.6)
and the quadratic map (sometimes also called the logistic map)
Top1=1—ax}, (10.7)

with the one critical point at xz. = 0. Further example is the repelling uni-
modal map of Fig. 10.4 (b).

Such dynamical systems are irreversible (the inverse of f is double-valued),
but, as we shall show in Section 11.3, they may nevertheless serve as effective
descriptions of invertible 2-dimensional hyperbolic flows.
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011 110 101

(b) = L 2L

(@)

Fig. 10.6 (a) The complete tent map together with intervals that follow the indicated
itinerary for n steps. (b) A unimodal repeller with the remaining intervals after 1, 2 and
3 iterations. Intervals marked s;ss - - - sy, are unions of all points that do not escape in n
iterations, and follow the itinerary ST = s1s2 - - - s,,. Note that the spatial ordering does
not respect the binary ordering; for example zoo < zo1 < 11 < z10. Also indicated: the
fixed points zg, =1, the 2-cycle 01, and the 3-cycle 011.

For the unimodal maps of Fig. 10.4 a Markov partition of the unit interval M
is given by the two intervals { M, M }. We refer to (10.6) as the “complete”
tent map because its symbolic dynamics is complete binary: as both f(M,)
and f (M) fully cover M, and M, the corresponding transition matrix is
a [2x 2] matrix with all entries equal to 1, as in (10.3). As binary symbolic dy-
namics pops up frequently in applications, we list the shortest binary prime
cyclesin Table 10.1. (Continued in Example ??.)

The critical value denotes either the maximum or the minimum value
of f(x) on the defining interval; we assume here that it is a maximum,
f(ze) > f(z) forall € M. The critical value f(z.) belongs neither to
the left nor to the right partition M;, and is denoted by its own sym-
bol s = C. As we shall see, its preimages serve as partition boundary
points.

The trajectory z1, zo, x3, . . . Of the initial point z is given by the iter-
ation z,+1 = f(z,). Iterating f and checking whether the point lands
to the left or to the right of x. generates a temporally ordered topological
itinerary (10.15) for a given trajectory,

1 ifx, > .
Sy = { 0 ifr, <z (10.8)

We shall refer to S*(xg) = .s1s2s3 - - - as the future itinerary. Our next
task is to answer the reverse problem: given an itinerary, what is the
corresponding spatial ordering of points that belong to a given trajec-
tory?

knead - 1may2007 ChaosBook.org version11.9.2, Aug 21 2007



10.2. STRETCH AND FOLD 125

10.2.2 Spatial ordering, 1-d maps

Tired of being harassed by your professors? Finish, get a job, do
combinatorics your own way, while you still know everything.

Professor Gatto Nero

Suppose you have succeeded in constructing a covering symbolic dy-
namics, such as for a well-separated 3-disk system. Now start moving
the disks toward each other. At some critical separation a disk will start
blocking families of trajectories traversing the other two disks. The or-
der in which trajectories disappear is determined by their relative or-
dering in space; the ones closest to the intervening disk will be pruned
first. Determining inadmissible itineraries requires that we relate the
spatial ordering of trajectories to their time ordered itineraries.

The easiest point of departure is to start out by working out this re-
lation for the symbolic dynamics of 1-dimensional mappings. As it ap-
pears impossible to present this material without getting bogged down
in a sea of 0’s, 1’s and subscripted subscripts, we announce the main
result before embarking upon its derivation:

The admissibility criterion eliminates all itineraries
that cannot occur for a given unimodal map.

The tent map (10.6) consists of two straight segments joined at x =
1/2. The symbol s,, defined in (10.8) equals 0 if the function increases,
and 1 if the function decreases. The piecewise linearity of the map
makes it possible to analytically determine an initial point given its
itinerary, a property that we now use to define a topological coordi-
natization common to all unimodal maps.

Here we have to face the fundamental problem of pedagogy: combi-
natorics cannot be taught. The best one can do is to state the answer,
and then hope that you will figure it out by yourself. Once you fig-
ure it out, feel free to complain that the way the rule is stated here is
incomprehensible, and shows us how you did it better.

