
Dirac Matrices and Lorentz Spinors

The Dirac Matrices γµ generalize the anti-commutation properties of the Pauli matrices σi 

to the 3 + 1 Minkowski dimensions:

γµγν + γνγµ = 2gµν × 14×4 . (5)

The γµ are 4 × 4 matrices, but there are several different conventions for their specific form. 
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The γ0 matrix is hermitian while the γ1, γ2, and γ3 matrices are anti-hermitian. Apart from 

that, the specific forms of the matrices are not important, the physics follows from the anti-

commutation relations (5).

In 4D, the vector product becomes the antisymmetric tensor product, 

Sµν = −Sνµ def
= i

4 [γµ, γν ]. (7)

Thanks to the anti-commutation relations (5) for the γµ matrices, the Sµν obey the commu-

tation relations of the Lorentz generators Ĵµν = −Ĵνµ. Moreover, the commutation relations

of the spin matrices Sµν with the Dirac matrices γµ are similar to the commutation relations

of the Ĵµν with a Lorentz vector such as P̂µ.

Lemma:

[γλ, Sµν ] = igλµγν − igλνγµ. (8)

Proof: Combining the definition (7) of the spin matrices as commutators with the anti-

commutation relations (5), we have

γµγν = 1
2{γ

µ, γν} + 1
2 [γµ, γν ] = gµν × 14×4 − 2iSµν . (9)

Since the unit matrix commutes with everything, we have

[X,Sµν ] = i
2 [X, γµγν ] for any matrix X, (10)

and the commutator on the RHS may often be obtained from the Leibniz rules for the 

commutators or anticommutators:

[A, BC] = [A, B]C + B[A, C] = {A, B}C − B{A, C},

{A,BC} = [A, B]C + B{A, C} = {A, B}C − B[A, C].
(11)
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In particular,

[γλ, γµγν ] = {γλ, γµ}γν − γµ{γλ, γν} = 2gλµγν − 2gλνγµ (12)

and hence

[γλ, Sµν ] = i
2 [γλ, γµγν ] = igλµγν − igλνγµ. (13)

Theorem: The Sµν matrices commute with each other like Lorentz generators,

[
Sκλ, Sµν

]
= igλµSκν − igλνSκµ − igκµSλν + igκνSλµ. (14)

Proof: Again, we use the Leibniz rule and eq. (9):

[
γκγλ, Sµν

]
= γκ

[
γλ, Sµν

]
+
[
γκ, Sµν

]
γλ

= γκ
(
igλµγν − igλνγµ

)
+
(
igκµγν − igκνγµ

)
γλ

= igλµ
(
γκγν = gκν − 2iSκν

)
− igλν

(
γκγµ = gκµ − 2iSκµ

)
+ igκµ

(
γνγλ = gλν + 2iSλν

)
− igκν

(
γµγλ = gλµ + 2iSλµ

)
= 2gλµSκν − 2gλνSκµ − 2gκµSλν + 2gκνSλµ

(15)

since all the ±ig···g··· cancel each other, hence

[
Sκλ, Sµν

]
= i

2

[
γκγλ, Sµν

]
= igλµSκν − igλνSκµ − igκµSλν + igκνSλµ. (16)

In light of this theorem, the Sµν matrices represent the Lorentz generators Ĵµν in the

4-component spinor multiplet.
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Finite Lorentz transforms:

Any continuous Lorentz transform — a rotation, or a boost, or a product of a boost and a

rotation — obtains from exponentiating an infinitesimal symmetry

X ′µ = Xµ + εµνXν (17)

where the infinitesimal εµν matrix is antisymmetric when both indices are raised (or both

lowered), εµν = −ενµ. Thus, the Lµν matrix of any continuous Lorentz transform is a matrix

exponential

Lµν = exp(Θ)µν ≡ δµν + Θµ
ν + 1

2Θµ
λΘλ

ν + 1
6Θµ

λΘλ
κΘκ

ν + · · · (18)

of some matrix Θ that becomes antisymmetric when both of its indices are raised or lowered,

Θµν = −Θνµ. Note however that in the matrix exponential (18), the first index of Θ is raised

while the second index is lowered, so the antisymmetry condition becomes (gΘ)> = −(gΘ)

instead of Θ> = −Θ.

