Dirac Matrices and Lorentz Spinors

The Dirac Matrices 7* generalize the anti-commutation properties of the Pauli matrices o*

to the 3 + 1 Minkowski dimensions:

P A = 29" X L (5)

The 4" are 4 x 4 matrices, but there are several different conventions for their specific form.



The 7" matrix is hermitian while the 4!, 4, and 7® matrices are anti-hermitian. Apart from
that, the specific forms of the matrices are not important, the physics follows from the anti-

commutation relations (5).

In 4D, the vector product becomes the antisymmetric tensor product,

v vu def v
SH = =S = 40 (7)

Thanks to the anti-commutation relations (5) for the v# matrices, the S¥* obey the commu-
tation relations of the Lorentz generators JH = — Vi, Moreover, the commutation relations
of the spin matrices S*¥ with the Dirac matrices v* are similar to the commutation relations

of the J* with a Lorentz vector such as P*.
Lemma:
A, S = iga” — gyt (8)

Proof: Combining the definition (7) of the spin matrices as commutators with the anti-

commutation relations (5), we have
P = (VA + S = ¢ X L — 208 (9)
Since the unit matrix commutes with everything, we have
(X, 5" = L[X,yMy] for any matrix X, (10)

and the commutator on the RHS may often be obtained from the Leibniz rules for the

commutators or anticommutators:

{A,BC} = [A, BIC+ B{A,C} ={A, B}C — B[A, C]. (11)



In particular,

W Y] = PN A — ) = 29 — 2™

and hence

[, 8] = S AHaY] = gyt — gyt

Theorem: The S*¥ matrices commute with each other like Lorentz generators,
[Sn)\, S,uu} — ,ng)\usm/ . Z-g)\l/S/s,u o igli/,LSAl/ + ,L»gm/s)\p'
Proof: Again, we use the Leibniz rule and eq. (9):

[, 5] = 4% [ 8]+ [yF, 5]
= " (ig"y" — igMA) + (ig"y — ig™ )y
— (Y = g 2i8) — ig (P = gt — 205
Lg (e = g 2iS) — g (g = g 4 2isM)

_ QQA/LSIW - QgAVSK,u o ngi,us)\y + 2gnu5«)\,u

since all the +ig" g cancel each other, hence

[SK)\7S/1,1/:| _ %[,yﬁ,y)\’slu,l/} _ Z'g)\,uS/w _ igAVSnu o Z'gm,us)\u + Z'gwa)\,u‘

(12)

In light of this theorem, the S*” matrices represent the Lorentz generators JM in the

4-component spinor multiplet.



Finite Lorentz transforms:
Any continuous Lorentz transform — a rotation, or a boost, or a product of a boost and a

rotation — obtains from exponentiating an infinitesimal symmetry
Xt = XM + X, (17)

where the infinitesimal €*” matrix is antisymmetric when both indices are raised (or both
lowered), e"V = —e". Thus, the L/, matrix of any continuous Lorentz transform is a matrix

exponential

v

LY, = exp(©), = & + Of + 1610, + 01050 + .- (18)

of some matrix © that becomes antisymmetric when both of its indices are raised or lowered,
" = —O"F. Note however that in the matrix exponential (18), the first index of © is raised
while the second index is lowered, so the antisymmetry condition becomes (¢0)" = —(¢©)

instead of 7 = —0O.

The Dirac spinor representation of the finite Lorentz transform (18) is the 4 x 4 matrix
Mp(L) = exp(—3©4,55). (19)
The group law for such matrices

VLl,LQ c SO+(3,1), MD(Lle) = MD(LQ)MD<L1) (20)
follows automatically from the S*¥ satisfying the commutation relations (14) of the Lorentz
generators. When the Dirac matrices 7* are sandwiched between the Mp(L) and its inverse,

they transform into each other as components of a Lorentz 4—vector,
MpNL)WMp(L) = Lhy". (21)

This formula makes the Dirac equation transform covariantly under the Lorentz transforms.



Proof: In light of the exponential form (19) of the matrix Mp(L) representing a finite Lorentz

transform in the Dirac spinor multiplet, let’s use the multiple commutator formula (AKA

the [Hadamard Lemmal): for any 2 matrices F' and H,

exp(—F)Hexp(+F) = H + [H,F] + [[H F|,F] + §[[[H,F],F].F] + . (22)

In particular, let H = 4# while F' = —% 0,55 so that M, (L) = exp(+F) and Mp,'(L) =
exp(—F'). Consequently,

My L' Mp(L) = +* + [v. F] + S[[W F),F] + & [[[W" F],F].F] + --- (23)

where all the multiple commutators turn out to be linear combinations of the Dirac matrices.