The tent map point v(S*) with future itinerary S* is given by con-
verting the sequence of s,,’s into a binary number by the following al-
gorithm:

Wy, ifs,401=0
w = - wp = 8
n+1 { 1— W, if Spi1l = 1 1 1

Y(S*) = Owiwews...= Z wy /2™ (10.9)
n=1

This follows by inspection from the binary tree of Fig. 10.7.

Example 10.5 Converting v to S™:
~ whose itinerary is S* = 0110000 - - - is given by the binary number ~
.010000 - - -. Conversely, the itinerary of v = .0liss1 =0, f(v) =.1 — s2 =
1, f2(y) = f(.1) =1 — s3 = 1, etc..

We shall refer to v(S™) as the (future) topological coordinate. w;’s are the
digits in the binary expansion of the starting point ~ for the complete
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tent map (10.6). In the left half-interval the map f(z) acts by multi-
plication by 2, while in the right half-interval the map acts as a flip as
well as multiplication by 2, reversing the ordering, and generating in
the process the sequence of s,,’s from the binary digits w.,,.

The mapping xo — ST(xo) — 0 = 7(SY) is a topological con-
jugacy which maps the trajectory of an initial point xo under iteration of
a given unimodal map to that initial point ~ for which the trajectory of
the “canonical” unimodal map (10.6) has the same itinerary. The virtue
of this conjugacy is that it preserves the ordering for any unimodal map
in the sense that if T > x, then7 > ~.

10.3 Kneading theory

(K.T. Hansen and P. Cvitanovict)

The main motivation for being mindful of spatial ordering of tempo-
ral itineraries is that this spatial ordering provides us with criteria that
separate inadmissible orbits from those realizable by the dynamics. For
1-dimensional mappings the kneading theory provides such criterion of
admissibility.

If the parameter in the quadratic map (10.7) is a > 2, then the iterates
of the critical point z. diverge for n — oco. As long as a > 2, any se-
qguence S* composed of letters s; = {0, 1} is admissible, and any value
of 0 < v < 1 corresponds to an admissible orbit in the non-wandering
set of the map. The corresponding repeller is a complete binary labeled
Cantor set, the n — oo limit of the nth level covering intervals sketched
in Fig. 10.4.

For a < 2 only a subset of the points in the interval v € [0, 1] corre-
sponds to admissible orbits. The forbidden symbolic values are deter-
mined by observing that the largest x,, value in an orbit z; — x2 —
x3 — ... has to be smaller than or equal to the image of the critical
point, the critical value f(z.). Let K = S*(x.) be the itinerary of the
critical point z., denoted the kneading sequence of the map. The corre-
sponding topological coordinate is called the kneading value

K =7(K) = 7(S*(.)). (10.10)

A map with the same kneading sequence K as f(x), such as the dike
map Fig. 10.8, is obtained by slicing off all v (S*(x¢)) > &,

fo(v) = 2v v e ly=[0,k/2)
f() =4 fev)=r yel.=[r/2,1-x/2] . (10.11)
fi(y)=2(1-v) ~yeh=[1-k/21]

The dike map is the complete tent map Fig. 10.4 (a) with the top sliced
off. It is convenient for coding the symbolic dynamics, as those ~ val-
ues that survive the pruning are the same as for the complete tent map
Fig. 10.4 (a), and are easily converted into admissible itineraries by
(10.9).
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If v(S*) > v(K), the point = whose itinerary is S* would exceed the
critical value, x > f(z.), and hence cannot be an admissible orbit. Let

5(S%) = supy(a™(S") (10.12)

m

be the maximal value, the highest topological coordinate reached by the
orbit 21 — o — x3 — .... We shall call the interval (x, 1] the primary
pruned interval. The orbit S* is inadmissible if v of any shifted sequence
of S* falls into this interval.

