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That which is crooked cannot be made straight: and that which
is wanting cannot be numbered.
Ecclestiastes 1.15

We are now in a position to apply the periodic orbit theory to the first
and the easiest problem in theory of chaotic systems: cycle counting.
This is the simplest illustration of the raison d’etre of periodic orbit the-
ory; we shall develop a duality transformation that relates local infor-
mation - in this case the next admissible symbol in a symbol sequence
- to global averages, in this case the mean rate of growth of the num-
ber of admissible itineraries with increasing itinerary length. We shall
transform the topological dynamics of Chapter 10 into a multiplicative
operation by means of transition matrices/Markov graphs, and show
that the nth power of a transition matrix counts all itineraries of length
n. The asymptotic growth rate of the number of admissible itineraries
is therefore given by the leading eigenvalue of the transition matrix;
the leading eigenvalue is in turn given by the leading zero of the char-
acteristic determinant of the transition matrix, which is - in this con-
text - called the topological zeta function. For flows with finite Markov
graphs this determinant is a finite polynomial which can be read off the
Markov graph.

The method goes well beyond the problem at hand, and forms the
core of the entire treatise, making tangible a rather abstract notion of
“spectral determinants” yet to come.

13.1 How many ways to get there from here?

In the 3-disk system the number of admissible trajectories doubles with
every iterate: there are Kn = 3 · 2n distinct itineraries of length n. If
disks are too close and some part of trajectories is pruned, this is only
an upper bound and explicit formulas might be hard to discover, but
we still might be able to establish a lower exponential bound of the
form Kn ≥ Cenĥ. Bounded exponentially by 3en ln 2 ≥ Kn ≥ Cenĥ,
the number of trajectories must grow exponentially as a function of the
itinerary length, with rate given by the topological entropy:

h = lim
n→∞

1
n

ln Kn . (13.1)
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We shall now relate this quantity to the spectrum of the transition ma-
trix, with the growth rate of the number of topologically distinct trajec-
tories given by the leading eigenvalue of the transition matrix.

The transition matrix element Tij ∈ {0, 1} in (10.2) indicates whether
the transition from the starting partition j into partition i in one step is
allowed or not, and the (i, j) element of the transition matrix iterated n
times13.1, page 202

(T n)ij =
∑

k1,k2,...,kn−1

Tik1Tk1k2 . . . Tkn−1j

receives a contribution 1 from every admissible sequence of transitions,
so (T n)ij is the number of admissible n symbol itineraries starting with
j and ending with i.

Example 13.1 3-disk itinerary counting.

The (T 2)13 = 1 element of T 2 for the 3-disk transition matrix (10.5)⎛
⎝ 0 1 1

1 0 1
1 1 0

⎞
⎠2

=

⎛
⎝ 2 1 1

1 2 1
1 1 2

⎞
⎠ . (13.2)

corresponds to 3 → 2 → 1, the only 2-step path from 3 to 1, while (T 2)33 = 2
counts the two itineraries 313 and 323.

The total number of admissible itineraries of n symbols is

Kn =
∑
ij

(T n)ij = ( 1, 1, . . . , 1 ) T n

⎛
⎜⎜⎝

1
1
...
1

⎞
⎟⎟⎠ . (13.3)

We can also count the number of prime cycles and pruned periodic
points, but in order not to break up the flow of the main argument, we
relegate these pretty results to Sections 13.5.2 and 13.7. Recommended
reading if you ever have to compute lots of cycles.

The matrix T has non-negative integer entries. A matrix M is said to
be Perron-Frobenius if some power k of M has strictly positive entries,
(Mk)rs > 0. In the case of the transition matrix T this means that ev-
ery partition eventually reaches all of the partitions, i.e., the partition is
dynamically transitive or indecomposable, as assumed in (2.2). The no-
tion of transitivity is crucial in ergodic theory: a mapping is transitive
if it has a dense orbit. This notion is inherited by the shift operation
once we introduce a symbolic dynamics. If that is not the case, state
space decomposes into disconnected pieces, each of which can be ana-
lyzed separately by a separate indecomposable Markov graph. Hence
it suffices to restrict our considerations to transition matrices of Perron-
Frobenius type.

A finite [N × N ] matrix T has eigenvalues Tϕα = λαϕα and (right)
eigenvectors {ϕ0, ϕ1, · · · , ϕM−1}. Expressing the initial vector in (13.3)
count - 6sep2006 ChaosBook.org version11.9.2, Aug 21 2007
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in this basis (which might be incomplete, M ≤ N ),

T n

⎛
⎜⎜⎝

1
1
...
1

⎞
⎟⎟⎠ = T n

N−1∑
α=0

bαϕα =
N−1∑
α=0

bαλn
αϕα ,

and contracting with ( 1, 1, . . . , 1 ), we obtain

Kn =
N−1∑
α=0

cαλn
α .

The constants cα depend on the choice of initial and final partitions: In
13.2, page 203this example we are sandwiching T n between the vector ( 1, 1, . . . , 1 )

and its transpose, but any other pair of vectors would do, as long as
they are not orthogonal to the leading eigenvector ϕ0. In a experiment
the vector ( 1, 1, . . . , 1 ) would be replaced by a description of the initial
state,and the right vector would describe the measure time n later.

Perron theorem states that a Perron-Frobenius matrix has a nonde-
generate positive real eigenvalue λ0 > 1 (with a positive eigenvector)
which exceeds the moduli of all other eigenvalues. Therefore as n in-
creases, the sum is dominated by the leading eigenvalue of the transi-
tion matrix, λ0 > |�λα|, α = 1, 2, · · · , N−1, and the topological entropy
(13.1) is given by

h = lim
n→∞

1
n

ln c0λ
n
0

[
1 +

c1

c0

(
λ1

λ0

)n

+ · · ·
]

= lnλ0 + lim
n→∞

[
ln c0

n
+

1
n

c1

c0

(
λ1

λ0

)n

+ · · ·
]

= lnλ0 . (13.4)

What have we learned? The transition matrix T is a one-step short time
operator, advancing the trajectory from a partition to the next admis-
sible partition. Its eigenvalues describe the rate of growth of the total
number of trajectories at the asymptotic times. Instead of painstakingly
counting K1, K2, K3, . . . and estimating (13.1) from a slope of a log-
linear plot, we have the exact topological entropy if we can compute
the leading eigenvalue of the transition matrix T . This is reminiscent
of the way the free energy is computed from transfer matrix for one-
dimensional lattice models with finite range interactions. Historically,
it is analogy with statistical mechanics that led to introduction of evo-
lution operator methods into the theory of chaotic systems, theory that
will be developed further in Chapter ??.