The Dirac spinor representation of the finite Lorentz transform (18) is the 4× 4 matrix

MD(L) = exp
(
− i

2 ΘαβS
αβ
)
. (19)

The group law for such matrices

∀L1, L2 ∈ SO+(3, 1), MD(L2L1) = MD(L2)MD(L1) (20)

follows automatically from the Sµν satisfying the commutation relations (14) of the Lorentz 
generators. When the Dirac matrices γµ are sandwiched between the MD(L) and its inverse, 

they transform into each other as components of a Lorentz 4–vector,

M−1D (L)γµMD(L) = Lµνγ
ν . (21)

This formula makes the Dirac equation transform covariantly under the Lorentz transforms.
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Proof: In light of the exponential form (19) of the matrix MD(L) representing a finite Lorentz

transform in the Dirac spinor multiplet, let’s use the multiple commutator formula (AKA

the Hadamard Lemma ): for any 2 matrices F and H,

exp(−F )H exp(+F ) = H +
[
H,F

]
+ 1

2

[[
H,F

]
, F
]

+ 1
6

[[[
H,F

]
, F
]
, F
]

+ · · · . (22)

In particular, let H = γµ while F = − i
2 ΘαβS

αβ so that MD(L) = exp(+F ) and M−1D (L) =

exp(−F ). Consequently,

M−1D (L)γµMD(L) = γµ +
[
γµ, F

]
+ 1

2

[[
γµ, F

]
, F
]

+ 1
6

[[[
γµ, F

]
, F
]
, F
]

+ · · · (23)

where all the multiple commutators turn out to be linear combinations of the Dirac matrices.

Indeed, the single commutator here is

[
γµ, F

]
= − i

2Θαβ

[
γµ, Sαβ

]
= 1

2Θαβ

(
gµαγβ − gµβγα

)
= Θαβ g

µαγβ = Θµ
λγ

λ, (24)

while the multiple commutators follow by iterating this formula:

[[
γµ, F

]
, F
]

= Θµ
λ

[
γλ, F

]
= Θµ

λΘλ
νγ

ν ,
[[[
γµ, F

]
, F
]
, F
]

= Θµ
λΘλ

ρΘ
ρ
νγ

ν , . . . . (25)

Combining all these commutators as in eq. (23), we obtain

M−1D γµMD = γµ +
[
γµ, F

]
+ 1

2

[[
γµ, F

]
, F
]

+ 1
6

[[[
γµ, F

]
, F
]
, F
]

+ · · ·

= γµ + Θµ
νγ

ν + 1
2 Θµ

λΘλ
νγ

ν + 1
6 Θµ

λΘλ
ρΘ

ρ
νγ

ν + · · ·

=
(
δµν + Θµ

ν + 1
2Θµ

λΘλ
ν + 1

6Θµ
λΘλ

ρΘ
ρ
ν + · · ·

)
γν

≡ Lµνγ
ν .

(26)
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Dirac Equation and Dirac Spinor Fields

Dirac had thought that the source of all troubles was the

ugly form of relativistic Hamiltonian Ĥ =
√
p̂2 +m2 in the coordinate basis, and that he

could solve all the problems with the Klein-Gordon equation by rewriting the Hamiltonian

as a first-order differential operator

Ĥ = p̂ · ~α + mβ =⇒ Dirac equation i
∂ψ

∂t
= −i~α · ∇ψ + mβψ (27)

where α1, α2, α3, β are matrices acting on a multi-component wave function. Specifically, all

four of these matrices are Hermitian, square to 1, and anticommute with each other,

{αi, αj} = 2δij , {αi, β} = 0, β2 = 1. (28)

Consequently

(
~α · p̂

)2
= αiαj × p̂ip̂j = 1

2{αi, αj} × p̂ip̂j = δij × p̂ip̂j = p̂2, (29)

and therefore

Ĥ2
Dirac =

(
~α · p̂ + βm

)2
=
(
~α · p̂

)2
+ {αi, β}× p̂im + β2×m2 = p̂2 + 0 + m2. (30)

This, the Dirac Hamiltonian squares to p̂2 + m2, as it should for the relativistic particle.
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The Dirac equation is the equation of motion for a Dirac spinor field Ψ(x), comprising 4 

complex component fields Ψα(x) arranged in a column vector

Ψ(x) =


Ψ1(x)