Criterion of admissibility: Let x be the kneading value of the critical
point, and 4(S™) be the maximal value of the orbit S*. Then the orbit S is
admissible if and only if 4(S*) < &.

While a unimodal map may depend on many arbitrarily chosen pa-
rameters, its dynamics determines the unique kneading value . We
shall call « the topological parameter of the map. Unlike the parameters
of the original dynamical system, the topological parameter has no rea-
son to be either smooth or continuous. The jumps in x as a function
of the map parameter such as a in (10.7) correspond to inadmissible
values of the topological parameter. Each jump in x corresponds to a
stability window associated with a stable cycle of a smooth unimodal
map. For the quadratic map (10.7) « increases monotonically with the
parameter a, but for a general unimodal map such monotonicity need
not hold.

For further details of unimodal dynamics, the reader is referred to
Appendix ??. As we shall see in Section 11.5, for higher dimensional
maps and flows there is no single parameter that orders dynamics mono-
tonically; as a matter of fact, there is an infinity of parameters that need
adjustment for a given symbolic dynamics. This difficult subject is be-
yond our current ambition horizon.

10.4 Markov graphs

10.4.1 Finite memory

In the complete N-ary symbolic dynamics case (see example (10.3)) the
choice of the next symbol requires no memory of the previous ones.
However, any further refinement of the partition requires finite mem-
ory.

For example, for the binary labeled repeller with complete binary
symbolic dynamics, we might chose to partition the state space into
four regions { Mg, Mo1, M1, M1}, a 1-step refinement of the initial
partition {M,, M;}. Such partitions are drawn in Fig. 10.4, as well
as Fig. 1.9. Topologically f acts as a left shift (11.10), and its action
on the rectangle [.01] is to move the decimal point to the right, to [0.1],
forget the past, [.1], and land in either of the two rectangles {[.10], [.11]}.
Filling in the matrix elements for the other three initial states we obtain
the 1-step memory transition matrix acting on the 4-state vector
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Fig. 10.9 (a) The self-similarity of the
complete binary symbolic dynamics rep-
resented by a binary tree (b) identifica-
tion of nodes B = A, C = A leads to
the finite 1-node, 2-links Markov graph.
All admissible itineraries are generated
as walks on this finite Markov graph.

B 13.4, page 192
B 13.1, page 191
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(b) (@) O

Fig. 10.10 (a) The 2-step memory Markov graph, links version obtained by identifying
nodes A = D = FE = F = G in Fig. ?? (a). Links of this graph correspond to the
matrix entries in the transition matrix (10.13). (b) the 2-step memory Markov graph,
node version.

T50,00 0 T00,10 0 ®oo
T 0 Ty 0 o1
' T — 01,00 01,10 o1 | 1013
¢ ¢ 0 Tho,01 0 Tho,11 ®10 ( )
0 Ti1,01 0 VATRE! P11

By the same token, for AM/-step memory the only nonvanishing matrix
elements are of the form T, ., . s,/ 1,5081...500 SM+1 € {0,1}. Thisisa
sparse matrix, as the only non vanishing entries in the m = sps1...sum
column of Ty, areintherowsd = s1...sy/0and d = s;...spy 1. Ifwe
increase the number of steps remembered, the transition matrix grows
big quickly, as the N-ary dynamics with M-step memory requires an
[NMA+L 5 NM+1] matrix. Since the matrix is very sparse, it pays to
find a compact representation for 7. Such representation is afforded
by Markov graphs, which are not only compact, but also give us an
intuitive picture of the topological dynamics.

Construction of a good Markov graph is, like combinatorics, unex-
plainable. The only way to learn is by some diagrammatic gymnastics,
so we work our way through a sequence of exercises in lieu of plethora
of baffling definitions.

To start with, what do finite graphs have to do with infinitely long
trajectories? To understand the main idea, let us construct a graph that
enumerates all possible itineraries for the case of complete binary sym-
bolic dynamics.