13.2 Topological trace formula

There are two standard ways of getting at eigenvalues of a matrix - by
evaluating the trace tr T n =

∑
λn

α, or by evaluating the determinant
det (1− zT ). We start by evaluating the trace of transition matrices.
ChaosBook.org version11.9.2, Aug 21 2007 count - 6sep2006
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Consider an M -step memory transition matrix, like the 1-step mem-
ory example (10.13). The trace of the transition matrix counts the num-
ber of partitions that map into themselves. In the binary case the trace
picks up only two contributions on the diagonal, T0···0,0···0 + T1···1,1···1,
no matter how much memory we assume. We can even take infinite
memory M → ∞, in which case the contributing partitions are shrunk
to the fixed points, tr T = T0,0 + T1,1.10.7, page 145

More generally, each closed walk through n concatenated entries of
T contributes to tr Tn a product of the matrix entries along the walk.
Each step in such a walk shifts the symbolic string by one symbol; the
trace ensures that the walk closes on a periodic string c. Define tc to
be the local trace, the product of matrix elements along a cycle c, each
term being multiplied by a book keeping variable z. zntr T n is then the
sum of tc for all cycles of length n. For example, for an [8×8] transition10.7, page 145

matrix Ts1s2s3,s0s1s2 version of (10.13), or any refined partition [2n×2n]
transition matrix, n arbitrarily large, the periodic point 100 contributes
t100 = z3T100,010T010,001T001,100 to z3tr T 3. This product is manifestly
cyclically symmetric, t100 = t010 = t001, and so a prime cycle p of length
np contributes np times, once for each periodic point along its orbit. For
the binary labeled non–wandering set the first few traces are given by
(consult Tables 10.1 and 13.1)

z tr T = t0 + t1,

z2tr T 2 = t20 + t21 + 2t10,

z3tr T 3 = t30 + t31 + 3t100 + 3t101,

z4tr T 4 = t40 + t41 + 2t210 + 4t1000 + 4t1001 + 4t1011. (13.5)

For complete binary symbolic dynamics tp = znp for every binary
prime cycle p; if there is pruning tp = znp if p is admissible cycle and
tp = 0 otherwise. Hence tr T n counts the number of admissible periodic
points of period n. In general, the nth order trace (13.5) picks up con-
tributions from all repeats of prime cycles, with each cycle contributing
np periodic points, so the total number of periodic points of period n is
given by

znNn = zntr T n =
∑
np|n

npt
n/np
p =

∑
p

np

∞∑
r=1

δn,nprt
r
p . (13.6)

Here m|n means that m is a divisor of n, and (taking z = 1) tp = 1 if the
cycle is admissible, and tp = 0 otherwise.

In order to get rid of the awkward divisibility constraint n = npr in
the above sum, we introduce the generating function for numbers of
periodic points

∞∑
n=1

znNn = tr
zT

1− zT
. (13.7)

Substituting (13.6) into the left hand side, and replacing the right hand
side by the eigenvalue sum tr T n =

∑
λn

α, we obtain our first example
count - 6sep2006 ChaosBook.org version11.9.2, Aug 21 2007
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n Nn # of prime cycles of length np

1 2 3 4 5 6 7 8 9 10

1 2 2
2 4 2 1
3 8 2 2
4 16 2 1 3
5 32 2 6
6 64 2 1 2 9
7 128 2 18
8 256 2 1 3 30
9 512 2 2 56

10 1024 2 1 6 99

Table 13.1 The total numbers of periodic points Nn of period n for binary sym-
bolic dynamics. The numbers of prime cycles contributing illustrates the pre-
ponderance of long prime cycles of length n over the repeats of shorter cycles
of lengths np, n = rnp. Further listings of binary prime cycles are given in
Tables 10.1 and 13.2. (L. Rondoni)

of a trace formula, the topological trace formula∑
α=0

zλα

1− zλα
=
∑

p

nptp
1− tp

. (13.8)

A trace formula relates the spectrum of eigenvalues of an operator - in
this case the transition matrix - to the spectrum of periodic orbits of
the dynamical system. The zn sum in (13.7) is a discrete version of the
Laplace transform (see Chapter 16), and the resolvent on the left hand
side is the antecedent of the more sophisticated trace formulas (16.9),
(16.21) and (??). We shall now use this result to compute the spectral
determinant of the transition matrix.

13.3 Determinant of a graph

Our next task is to determine the zeros of the spectral determinant of an
[M ×M ] transition matrix

det (1− zT ) =
M−1∏
α=0

(1− zλα) . (13.9)

We could now proceed to diagonalize T on a computer, and get this
over with. It pays, however, to dissect det (1− zT ) with some care; un-
derstanding this computation in detail will be the key to understanding
the cycle expansion computations of Chapter 18 for arbitrary dynami-
cal averages. For T a finite matrix, (13.9) is just the characteristic equa-
tion for T . However, we shall be able to compute this object even when
ChaosBook.org version11.9.2, Aug 21 2007 count - 6sep2006
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the dimension of T and other such operators goes to ∞, and for that
reason we prefer to refer to (13.9) loosely as the “spectral determinant”.

There are various definitions of the determinant of a matrix; they
mostly reduce to the statement that the determinant is a certain sum
over all possible permutation cycles composed of the traces tr T k, in
the spirit of the determinant–trace relation (1.15):4.1, page 68

det (1− zT ) = exp (tr ln(1 − zT )) = exp

(
−
∑
n=1

zn

n
tr T n

)

= 1− z tr T − z2

2
(
(tr T )2 − tr (T 2)

)− . . . (13.10)

This is sometimes called a cumulant expansion. Formally, the right
hand is an infinite sum over powers of zn. If T is an [M ×M ] finite
matrix, then the characteristic polynomial is at most of order M . In that
case the coefficients of zn, n > M must vanish exactly.

We now proceed to relate the determinant in (13.10) to the corre-
sponding Markov graph of Chapter 10: to this end we start by the usual
algebra textbook expression for a determinant as the sum of products
of all permutations

det (1− zT ) =
∑
{π}

(−1)π (1− zT )1,π1(1− zT )2,π2 · · · (1 − zT )M,πM

(13.11)
where T is a [M ×M ] matrix, {π} denotes the set of permutations of
M symbols, πk is what k is permuted into by the permutation π, and
(−1)π = ±1 is the parity of permutation π. The right hand side of
(13.11) yields a polynomial of order M in z: a contribution of order n in
z picks up M − n unit factors along the diagonal, the remaining matrix
elements yielding

(−z)n(−1)π̃Tη1,π̃η1
· · ·Tηn,π̃ηn

(13.12)

where π̃ is the permutation of the subset of n distinct symbols η1 . . . ηn

indexing T matrix elements. As in (13.5), we refer to any combination
tc = Tη1η2Tη2η3 · · ·Tηkη1 , for a given itinerary c = η1η2 · · · , ηk, as the
local trace associated with a closed loop c on the Markov graph. Each
term of form (13.12) may be factored in terms of local traces tc1tc2 · · · tck

,
that is loops on the Markov graph. These loops are non-intersecting, as
each node may only be reached by one link, and they are indeed loops,
as if a node is reached by a link, it has to be the starting point of another
single link, as each ηj must appear exactly once as a row and column
index.