Ψ2(x)

Ψ3(x)

Ψ4(x)

 , (31)

and transforming under the continuous Lorentz symmetries x′µ = Lµνx
ν according to

Ψ′(x′) = MD(L)Ψ(x). (32)

The classical Euler–Lagrange equation of motion for the spinor field is the Dirac equation

i
∂

∂t
Ψ + i~α · ∇Ψ − mβΨ = 0. (33)

To recast this equation in a Lorentz-covariant form, let

β = γ0, αi = γ0γi ; (34)

it is easy to see that if the γµ matrices obey the anticommutation relations (5) then the ~α

and β matrices obey the relations (28) and vice verse. Now let’s multiply the whole LHS of

the Dirac equation (33) by the β = γ0:

0 = γ0
(
i∂0 + iγ0~γ · ∇ − mγ0

)
Ψ(x) =

(
iγ0∂0 + iγi∂i − m)Ψ(x), (35)

and hence (
iγµ∂µ − m

)
Ψ(x) = 0. (36)

As expected from Ĥ2
Dirac = p̂2 + m2, the Dirac equation for the spinor field implies the

Klein–Gordon equation for each component Ψα(x). Indeed, if Ψ(x) obey the Dirac equation,
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then obviously (
−iγν∂ν − m

)
×
(
iγµ∂µ − m

)
Ψ(x) = 0, (37)

but the differential operator on the LHS is equal to the Klein–Gordon m2 + ∂2 times a unit

matrix:(
−iγν∂ν −m

)(
iγµ∂µ −m

)
= m2 + γνγµ∂ν∂µ = m2 + 1

2{γ
µ, γν}∂ν∂µ = m2 + gµν∂ν∂µ .

(38)

The Dirac equation (36) transforms covariantly under the Lorentz symmetries —

its LHS transforms exactly like the spinor field itself.

Proof: Note that since the Lorentz symmetries involve the xµ coordinates as well as the

spinor field components, the LHS of the Dirac equation becomes(
iγµ∂′µ − m

)
Ψ′(x′) (39)

where

∂′µ ≡
∂

∂x′µ
=

∂xν

∂x′µ
× ∂

∂xν
=
(
L−1

) ν
µ
× ∂ν . (40)

Consequently,

∂′µΨ′(x′) =
(
L−1

) ν
µ
×MD(L) ∂νΨ(x) (41)

and hence

γµ∂′µΨ′(x′) =
(
L−1

) ν
µ
× γµMD(L) ∂νΨ(x). (42)

But according to eq. (23),

M−1D (L)γµMD(L) = Lµνγ
ν =⇒ γµMD(L) = Lµν ×MD(L)γν

=⇒
(
L−1

) ν
µ
× γµMD(L) = MD(L)γν ,

(43)

so

γµ∂′µΨ′(x′) = MD(L)× γν∂νΨ(x). (44)

Altogether,(
iγµ∂µ − m

)
Ψ(x) −−−−→

Lorentz

(
iγµ∂′µ − m

)
Ψ′(x′) = MD(L)×

(
iγµ∂µ − m

)
Ψ(x), (45)

which proves the covariance of the Dirac equation.
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Dirac Lagrangian

The Dirac equation is a first-order differential equation, so to obtain it as an Euler–

Lagrange equation, we need a Lagrangian which is linear rather than quadratic in the spinor

field’s derivatives. Thus, we want

L = Ψ×
(
iγµ∂µ − m

)
Ψ (46)

where Ψ(x) is some kind of a conjugate field to the Ψ(x). Since Ψ is a complex field, we

treat Ψ and Ψ as linearly-independent from each other, so the Euler–Lagrange equation for

the Ψ immediately gives us the Dirac equation for the Ψ(x) field,

0 =
∂L
∂Ψ
− ∂µ

∂L
∂∂µΨ

=
(
iγν∂ν − m

)
Ψ − ∂µ

(
0
)
. (47)

To keep the action S =
∫
d4xL Lorentz-invariant, the Lagrangian (46) should transform

as a Lorentz scalar, L′(x′) = L(x). In light of eq. (19) for the Ψ(x) field and covariance (45)

of the Dirac equation, the conjugate field Ψ(x) should transform according to

Ψ
′
(x′) = Ψ(x)×M−1D (L) =⇒ L′(x′) = L(x). (48)

Note that the MD(L) matrix is generally not unitary, so the inverse matrix M−1D (L) in

eq. (48) is different from the hermitian conjugate M †D(L). Consequently, the conjugate

field Ψ(x) cannot be identified with the hermitian conjugate field Ψ†(x), since the latter

transforms to

Ψ′†(x′) = Ψ†(x)×M †D(L) 6= Ψ†(x)×M−1D (L). (49)

Instead of the hermitian conjugate, we are going to use the Dirac conjugate spinor, see below.