Mark a dot “-” on a piece of paper. Draw two short lines out of the
dot, end each with a dot. The full line will signify that the first symbol
in an itinerary is “1”, and the dotted line will signifying “0”. Repeat
the procedure for each of the two new dots, and then for the four dots,
and so on. The result is the binary tree of Fig. ?? (a). Starting at the top
node, the tree enumerates exhaustively all distinct finite itineraries

{0,1},{00,01, 10,11}, {000,001, 010, - - -}, - - .

The M = 4 nodes in Fig. ?? (a) correspond to the 16 distinct binary
strings of length 4, and so on. By habit we have drawn the tree as the
alternating binary tree of Fig. 10.7, but that has no significance as far as
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T

(@) (b)

Fig. 10.11 (a) The self-similarity of the _00- pruned binary tree: trees originating from
nodes C and E are the same as the entire tree. (b) Identification of nodes A = C = FE
leads to the finite 2-node, 3-links Markov graph; as 0 is always followed by 1, the walks
on this graph generate only the admissible itineraries.

enumeration of itineraries is concerned - an ordinary binary tree would
serve just as well.

The trouble with an infinite tree is that it does not fit on a piece of
paper. On the other hand, we are not doing much - at each node we
are turning either left or right. Hence all nodes are equivalent, and can
be identified. To say it in other words, the tree is self-similar; the trees
originating in nodes B and C' are themselves copies of the entire tree.
The result of identifying B = A, C' = A is a single node, 2-link Markov
graph of Fig. ?? (b): any itinerary generated by the binary tree Fig. ?? (a),
no matter how long, corresponds to a walk on this graph.

This is the most compact encoding of the complete binary symbolic
dynamics. Any number of more complicated Markov graphs can do
the job as well, and might be sometimes preferable. For example, iden-
tifying the trees originating in D, E, F' and G with the entire tree leads
to the 2-step memory Markov graph of Fig. 10.9a. The corresponding
transition matrix is given by (10.13).

- in depth: W fast track
3 Chapter 11, p. 137 Chapter 13, p. 173

10.5 Symbolic dynamics, basic notions

In this section we collect the basic notions and definitions of symbolic
dynamics. The reader might prefer to skim through this material on
first reading, return to it later as the need arises.

Shifts. We associate with every initial point zq € M the future itinerary,
a sequence of symbols S*(x¢) = sys2s3 - - - which indicates the order in
which the regions are visited. If the trajectory x1, x2, 23, . . . of the initial
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point x is generated by
Tas1 = f(2n), (10.14)
then the itinerary is given by the symbol sequence
Sp =8 if Tn € MGF. (10.15)

Similarly, the past itinerary S™(z) = ---s_25_15¢ describes the history
of xg, the order in which the regions were visited before arriving to the
point z,. To each point x in the dynamical space we thus associate a
bi-infinite itinerary

S(:L'()) = (Sk)kEZ = S_.S+ = -++85_925_1509.515283 """ . (1016)

The itinerary will be finite for a scattering trajectory, entering and then
escaping M after a finite time, infinite for a trapped trajectory, and in-
finitely repeating for a periodic trajectory.

The set of all bi-infinite itineraries that can be formed from the letters
of the alphabet A is called the full shift

AL = {(sp)pez : sp € Aforallk e Z}. (10.17)

The jargon is not thrilling, but this is how professional dynamicists talk
to each other. We will stick to plain English to the extent possible.

We refer to this set of all conceivable itineraries as the covering sym-
bolic dynamics. The name shift is descriptive of the way the dynam-
ics acts on these sequences. As is clear from the definition (10.15), a
forward iteration x — 2’ = f(x) shifts the entire itinerary to the left
through the “decimal point”. This operation, denoted by the shift op-
erator o,

o(++5_98_180.818283 ") =+ +S_95_18051.5283 ** * , (10.18)

demoting the current partition label s; from the future S* to the “has
been” itinerary S~. The inverse shift o ! shifts the entire itinerary one
step to the right.