So the general structure is clear, a little more thinking is only required
to get the sign of a generic contribution. We consider only the case of
loops of length 1 and 2, and leave to the reader the task of generalizing
the result by induction. Consider first a term in which only loops of
unit length appear on (13.12), that is, only the diagonal elements of T
are picked up. We have k = n loops and an even permutation π̃ so
count - 6sep2006 ChaosBook.org version11.9.2, Aug 21 2007
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the sign is given by (−1)k, k being the number of loops. Now take the
case in which we have i single loops and j loops of length n = 2j + i.
The parity of the permutation gives (−1)j and the first factor in (13.12)
gives (−1)n = (−1)2j+i. So once again these terms combine into (−1)k,
where k = i + j is the number of loops. We may summarize our

13.3, page 203findings as follows:

The characteristic polynomial of a transition matrix/Markov
graph is given by the sum of all possible partitions π of the
graph into products of non-intersecting loops, with each loop
trace tp carrying a minus sign:

det (1− zT ) =
f∑

k=0

∑′

π

(−1)ktp1 · · · tpk
(13.13)

Any self-intersecting loop is shadowed by a product of two loops that
share the intersection point. As both the long loop tab and its shadow
tatb in the case at hand carry the same weight zna+nb , the cancellation
is exact, and the loop expansion (13.13) is finite, with f the maximal
number of non-intersecting loops.

We refer to the set of all non-self-intersecting loops {tp1 , tp2 , · · · tpf
}

as the fundamental cycles. This is not a very good definition, as the
Markov graphs are not unique – the most we know is that for a given
finite-grammar language, there exist Markov graph(s) with the mini-
mal number of loops. Regardless of how cleverly a Markov graph is
constructed, it is always true that for any finite Markov graph the num-
ber of fundamental cycles f is finite. If you know a better way to define
the “fundamental cycles”, let us know.

fast track

Section 13.4, p. 191

13.3.1 Topological polynomials: learning by examples

The above definition of the determinant in terms of traces is most eas-
ily grasped by working through a few examples. The complete binary
dynamics Markov graph of Fig. ?? (b) is a little bit too simple, but let us
start humbly.

Example 13.2 Topological polynomial for complete binary dynamics:
There are only two non-intersecting loops, yielding

det (1 − zT ) = 1 − t0 − t1 = 1 − 2z . (13.14)

The leading (and only) zero of this characteristic polynomial yields the topo-
logical entropy eh = 2. As we know that there are Kn = 2n binary strings of
length N , we are not surprised by this result.

Similarly, for complete symbolic dynamics of N symbols the Markov
graph has one node and N links, yielding

det (1− zT ) = 1−Nz , (13.15)
ChaosBook.org version11.9.2, Aug 21 2007 count - 6sep2006
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Fig. 13.2 (a) An incomplete Smale horseshoe: the inner forward fold does not intersect the
two rightmost backward folds. (b) The primary pruned region in the symbol square and
the corresponding forbidden binary blocks. (c) An incomplete Smale horseshoe which il-
lustrates (d) the monotonicity of the pruning front: the thick line which delineates the left
border of the primary pruned region is monotone on each half of the symbol square. The
backward folding in figures (a) and (c) is only schematic - in invertible mappings there
are further missing intersections, all obtained by the forward and backward iterations of
the primary pruned region.

whence the topological entropy h = ln N .

Example 13.3 Golden mean pruning:
A more interesting example is the “golden mean” pruning of Fig. 13.1. There
is only one grammar rule, that a repeat of symbol 0 is forbidden. The13.4, page 203

1 0

Fig. 13.1 The golden mean pruning rule
Markov graph, see also Fig. 10.11.

non-intersecting loops are of length 1 and 2, so the topological polynomial is
given by

det (1 − zT ) = 1 − t1 − t01 = 1 − z − z2 . (13.16)

The leading root of this polynomial is the golden mean, so the entropy (13.4)
is the logarithm of the golden mean, h = ln 1+

√
5

2
.

Example 13.4 Nontrivial pruning:
The non-self-intersecting loops of the Markov graph of Fig. 13.3.1 (d) are
indicated in Fig. 13.3.1 (e). The determinant can be written down by inspec-
tion, as the sum of all possible partitions of the graph into products of non-
intersecting loops, with each loop carrying a minus sign:

det (1 − zT ) = 1 − t0 − t0011 − t0001 − t00011

+t0t0011 + t0011t0001 . (13.17)

With tp = znp , where np is the length of the p-cycle, the smallest root of13.10, page 204

0 = 1 − z − 2z4 + z8 (13.18)

yields the topological entropy h = − ln z, z = 0.658779 . . ., h = 0.417367 . . .,
significantly smaller than the entropy of the covering symbolic dynamics,
the complete binary shift h = ln 2 = 0.693 . . .

in depth:

Section ??, p. ??
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Fig. 13.3 Conversion of the pruning front of Fig. 13.3.1 (d) into a finite Markov graph. (a)
Starting with the start node “.”, delineate all pruning blocks on the binary tree. A solid
line stands for “1” and a dashed line for “0”. Ends of forbidden strings are marked with
×. Label all internal nodes by reading the bits connecting “.”, the base of the tree, to
the node. (b) Indicate all admissible starting blocks by arrows. (c) Drop recursively the
leading bits in the admissible blocks; if the truncated string corresponds to an internal
node in (a), connect them. (d) Delete the transient, non-circulating nodes; all admissible
sequences are generated as walks on this finite Markov graph. (e) Identify all distinct
loops and construct the determinant (13.17).

ChaosBook.org version11.9.2, Aug 21 2007 count - 6sep2006
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13.4 Topological zeta function

What happens if there is no finite-memory transition matrix, if the Markov
graph is infinite? If we are never sure that looking further into future
will reveal no further forbidden blocks? There is still a way to define
the determinant, and this idea is central to the whole treatise: the de-
terminant is then defined by its cumulant expansion (13.10)4.1, page 68

det (1− zT ) = 1−
∞∑

n=1

ĉnzn . (13.19)

For finite dimensional matrices the expansion is a finite polynomial,
and (13.19) is an identity; however, for infinite dimensional operators
the cumulant expansion coefficients ĉn define the determinant.

Let us now evaluate the determinant in terms of traces for an arbi-
trary transition matrix. In order to obtain an expression for the spectral
determinant (13.9) in terms of cycles, substitute (13.6) into (13.19) and
sum over the repeats of prime cycles using ln(1− x) =

∑
r xr/r ,

det (1 − zT ) = exp

(
−
∑

p

∞∑
r=1

trp
r

)
=
∏
p

(1− tp) , (13.20)

where for the topological entropy the weight assigned to a prime cycle
p of length np is tp = znp if the cycle is admissible, or tp = 0 if it is
pruned. This determinant is called the topological or the Artin-Mazur
zeta function, conventionally denoted by

1/ζtop =
∏
p

(1− znp) = 1−
∑
n=1

ĉnzn . (13.21)

Counting cycles amounts to giving each admissible prime cycle p weight
tp = znp and expanding the Euler product (13.21) as a power series in
z. As the precise expression for coefficients ĉn in terms of local traces
tp is more general than the current application to counting, we shall
postpone its derivation to Chapter 18.