Dirac conjugates:

Let Ψ be a 4-component Dirac spinor and Γ be any 4 × 4 matrix; we define their Dirac

conjugates according to

Ψ = Ψ† × γ0, Γ = γ0 × Γ† × γ0. (50)

Thanks to γ0γ0 = 1, the Dirac conjugates behave similarly to hermitian conjugates or

transposed matrices:
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• For a a product of 2 matrices, (Γ1 × Γ2) = Γ2 × Γ1.

• Likewise, for a matrix and a spinor, (Γ×Ψ) = Ψ× Γ.

• The Dirac conjugate of a complex number is its complex conjugate, (c× 1) = c∗×1.

• For any two spinors Ψ1 and Ψ2 and any matrix Γ, Ψ1ΓΨ2 =
(
Ψ2ΓΨ1

)∗
.

◦ The Dirac spinor fields are fermionic, so they anticommute with each other, even

in the classical limit. Nevertheless,
(
Ψ†αΨβ

)†
= +Ψ†βΨα, and therefore for any

matrix Γ, Ψ1ΓΨ2 = +
(
Ψ2ΓΨ1

)∗
.

The point of the Dirac conjugation (50) is that it works similarly for all four Dirac

matrices γµ,

γµ = +γµ. (51)

Proof: For µ = 0, the γ0 is hermitian, hence

γ0 = γ0(γ0)†γ0 = +γ0γ0γ0 = +γ0. (52)

For µ = i = 1, 2, 3, the γi are anti-hermitian and also anticommute with the γ0, hence

γi = γ0(γi)†γ0 = −γ0γiγ0 = +γ0γ0γi = +γi. (53)

Corollary: The Dirac conjugate of the matrix

MD(L) = exp
(
− i

2ΘµνS
µν
)

(19)

representing any continuous Lorentz symmetry L = exp(Θ) is the inverse matrix

MD(L) = M−1D (L) = exp
(
+ i

2ΘµνS
µν
)
. (54)

Proof: Let

X = − i
2ΘµνS

µν = +1
8Θµν [γµ, γν ] = +1

4Θµνγ
µγν (55)

for some real antisymmetric Lorentz parameters Θµν = −Θνµ. The Dirac conjugate of the
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X matrix is

X = 1
4Θµνγµγν = 1

4Θ∗µνγ
νγµ = 1

4Θµνγ
νγµ = 1

4Θνµγ
µγν = −1

4Θµνγ
µγν = −X. (56)

Consequently,

X2 = X ×X = +X2, X3 = X ×X2 = X2 ×X = −X3, . . . , Xn = (−X)n,

(57)

and hence

exp(X) =
∑
n

1

n!
Xn =

∑
n

1

n!
(−X)n = exp(−X). (58)

In light of eq. (55), this means

exp
(
− i

2ΘµνSµν
)

= exp
(
+ i

2ΘµνS
µν
)
, (59)

that is,

MD(L) = M−1D (L). (60)

The Dirac Lagrangian:

Thanks to the theorem (60), the conjugate field Ψ(x) in the Lagrangian (46) is simply the 

Dirac conjugate of the Dirac spinor field Ψ(x),

Ψ(x) = Ψ†(x)× γ0, (61)

which transforms under Lorentz symmetries as

Ψ
′
(x′) = Ψ′(x′) = MD(L)×Ψ(x) = Ψ(x)×MD(x) = Ψ(x)×M−1D (L). (62)

Consequently, the Dirac Lagrangian

L = Ψ×
(
iγµ∂µ − m

)
Ψ = Ψ†γ0 ×

(
iγµ∂µ − m

)
Ψ (46)

is a Lorentz scalar and the action is Lorentz invariant.
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