A finite sequence b = siSk+1 - - - Sk+n,—1 Of Symbols from A is called
a block of length n,. A state space trajectory is periodic if it returns to its
initial point after a finite time; in the shift space the trajectory is periodic
if its itinerary is an infinitely repeating block p>°. We shall refer to the
set of periodic points that belong to a given periodic orbit as a cycle

b =35182""+8n, = {mslsg"'snp7x82"'8ﬂ,p817 T 7xsﬂ,psl~~~snp_1} . (1019)

By its definition, a cycle is invariant under cyclic permutations of the
symbols in the repeating block. A bar over a finite block of symbols de-
notes a periodic itinerary with infinitely repeating basic block; we shall
omit the bar whenever it is clear from the context that the trajectory is
periodic. Each cycle point is labeled by the first n, steps of its future
itinerary. For example, the 2nd cycle point is labeled by

x82"'5np81 - xSQ"'Snpsl'SQ"'Snpsl :
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Aprime cycle p of length n,, is a single traversal of the orbit; its label is a
block of n, symbols that cannot be written as a repeat of a shorter block
(in literature such cycle is sometimes called primitive; we shall refer to
it as “prime” throughout this text).
Partitions. A partition is called generating if every infinite symbol se-
quence corresponds to a distinct point in the state space. Finite Markov
partition (10.4) is an example. Constructing a generating partition for a
given system is a difficult problem. In examples to follow we shall con-
centrate on cases which allow finite partitions, but in practice almost
any generating partition of interest is infinite.

A mapping f : M — M together with a partition A induces topolog-
ical dynamics (X, o), where the subshift

Y = {(sk)rez}, (10.20)

is the set of all admissible infinite itineraries, and o : ¥ — X is the shift
operator (10.18). The designation “subshift” comes form the fact that
¥ C A” is the subset of the full shift (10.17). One of our principal tasks
in developing symbolic dynamics of dynamical systems that occur in
nature will be to determine X, the set of all bi-infinite itineraries S that
are actually realized by the given dynamical system.

A partition too coarse, coarser than, for example, a Markov partition,

would assign the same symbol sequence to distinct dynamical trajecto-
ries. To avoid that, we often find it convenient to work with partitions
finer than strictly necessary. ldeally the dynamics in the refined parti-
tion assigns a unique infinite itinerary ---s_5s_159.518283 - - - to each
distinct trajectory, but there might exist full shift symbol sequences
(10.17) which are not realized as trajectories; such sequences are called
inadmissible, and we say that the symbolic dynamics is pruned. The
word is suggested by “pruning” of branches corresponding to forbid-
den sequences for symbolic dynamics organized hierarchically into a
tree structure, as explained in Section 10.4.
Pruning. If the dynamics is pruned, the alphabet must be supple-
mented by a grammar, a set of pruning rules. After the inadmissible se-
quences have been pruned, it is often convenient to parse the symbolic
strings into words of variable length - this is called coding. Suppose that
the grammar can be stated as a finite number of pruning rules, each for-
bidding a block of finite length,

G ={b1,ba, b}, (10.21)

where a pruning block b is a sequence of symbols b = sys9 - - sy, s € A,
of finite length n;. In this case we can always construct a finite Markov
partition (10.4) by replacing finite length words of the original partition
by letters of a new alphabet. In particular, if the longest forbidden block
is of length M + 1, we say that the symbolic dynamics is a shift of finite
type with M-step memory. In that case we can recode the symbolic dy-
namics in terms of a new alphabet, with each new letter given by an
admissible block of at most length M. In the new alphabet the gram-
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b
. 1) (b) '00

(a)T:(1 0

Fig. 10.12 (a) The transition matrix for a simple subshift on two-state partition .4 = {0, 1},
with grammar G given by a single pruning block b = 11 (consecutive repeat of symbol 1
is inadmissible): the state Mo maps both onto M and M, but the state M; maps only
onto M. (b) The corresponding finite 2-node, 3-links Markov graph, with nodes cod-
ing the symbols. All admissible itineraries are generated as walks on this finite Markov
graph.

mar rules are implemented by setting 7;; = 0 in (10.3) for forbidden
transitions.