The topological entropy h can now be determined from the leading
zero z = e−h of the topological zeta function. For a finite [M×M ] tran-
sition matrix, the number of terms in the characteristic equation (13.13)
is finite, and we refer to this expansion as the topological polynomial of
order ≤ M . The power of defining a determinant by the cumulant
expansion is that it works even when the partition is infinite, M → ∞;
an example is given in Section 13.6, and many more later on.

fast track

Section 13.6, p. 198

13.4.1 Topological zeta function for flows

We now apply the method that we shall use in deriving (16.21)
to the problem of deriving the topological zeta functions for flows. The
count - 6sep2006 ChaosBook.org version11.9.2, Aug 21 2007
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time-weighted density of prime cycles of period t is

Γ(t) =
∑

p

∑
r=1

Tp δ(t− rTp) . (13.22)

As in (16.20), a Laplace transform smooths the sum over Dirac delta
spikes and yields the topological trace formula

∑
p

∑
r=1

Tp

∫ ∞

0+

dt e−st δ(t− rTp) =
∑

p

Tp

∞∑
r=1

e−sTpr (13.23)

and the topological zeta function for flows:

1/ζtop(s) =
∏
p

(
1− e−sTp

)
, (13.24)

related to the trace formula by

∑
p

Tp

∞∑
r=1

e−sTpr = − ∂

∂s
ln 1/ζtop(s) .

This is the continuous time version of the discrete time topological zeta
function (13.21) for maps; its leading zero s = −h yields the topological
entropy for a flow.

13.5 Counting cycles

In what follows we shall occasionally need to compute all cycles up to
topological length n, so it is handy to know their exact number.

13.5.1 Counting periodic points

Nn, the number of periodic points of period n can be computed from
(13.19) and (13.7) as a logarithmic derivative of the topological zeta
function∑

n=1

Nnzn = tr
(
−z

d

dz
ln(1 − zT )

)
= −z

d

dz
ln det (1− zT )

=
−z d

dz 1/ζtop

1/ζtop
. (13.25)

We see that the trace formula (13.8) diverges at z → e−h, as the denom-
inator has a simple zero there.

Example 13.5 Complete N -ary dynamics:
As a check of formula (13.19) in the finite grammar context, consider the
complete N -ary dynamics (10.3) for which the number of periodic points of
period n is simply trT n

c = Nn. Substituting
∞∑

n=1

zn

n
trTn

c =
∞∑

n=1

(zN)n

n
= ln(1 − zN) ,

ChaosBook.org version11.9.2, Aug 21 2007 count - 6sep2006
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into (13.19) we verify (13.15). The logarithmic derivative formula (13.25) in
this case does not buy us much either, we recover∑

n=1

Nnz
n =

Nz

1 −Nz
.

Example 13.6 Nontrivial pruned dynamics:
Consider the pruning of Fig. 13.3.1 (e). Substituting (13.18) we obtain

∑
n=1

Nnz
n =

z + 8z4 − 8z8

1 − z − 2z4 + z8
. (13.26)

Now the topological zeta function is not merely a tool for extracting the
asymptotic growth of Nn; it actually yields the exact and not entirely triv-
ial recursion relation for the numbers of periodic points: N1 = N2 = N3 = 1,
Nn = 2n+1 for n = 4, 5, 6, 7, 8, andNn = Nn−1 +2Nn−4 −Nn−8 for n > 8.

13.5.2 Counting prime cycles

Having calculated the number of periodic points, our next objective
is to evaluate the number of prime cycles Mn for a dynamical system
whose symbolic dynamics is built from N symbols. The problem of
finding Mn is classical in combinatorics (counting necklaces made out
of n beads out of N different kinds) and is easily solved. There are N n

possible distinct strings of length n composed of N letters. These Nn

strings include all Md prime d-cycles whose period d equals or divides
n. A prime cycle is a non-repeating symbol string: for example, p =
011 = 101 = 110 = . . . 011011 . . . is prime, but 0101 = 010101 . . . = 01
is not. A prime d-cycle contributes d strings to the sum of all possible
strings, one for each cyclic permutation. The total number of possible
periodic symbol sequences of length n is therefore related to the num-
ber of prime cycles by

Nn =
∑
d|n

dMd , (13.27)

where Nn equals tr T n. The number of prime cycles can be computed
recursively

Mn =
1
n

⎛
⎝Nn −

d<n∑
d|n

dMd

⎞
⎠ ,

or by the Möbius inversion formula13.11, page 204

Mn = n−1
∑
d|n

μ
(n

d

)
Nd . (13.28)

where the Möbius function μ(1) = 1, μ(n) = 0 if n has a squared factor,
and μ(p1p2 . . . pk) = (−1)k if all prime factors are different.13.12, page 204

We list the number of prime cycles up to length 10 for 2-, 3- and 4-
letter complete symbolic dynamics in Table 13.2. The number of prime
cycles follows by Möbius inversion (13.28).
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n Mn(N) Mn(2) Mn(3) Mn(4)

1 N 2 3 4
2 N(N − 1)/2 1 3 6
3 N(N2 − 1)/3 2 8 20
4 N2(N2 − 1)/4 3 18 60
5 (N5 −N)/5 6 48 204
6 (N6 −N3 −N2 + N)/6 9 116 670
7 (N7 −N)/7 18 312 2340
8 N4(N4 − 1)/8 30 810 8160
9 N3(N6 − 1)/9 56 2184 29120

10 (N 10 −N5 −N2 + N)/10 99 5880 104754

Table 13.2 Number of prime cycles for various alphabets and grammars up
to length 10. The first column gives the cycle length, the second the for-
mula (13.28) for the number of prime cycles for complete N -symbol dynamics,
columns three through five give the numbers for N = 2, 3 and 4.

Example 13.7 Counting N -disk periodic points:

A simple example of pruning is the exclusion of “self-bounces” in the
N -disk game of pinball. The number of points that are mapped back onto
themselves after n iterations is given by Nn = trTn. The pruning of self-
bounces eliminates the diagonal entries, TN−disk = Tc − 1, so the number of
the N -disk periodic points is

Nn = trTn
N−disk = (N − 1)n + (−1)n(N − 1) (13.29)

(here Tc is the complete symbolic dynamics transition matrix (10.3)). For the
N -disk pruned case (13.29) Möbius inversion (13.28) yields

MN−disk
n =

1

n

∑
d|n

μ
(n
d

)
(N − 1)d +

N − 1

n

∑
d|n

μ
(n
d

)
(−1)d

= M (N−1)
n for n > 2 . (13.30)

There are no fixed points, MN−disk
1 = 0. The number of periodic points of

period 2 is N 2 −N , hence there areMN−disk
2 = N(N − 1)/2 prime cycles of

length 2; for lengths n > 2, the number of prime cycles is the same as for the
complete (N − 1)-ary dynamics of Table 13.2.

Example 13.8 Pruning individual cycles:

Consider the 3-disk game of pinball. The prohibition of repeating a
symbol affects counting only for the fixed points and the 2-cycles. Everything
else is the same as counting for a complete binary dynamics (eq (13.30)). To
obtain the topological zeta function, just divide out the binary 1- and 2-cycles
(1 − zt0)(1 − zt1)(1 − z2t01) and multiply with the correct 3-disk 2-cycles
(1 − z2t12)(1 − z2t13)(1 − z2t23):

13.15, page 204

13.16, page 205
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n Mn Nn Sn mp · p̂

1 0 0 0
2 3 6=3·2 1 3·12
3 2 6=2·3 1 2·123
4 3 18=3·2+3·4 1 3·1213
5 6 30=6·5 1 6·12123
6 9 66=3·2+2·3+9·6 2 6·121213 + 3·121323
7 18 126=18·7 3 6·1212123 + 6·1212313 + 6·1213123
8 30 258=3·2+3·4+30·8 6 6·12121213 + 3·12121313 + 6·12121323

+ 6·12123123 + 6·12123213 + 3·12132123
9 56 510=2·3+56·9 10 6·121212123 + 6·(121212313 + 121212323)

+ 6·(121213123 + 121213213) + 6·121231323
+ 6·(121231213 + 121232123) + 2·121232313
+ 6·121321323

10 99 1022 18

Table 13.3 List of the 3-disk prime cycles up to length 10. Here n is the cycle
length, Mn the number of prime cycles, Nn the number of periodic points and
Sn the number of distinct prime cycles under theC3v symmetry (see Chapter ??
for further details). Column 3 also indicates the splitting of Nn into contribu-
tions from orbits of lengths that divide n. The prefactors in the fifth column
indicate the degeneracy mp of the cycle; for example, 3·12 stands for the three
prime cycles 12, 13 and 23 related by 2π/3 rotations. Among symmetry related
cycles, a representative p̂ which is lexically lowest was chosen. The cycles of
length 9 grouped by parenthesis are related by time reversal symmetry, but not
by any other C3v transformation.

1/ζ3−disk = (1 − 2z)
(1 − z2)3

(1 − z)2(1 − z2)

= (1 − 2z)(1 + z)2 = 1 − 3z2 − 2z3 . (13.31)

The factorization reflects the underlying 3-disk symmetry; we shall rederive
it in (??). As we shall see in Chapter ??, symmetries lead to factorizations of
topological polynomials and topological zeta functions.

Example 13.9 Alphabet {a, cbk; b}:
(continuation of Exercise 13.17) In the cycle counting case, the dynamics in13.17, page 205
terms of a → z, cbk → z

1−z
is a complete binary dynamics with the explicit

fixed point factor (1 − tb) = (1 − z):

1/ζtop = (1 − z)

(
1 − z − z

1 − z

)
= 1 − 3z + z2 .

13.20, page 205
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n Mn Nn Sn mp · p̂

1 0 0 0
2 6 12=6·2 2 4·12 + 2·13
3 8 24=8·3 1 8·123
4 18 84=6·2+18·4 4 8·1213 + 4·1214 + 2·1234 + 4·1243
5 48 240=48·5 6 8·(12123 + 12124) + 8·12313

+ 8·(12134 + 12143) + 8·12413
6 116 732=6·2+8·3+116·6 17 8·121213 + 8·121214 + 8·121234

+ 8·121243 + 8·121313 + 8·121314
+ 4·121323 + 8·(121324 + 121423)
+ 4·121343 + 8·121424 + 4·121434
+ 8·123124 + 8·123134 + 4·123143
+ 4·124213 + 8·124243

7 312 2184 39
8 810 6564 108

Table 13.4 List of the 4-disk prime cycles up to length 8. The meaning of the
symbols is the same as in Table 13.3. Orbits related by time reversal symmetry
(but no other symmetry) already appear at cycle length 5. List of the cycles of
length 7 and 8 has been omitted.

13.6 Topological zeta function for an infinite
partition

(K.T. Hansen and P. Cvitanović)

Now consider an example of a dynamical system which (as far
as we know - there is no proof) has an infinite partition, or an infinity
of longer and longer pruning rules. Take the 1-d quadratic map

f(x) = Ax(1 − x)

with A = 3.8. It is easy to check numerically that the itinerary or the
“kneading sequence” (see Fig. ??) of the critical point x = 1/2 is

K = 1011011110110111101011110111110 . . .

where the symbolic dynamics is defined by the partition of Fig. 10.4.
How this kneading sequence is converted into a series of pruning rules
is a dark art, relegated to Appendix ?? For the moment it suffices to
state the result, to give you a feeling for what a “typical” infinite parti-
tion topological zeta function looks like. Approximating the dynamics
by a Markov graph corresponding to a repeller of the period 29 attrac-
tive cycle close to the A = 3.8 strange attractor (or, much easier, fol-
lowing the algorithm of Appendix ??) yields a Markov graph with 29
nodes and the characteristic polynomial

1/ζ
(29)
top = 1− z1 − z2 + z3 − z4 − z5 + z6 − z7 + z8 − z9 − z10
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+z11 − z12 − z13 + z14 − z15 + z16 − z17 − z18 + z19 + z20

−z21 + z22 − z23 + z24 + z25 − z26 + z27 − z28 . (13.32)

The smallest real root of this approximate topological zeta function is13.22, page 205

z = 0.62616120 . . . (13.33)

Constructing finite Markov graphs of increasing length corresponding

Fig. 13.4 The logarithm of the differ-
ence between the leading zero of the fi-
nite polynomial approximations to top-
ological zeta function and our best esti-
mate, as a function of the length for the
quadratic map A = 3.8.

to A→ 3.8 we find polynomials with better and better estimates for the
topological entropy. For the closest stable period 90 orbit we obtain our
best estimate of the topological entropy of the repeller:

h = − ln 0.62616130424685 . . . = 0.46814726655867 . . . . (13.34)

Figure 13.4 illustrates the convergence of the truncation approxima-
tions to the topological zeta function as a plot of the logarithm of the dif-
ference between the zero of a polynomial and our best estimate (13.34),
plotted as a function of the length of the stable periodic orbit. The error
of the estimate (13.33) is expected to be of order z29 ≈ e−14 because go-
ing from length 28 to a longer truncation yields typically combinations
of loops with 29 and more nodes giving terms±z29 and of higher order
in the polynomial. Hence the convergence is exponential, with expo-
nent of −0.47 = −h, the topological entropy itself. In Fig. 13.5 we

Fig. 13.5 The 90 zeroes of the character-
istic polynomial for the quadratic map
A = 3.8 approximated by symbolic
strings up to length 90. (from Ref. [7])

plot the zeroes of the polynomial approximation to the topological zeta
function obtained by accounting for all forbidden strings of length 90 or
less. The leading zero giving the topological entropy is the point clos-
est to the origin. Most of the other zeroes are close to the unit circle; we
conclude that for infinite Markov partitions the topological zeta func-
tion has a unit circle as the radius of convergence. The convergence is
controlled by the ratio of the leading to the next-to-leading eigenvalues,
which is in this case indeed λ1/λ0 = 1/eh = e−h.