Atopological dynamical system (3, o) for which all admissible itineraries
are generated by a finite transition matrix

Y= {(Sk)keZ : T5k5k+1 =1 forall k} (1022)

is called a subshift of finite type. Such systems are particularly easy
to handle; the topology can be converted into symbolic dynamics by
representing the transition matrix by a finite directed Markov graph, a
convenient visualization of topological dynamics.

Markov graphs. A Markov graph describes compactly the ways in
which the state space regions map into each other, accounts for finite
memory effects in dynamics, and generates the totality of admissible
trajectories as the set of all possible walks along its links.

A Markov graph consists of a set of nodes (or vertices, or states), one
for each state in the alphabet A = {A,B,C,---,Z}, connected by a
set of directed links (edges, arcs). Node i is connected by a directed
link to node j whenever the transition matrix element (10.2) takes value
T;; = 1. There might be a set of links connecting two nodes, or links that
originate and terminate on the same node. Two graphs are isomorphic
if one can be obtained from the other by relabeling links and nodes; for
us they are one and the same graph. As we are interested in recurrent
dynamics, we restrict our attention to irreducible or strongly connected
graphs, i.e., graphs for which there is a path from any node to any other
node.

The simplest example is given in Fig. 10.5.

’ in depth:
” Chapter 11, p. 137
Summary

In Chapters ?? and ?? we will establish that spectra of evolution opera-
tors can be extracted from periodic orbit sums:

> (spectral eigenvalues) = ' (periodic orbits) .
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In order to implement this theory we need to know what periodic orbits
can exist, and the symbolic dynamics developed above and in Chap-

ter 11 is an invaluable tool toward this end.

Further reading

Symbolic dynamics, history and good taste. For a brief
history of symbolic dynamics, from J. Hadamard in 1898
onward, see Notes to chapter 1 of Kitchens monograph [1],
a very clear and enjoyable mathematical introduction to
topics discussed here. Diacu and Holmes [2] provide an
excellent survey of symbolic dynamics applied to of celes-
tial mechanics. Finite Markov graphs or finite automata
are discussed in Refs. [3-6]. They belong to the category
of regular languages. A good hands-on introduction to
symbolic dynamics is given in Ref. [12].

The binary labeling of the once-folding map peri-
odic points was introduced by Myrberg [13] for one-
dimensional maps, and its utility to two-dimensional
maps has been emphasized in Refs. [8, 12]. For one-
dimensional maps it is now customary to use the R-L no-
tation of Metropolis, Stein and Stein [14, 15], indicating
that the point x,, lies either to the left or to the right of
the critical point in Fig. 10.4. The symbolic dynamics of
such mappings has been extensively studied by means of

the Smale horseshoes, see for example Ref. [16]. Using let-
ters rather than numerals in symbol dynamics alphabets
probably reflects good taste. We prefer numerals for their
computational convenience, as they speed up the imple-
mentation of conversions into the topological coordinates
(8,~) introduced in Section 11.4.1. The alternating binary
ordering of Fig. 10.7 is related to the Gray codes of com-
puter science [9].

Inflating Markov graphs. In the above exam-
ples the symbolic dynamics has been encoded by label-
ing links in the Markov graph. Alternatively one can en-
code the dynamics by labeling the nodes, as in Fig. 10.9,
where the 4 nodes refer to 4 Markov partition regions
{ Moo, Mo1, Mi0, Mi1}, and the 8 links to the 8 non-zero
entries in the 2-step memory transition matrix (10.13).

fast track
Chapter 13, p. 173

Exercises

(10.1) Binary symbolic dynamics. Verify that the short-
est prime binary cycles of the unimodal repeller of

ble 10.1. Try to sketch them in the graph of the uni-
modal function f(x); compare ordering of the peri-
odic points with Fig. 10.7. The point is that while
overlayed on each other the longer cycles look like
a hopeless jumble, the cycle points are clearly and
logically ordered by the alternating binary tree.