13.7 Shadowing

The topological zeta function is a pretty function, but the infinite prod-
uct (13.20) should make you pause. For finite transfer matrices the left
hand side is a determinant of a finite matrix, therefore a finite polyno-
mial; so why is the right hand side an infinite product over the infinitely
many prime periodic orbits of all periods?

The way in which this infinite product rearranges itself into a finite
polynomial is instructive, and crucial for all that follows. You can al-
ready take a peek at the full cycle expansion (18.5) of Chapter 18; all
cycles beyond the fundamental t0 and t1 appear in the shadowing com-
binations such as

ts1s2···sn − ts1s2···sm tsm+1···sn .

For subshifts of finite type such shadowing combinations cancel exactly,
if we are counting cycles as we do here, or if the dynamics is piecewise
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linear, as in Exercise 17.2. As we have already argued in Section 1.5.4
and Appendix ??, for nice hyperbolic flows whose symbolic dynamics
is a subshift of finite type, the shadowing combinations almost cancel,
and the spectral determinant is dominated by the fundamental cycles
from (13.13), with longer cycles contributing only small “curvature”
corrections.

These exact or nearly exact cancellations depend on the flow being
smooth and the symbolic dynamics being a subshift of finite type.
If the dynamics requires infinite Markov partition with pruning rules
for longer and longer blocks, most of the shadowing combinations still
cancel, but the few corresponding to the forbidden blocks do not, lead-
ing to a finite radius of convergence for the spectral determinant as in
Fig. 13.5.

One striking aspect of the pruned cycle expansion (13.32) compared
to the trace formulas such as (13.7) is that coefficients are not growing
exponentially - indeed they all remain of order 1, so instead having
a radius of convergence e−h, in the example at hand the topological
zeta function has the unit circle as the radius of convergence. In other
words, exponentiating the spectral problem from a trace formula to a
spectral determinant as in (13.19) increases the analyticity domain: the
pole in the trace (13.8) at z = e−h is promoted to a smooth zero of the
spectral determinant with a larger radius of convergence.

A detailed discussion of the radius of convergence is given in Ap-
pendix ??.

The very sensitive dependence of spectral determinants on whether
the symbolic dynamics is or is not a subshift of finite type is the bad
news that we should announce already now. If the system is generic
and not structurally stable (see Section 11.3), a smooth parameter vari-
ation is in no sense a smooth variation of topological dynamics - in-
finities of periodic orbits are created or destroyed, Markov graphs go
from being finite to infinite and back. That will imply that the global
averages that we intend to compute are generically nowhere differen-
tiable functions of the system parameters, and averaging over families
of dynamical systems can be a highly nontrivial enterprise; a simple
illustration is the parameter dependence of the diffusion constant com-
puted in a remark in Chapter ??.

You might well ask: What is wrong with computing the entropy from
(13.1)? Does all this theory buy us anything? An answer: If we count
Kn level by level, we ignore the self-similarity of the pruned tree - ex-
amine for example Fig. 10.11, or the cycle expansion of (13.26) - and
the finite estimates of hn = ln Kn/n converge nonuniformly to h, and
on top of that with a slow rate of convergence, |h − hn| ≈ O(1/n) as
in (13.4). The determinant (13.9) is much smarter, as by construction it
encodes the self-similarity of the dynamics, and yields the asymptotic
value of h with no need for any finite n extrapolations.

So, the main lesson of learning how to count well, a lesson that will
be affirmed over and over, is that while the trace formulas are a con-
ceptually essential step in deriving and understanding periodic orbit
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theory, the spectral determinant is the right object to use in actual com-
putations. Instead of resumming all of the exponentially many peri-
odic points required by trace formulas at each level of truncation, spec-
tral determinants incorporate only the small incremental corrections to
what is already known - and that makes them more convergent and
economical to use.

Summary

What have we accomplished? We have related the number of topo-
logically distinct paths from “this region” to “that region” in a chaotic
system to the leading eigenvalue of the transition matrix T . The eigen-
spectrum of T is given by a certain sum over traces tr T n, and in this
way the periodic orbit theory has entered the arena, already at the level
of the topological dynamics, the crudest description of dynamics.

The main result of this chapter is the cycle expansion (13.21) of the
topological zeta function (i.e., the spectral determinant of the transition
matrix):

1/ζtop(z) = 1−
∑
k=1

ĉkzk .

For subshifts of finite type, the transition matrix is finite, and the top-
ological zeta function is a finite polynomial evaluated by the loop ex-
pansion (13.13) of det (1 − zT ). For infinite grammars the topological
zeta function is defined by its cycle expansion. The topological entropy
h is given by the smallest zero z = e−h. This expression for the entropy
is exact; in contrast to the definition (13.1), no n → ∞ extrapolations of
ln Kn/n are required.

Historically, these topological zeta functions were the inspiration for
applying the transfer matrix methods of statistical mechanics to the
problem of computation of dynamical averages for chaotic flows. The
key result was the dynamical zeta function to be derived in Chapter 16,
a weighted generalization of the topological zeta function.

Contrary to claims one sometimes encounters in the literature, “ex-
ponential proliferation of trajectories” is not the problem; what limits
the convergence of cycle expansions is the proliferation of the grammar
rules, or the “algorithmic complexity”, as illustrated by Section 13.6,
and Fig. 13.5 in particular.

Further reading

“Entropy.” The ease with which the topological entropy
can be motivated obscures the fact that our definition does
not lead to an invariant characterization of the dynamics,

as the choice of symbolic dynamics is largely arbitrary:
the same caveat applies to other entropies to be discussed
in Chapter ??, and to get proper invariants one needs to
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evaluate a supremum over all possible partitions. The key
mathematical point that eliminates the need of such search
is the existence of generators, i.e., partitions that under dy-
namics are able to probe the whole state space on arbitrar-
ily small scales: more precisely a generator is a finite par-
tition Ω = ω1 . . . ωN , with the following property: take
M the subalgebra of the state space generated by Ω, and
consider the partition built upon all possible intersections
of sets φk(βi), where φ is dynamical evolution, βi is an ele-
ment of M and k takes all possible integer values (positive
as well as negative), then the closure of such a partition
coincides with the algebra of all measurable sets. For a
thorough (and readable) discussion of generators and how
they allow a computation of the Kolmogorov entropy, see
Ref. [1] and Chapter ??.

Perron-Frobenius matrices. For a proof of Perron
theorem on the leading eigenvalue see Ref. [21]. Sect. A4.1
of Ref. [2] offers a clear discussion of the spectrum of the
transition matrix.

Determinant of a graph. Many textbooks offer
derivations of the loop expansions of characteristic poly-

nomials for transition matrices and their Markov graphs,
see for example Refs. [3–5].
T is not trace class. Note to the erudite reader: the

transition matrix T (in the infinite partition limit (13.19))
is not trace class in the sense of Appendix ??. Still the trace
is well defined in the n→ ∞ limit.

Artin-Mazur zeta functions. Motivated by A.
Weil’s zeta function for the Frobenius map [6], Artin and
Mazur [13] introduced the zeta function (13.21) that counts
periodic points for diffeomorphisms (see also Ref. [7] for
their evaluation for maps of the interval). Smale [8] conjec-
tured rationality of the zeta functions for Axiom A diffeo-
morphisms, later proved by Guckenheimer [9] and Man-
ning [10]. See Remark 17.3 on page 265 for more zeta
function history.

Ordering periodic orbit expansions. In Section 18.5
we will introduce an alternative way of hierarchically or-
ganizing cumulant expansions, in which the order is dic-
tated by stability rather than cycle length: such a proce-
dure may be better suited to perform computations when
the symbolic dynamics is not well understood.

Exercises

(13.1) A transition matrix for 3-disk pinball.

a) Draw the Markov graph corresponding to the
3-disk ternary symbolic dynamics, and write
down the corresponding transition matrix cor-
responding to the graph. Show that iteration
of the transition matrix results in two coupled
linear difference equations, - one for the di-
agonal and one for the off diagonal elements.
(Hint: relate trTn to trTn−1 + . . ..)

b) Solve the above difference equation and ob-
tain the number of periodic orbits of length n.
Compare with Table 13.3.

c) Find the eigenvalues of the transition matrix
T for the 3-disk system with ternary sym-
bolic dynamics and calculate the topological
entropy. Compare this to the topological en-
tropy obtained from the binary symbolic dy-
namics {0, 1}.

(13.2) Sum of Aij is like a trace. Let A be a matrix with

eigenvalues λk. Show that

Γn =
∑
i,j

[An]ij =
∑

k

ckλ
n
k .

(a) Use this to show that ln |trAn| and ln |Γn|
have the same asymptotic behavior as n→ ∞,
i.e., their ratio converges to one.

(b) Do eigenvalues λk need to be distinct, λk �= λl

for k �= l?

(13.3) Loop expansions. Prove by induction the sign rule
in the determinant expansion (13.13):

det (1 − zT) =
∑
k≥0

∑
p1+···+pk

(−1)ktp1tp2 · · · tpk .

(13.4) Transition matrix and cycle counting. Suppose
you are given the Markov graph

0 1a

b

c
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This diagram can be encoded by a matrix T , where
the entry Tij means that there is a link connecting
node i to node j. The value of the entry is the weight
of the link.

a) Walks on the graph are given the weight
that is the product of the weights of all links
crossed by the walk. Convince yourself that
the transition matrix for this graph is:

T =

[
a b
c 0

]
.

b) Enumerate all the walks of length three on the
Markov graph. Now compute T 3 and look at
the entries. Is there any relation between the
terms in T 3 and all the walks?

c) Show that Tn
ij is the number of walks from

point i to point j in n steps. (Hint: one might
use the method of induction.)

d) Try to estimate the number N(n) of walks of
length n for this simple Markov graph.

e) The topological entropy h measures the rate
of exponential growth of the total number of
walks N(n) as a function of n. What is the
topological entropy for this Markov graph?

(13.5) 3-disk prime cycle counting. A prime cycle p of
length np is a single traversal of the orbit; its label
is a non-repeating symbol string of np symbols. For
example, 12 is prime, but 2121 is not, since it is 21 =
12 repeated.
Verify that a 3-disk pinball has 3, 2, 3, 6, 9, · · · prime
cycles of length 2, 3, 4, 5, 6, · · ·.

(13.6) “Golden mean” pruned map. Continuation of Ex-
ercise 10.6: Show that the total number of periodic
orbits of length n for the “golden mean” tent map is

(1 +
√

5)n + (1 −
√

5)n

2n
.

For continuation, see Exercise 13.8. See also Exer-
cise 13.9.

(13.7) Alphabet {0,1}, prune 00 . The Markov diagram
Fig. 10.11 (b) implements this pruning rule. The
pruning rule implies that “0” must always be brack-
eted by “1”s; in terms of a new symbol 2 = 10, the
dynamics becomes unrestricted symbolic dynamics
with with binary alphabet {1,2}. The cycle expan-
sion (13.13) becomes

1/ζ = (1 − t1)(1 − t2)(1 − t12)(1 − t112) . . .(13.35)

= 1 − t1 − t2 − (t12 − t1t2)

−(t112 − t12t1) − (t122 − t12t2) . . .

In the original binary alphabet this corresponds to:

1/ζ = 1 − t1 − t10 − (t110 − t1t10)

−(t1110 − t110t1) − (t11010 − t110t10) . . .(13.36)

This symbolic dynamics describes, for example, cir-
cle maps with the golden mean winding number,
see Chapter ??. For unimodal maps this sym-
bolic dynamics is realized by the tent map of Ex-
ercise 13.6.

(13.8) Spectrum of the “golden mean” pruned map.
(medium - Exercise 13.6 continued)

(a) Determine an expression for trLn, the trace
of powers of the Perron-Frobenius operator
(14.10) for the tent map of Exercise 13.6.

(b) Show that the spectral determinant for the
Perron-Frobenius operator is

det (1 − zL) =
∏

k even

(
1 − z

Λk+1
− z2

Λ2k+2

)
∏

k odd

(
1 +

z

Λk+1
+

z2

Λ2k+2

)
.(13.37)

(13.9) A unimodal map example. Consider a unimodal
map of Fig. ?? (a) for which the critical point maps
into the right hand fixed point in three iterations,
S+ = 1001. Show that the admissible itineraries are
generated by the Markov graph Fig. ?? (b).

(Kai T. Hansen)

(13.10) Glitches in shadowing.∗∗ Note that the combi-
nation t00011 minus the “shadow” t0t0011 in (13.17)
cancels exactly, and does not contribute to the top-
ological zeta function (13.18). Are you able to con-
struct a smaller Markov graph than Fig. 13.3.1 (e)?

(13.11) Whence Möbius function? To understand where
the Möbius function comes from consider the func-
tion

f(n) =
∑
d|n

g(d) (13.38)

where d|n stands for sum over all divisors d of n. In-
vert recursively this infinite tower of equations and
derive the Möbius inversion formula

g(n) =
∑
d|n

μ(n/d)f(d) (13.39)

(13.12) Counting prime binary cycles. In order to get
comfortable with Möbius inversion reproduce the
results of the second column of Table 13.2.
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Write a program that determines the number of
prime cycles of length n. You might want to have
this program later on to be sure that you have
missed no 3-pinball prime cycles.