(10.2) Generating prime cycles.  Write a program that
generates all binary prime cycles up to given finite

length.

(10.3) A contracting baker’s map. Consider a con-
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tracting (or “dissipative”) baker’s defined in Exer-
cise 4.5.

The symbolic dynamics encoding of trajectories is
realized via symbols 0 (y < 1/2) and 1 (y > 1/2).
Consider the observable a(z,y) = . Verify that for
any periodic orbitp (e1...¢€n,), & € {0,1}

3
Ay = Z;l Sin .

(10.4) Unimodal map symbolic dynamics. Show that
the tent map point v(S*) with future itinerary S* is
given by converting the sequence of s,’s into a bi-
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nary number by the algorithm (10.9). This follows
by inspection from the binary tree of Fig. 10.7.

Consider the 1-

d quadratic map

f(z) = Az(1 —2x), A=38. (10.23)

(a) (easy) Plot (10.23), and the first 4-8 (whatever
looks better) iterates of the critical point . =
1/2.

(hard) Draw corresponding intervals of the
partition of the unit interval as levels of a Can-
tor set, as in the symbolic dynamics partition
of Fig. 10.4 (b). Note, however, that some of
the intervals of Fig. 10.4 (b) do not appear in
this case - they are pruned.

(medium) Produce ChaosBook.org quality
Fig. 10.4 (a).

(easy) Check numerically that K = S*(z.),
the itinerary or the “kneading sequence” of
the critical point is

(b)

©
(d)

K =1011011110110111101011110111110 ...

The tent map point v(S™) with future itinerary
S* is given by converting the sequence of s,,’s
into a binary number by the algorithm (10.9),

Wn, If Sn+1 = 0
Wn+1 1—w, ifs,1=1
oo
’y(S+) = Qwiwaws...= Z wy /2" .
n=1

(e) (medium) List the the corresponding knead-
ing value (10.10) sequence x = ~(K) to the

same number of digits as K.

(hard) Plot the missing dike map, Fig. 10.8, in
ChaosBook.org quality, with the same knead-
ing sequence K as f(z). The dike map is ob-
tained by slicing off all v (S*(z0)) > &, from
the complete tent map Fig. 10.4 (a), see (10.11).

®

How this kneading sequence is converted into a se-
ries of pruning rules is a dark art, relegated to Sec-
tion 13.6 and Appendix ??.

References

(10.6) “Golden mean” pruned map.

w1 = S1

(10.7)

Exercises

Consider a sym-
metrical tent map on the unit interval such that its
highest point belongs to a 3-cycle:

1

0.8

0.6

0.4

0.2

04 06 038 1

(a) Find the absolute value A for the slope (the
two different slopes +A just differ by a sign)
where the maximum at 1/2 is part of a period
three orbit, as in the figure.

(b) Show that no orbit of this map can visit the re-

gion z > (1 + v/5)/4 more than once. Verify

that once an orbit exceeds = > (v/5 — 1)/4, it

does not reenter the region = < (v/5 — 1) /4.

If an orbit is in the interval (v/5 — 1)/4 < z <
1/2, where will it be on the next iteration?

(©
(d) If the symbolic dynamics is such that for = <
1/2 we use the symbol 0 and for = > 1/2 we
use the symbol 1, show that no periodic orbit
will have the substring _00_ in it.

(e) On the second thought, is there a periodic or-
bit that violates the above _00_ pruning rule?

For continuation, see Exercise 13.6 and Exer-
cise 13.8. See also Exercise 13.7 and Exercise 13.9.

Binary 3-step transition matrix. ~ Construct [8x8]
binary 3-step transition matrix analogous to the 2-
step transition matrix (10.13). Convince yourself
that the number of terms of contributing to tr7"
is independent of the memory length, and that this
[2mx2™] trace is well defined in the infinite memory
limit m — oo.
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