(13.13) Counting subsets of cycles. The techniques de-
veloped above can be generalized to counting sub-
sets of cycles. Consider the simplest example of a
dynamical system with a complete binary tree, a re-
peller map (10.6) with two straight branches, which
we label 0 and 1. Every cycle weight for such map
factorizes, with a factor t0 for each 0, and factor
t1 for each 1 in its symbol string. Prove that the
transition matrix traces (13.5) collapse to tr(T k) =
(t0 + t1)

k, and 1/ζ is simply∏
p

(1 − tp) = 1 − t0 − t1 (13.40)

Substituting (13.40) into the identity

∏
p

(1 + tp) =
∏
p

1 − tp
2

1 − tp

we obtain

∏
p

(1 + tp) =
1 − t20 − t21
1 − t0 − t1

= 1 + t0 + t1

+
2t0t1

1 − t0 − t1
= 1 + t0 + t1

+

∞∑
n=2

n−1∑
k=1

2

(
n− 2

k − 1

)
tk0t

n−k
1 .

Hence for n ≥ 2 the number of terms in the cumu-
lant expansion with k 0’s and n− k 1’s in their sym-
bol sequences is 2

(
n−2
k−1

)
.

In order to count the number of prime cycles in
each such subset we denote with Mn,k (n =
1, 2, . . . ; k = {0, 1} for n = 1; k = 1, . . . , n −
1 for n ≥ 2) the number of prime n-cycles whose
labels contain k zeros. Show that

M1,0 = M1,1 = 1 , n ≥ 2 , k = 1, . . . , n− 1

nMn,k =
∑
m

∣∣∣ n
k

μ(m)

(
n/m

k/m

)

where the sum is over all m which divide both n
and k.

(13.14) Logarithmic periodicity of lnNn
∗. Plot lnNn−nh

for a system with a nontrivial finite Markov graph.
Do you see any periodicity? If yes, why?

(13.15) 4-disk pinball topological zeta function. Show
that the 4-disk pinball topological zeta function (the
pruning affects only the fixed points and the 2-
cycles) is given by

1/ζ4−disk
top = (1 − 3z)

(1 − z2)6

(1 − z)3(1 − z2)3

= (1 − 3z)(1 + z)3

= 1 − 6z2 − 8z3 − 3z4 . (13.41)

(13.16) N -disk pinball topological zeta function. Show
that for anN -disk pinball, the topological zeta func-
tion is given by

1/ζN−disk
top = (1 − (N − 1)z) ×

(1 − z2)N(N−1)/2

(1 − z)N−1(1 − z2)(N−1)(N−2)/2

= (1 − (N − 1)z) (1 + z)N−1 .(13.42)

The topological zeta function has a root z−1 =
N − 1, as we already know it should from (13.29) or
(13.15). We shall see in Section ?? that the other roots
reflect the symmetry factorizations of zeta func-
tions.

(13.17) Alphabet {a, b, c}, prune ab . The pruning rule
implies that any string of “b”s must be preceeded
by a “c”; so one possible alphabet is {a, cbk; b},
k=0,1,2. . .. As the rule does not prune the fixed
point b, it is explicitly included in the list. The cycle
expansion (13.13) becomes

1/ζ = (1 − ta)(1 − tb)(1 − tc) ×
(1 − tcb)(1 − tac)(1 − tcbb) . . .

= 1 − ta − tb − tc + tatb − (tcb − tctb)

−(tac − tatc) − (tcbb − tcbtb) . . .

The effect of the ab pruning is essentially to unbal-
ance the 2 cycle curvature tab − tatb; the remainder
of the cycle expansion retains the curvature form.

(13.18) Alphabet {0,1}, prune n repeats of “0” 000 . . . 00
.
This is equivalent to the n symbol alphabet {1, 2, . . .,
n} unrestricted symbolic dynamics, with symbols
corresponding to the possible 10. . .00 block lengths:
2=10, 3=100, . . ., n=100. . .00. The cycle expansion
(13.13) becomes

1/ζ = 1−t1−t2 . . .−tn−(t12−t1t2) . . .−(t1n−t1tn) . . . .
(13.43)
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(13.19) Alphabet {0,1}, prune 1000 , 00100 , 01100 .
Show that the topological zeta function is given by

1/ζ = (1 − t0)(1 − t1 − t2 − t23 − t113) (13.44)

with the unrestricted 4-letter alphabet
{1, 2, 23, 113}. Here 2, 3, refer to 10, 100 respec-
tively, as in Exercise 13.18.

(13.20) Alphabet {0,1}, prune 1000 , 00100 , 01100 ,
10011 . The first three pruning rules were in-

corporated in the preceeding exercise.
(a) Show that the last pruning rule 10011 leads (in
a way similar to Exercise 13.19) to the alphabet {21k ,
23, 21k113; 1, 0}, and the cycle expansion

1/ζ = (1−t0)(1−t1−t2−t23+t1t23−t2113) (13.45)

Note that this says that 1, 23, 2, 2113 are the fun-
damental cycles; not all cycles up to length 7 are
needed, only 2113.
(b) Show that the topological zeta function is

1/ζtop = (1− z)(1− z− z2 − z5 + z6 − z7) (13.46)

and check that it yields the exact value of the en-
tropy h = 0.522737642 . . ..

(13.21) Topological zeta function for alphabet {0,1},
prune 1000 , 00100 , 01100 . (continuation of

Exercise 11.9) Show that topological zeta function is

1/ζ = (1 − t0)(1 − t1 − t2 − t23 − t113) (13.47)

for unrestricted 4-letter alphabet {1, 2, 23, 113}.

(13.22) Alphabet {0,1}, prune only the fixed point 0 .
This is equivalent to the infinite alphabet {1, 2,
3, 4, . . .} unrestricted symbolic dynamics. The
prime cycles are labeled by all non-repeating se-
quences of integers, ordered lexically: tn, n > 0;
tmn, tmmn, . . . , n > m > 0; tmnr, r > n > m >
0, . . . (see Section ??). Now the number of funda-
mental cycles is infinite as well:

1/ζ = 1 −
∑
n>0

tn −
∑

n>m>0

(tmn − tntm)

−
∑

n>m>0

(tmmn − tmtmn)

−
∑

n>m>0

(tmnn − tmntn) (13.48)

−
∑

r>n>m>0

(tmnr + tmrn − tmntr

− tmrtn − tmtnr + tmtntr) · · ·(13.49)

As shown in Section ??, this grammar plays an
important role in description of fixed points of
marginal stability.

References

[1] V.I. Arnold and A. Avez, “Ergodic Problems of Classical Mechan-
ics”, Addison-Wesley, Redwood City (1989).

[2] J. Zinn-Justin, “Quantum Field Theory and Critical Phenomena”,
Clarendon Press, Oxford (1996).

[3] A. Salomaa, “Formal Languages”, Academic Press, San Diego (1973).
[4] J.E. Hopcroft and J.D. Ullman, “Introduction to Automata Theory,

Languages and Computation”, Addison-Wesley, Reading Ma (1979).
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