Indeed, the single commutator here is

[ F] = —$6as [v",5%] = 30ap(g"*Y" — ¢""7*) = Oapg'y” = O77, (24)
while the multiple commutators follow by iterating this formula:

[/, F].F] = 647", F] = @463+, [/ F].F].F] = e1e%0h4",.... (25)

Combining all these commutators as in eq. (23), we obtain

Mp'y*Mp = " + [ F] + 3 [ F)LF] + g[[["FLFLF] + -
= 9+ Oy + 10100 + tereteny + -
— (o + 01 + 1640 + 1640}, + )y

LEA~Y.


http://en.wikipedia.org/wiki/Baker-Campbell-Hausdorff_formula#The_Hadamard_lemma

Dirac Equation and Dirac Spinor Fields

Dirac had thought that the source of all troubles was the
ugly form of relativistic Hamiltonian H = /P2 + m?2 in the coordinate basis, and that he
could solve all the problems with the Klein-Gordon equation by rewriting the Hamiltonian

as a first-order differential operator

. 0
H = p-a + m = Dirac equation Za_zf = —id-V¢ + mpy  (27)

where a1, a9, a3, f are matrices acting on a multi-component wave function. Specifically, all

four of these matrices are Hermitian, square to 1, and anticommute with each other,
{oi, 5} = 2055, {8} =0, B = L. (28)
Consequently
L2 . . . .
(@-p)" = qioy xpip; = Hou, a5} x pip; = 0y x pip; = P, (29)
and therefore
72 - - 2 ~ a2 A 2 2 % 2
Hfjipae = (a-p+ﬁm) = (a~p) + {ai, B} xpim + B°xm” = p2 + 0 + m*. (30)

This, the Dirac Hamiltonian squares to p? + m?, as it should for the relativistic particle.



The Dirac equation is the equation of motion for a Dirac spinor field ¥(x), comprising 4

complex component fields W, (z) arranged in a column vector
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and transforming under the continuous Lorentz symmetries 2’# = L', 2" according to
U(2') = Mp(L)¥(x). (32)
The classical Euler-Lagrange equation of motion for the spinor field is the Dirac equation

i%\ll + i@ VU — mBY = 0. (33)

To recast this equation in a Lorentz-covariant form, let
B =19 a'= " (34)

it is easy to see that if the v# matrices obey the anticommutation relations (5) then the &
and  matrices obey the relations (28) and vice verse. Now let’s multiply the whole LHS of
the Dirac equation (33) by the 8 = 7°:

0=7° <i80 + 799 .V — mfyO)\If(cc) = <z”yoﬁo + iy'0; — m)¥(x), (35)

and hence

(iv"0, — m)¥(z) = 0. (36)

As expected from lf[]% = p2 + m?, the Dirac equation for the spinor field implies the

irac

Klein-Gordon equation for each component ¥, (z). Indeed, if ¥(x) obey the Dirac equation,



then obviously
(=iv"0y, — m) x (17"0y — m)¥(z) = 0, (37)

but the differential operator on the LHS is equal to the Klein-Gordon m? + 9% times a unit

matrix:

(38)
The Dirac equation (36) transforms covariantly under the Lorentz symmetries —
its LHS transforms exactly like the spinor field itself.
Proof: Note that since the Lorentz symmetries involve the z# coordinates as well as the

spinor field components, the LHS of the Dirac equation becomes

(in*a), — m)¥'(z) (39)
where
%= Gon = g e — (L)) X (1)
Consequently,
oV () = (L‘l): x Mp(L) 0,V (x) (41)
and hence
POV (2!) = (L‘l): x Y Mp(L) 0,¥(x). (42)

But according to eq. (23),
Mp (LM Mp(L) = Lhy" = A*Mp(L) = LY, x Mp(L)y”
= (L"), x"Mp(L) = Mp(L)Y",
S0
V0,9 (2") = Mp(L) x v"9,¥(x). (44)

Altogether,

(100 = m)V(a) —— (0] — )W) = Mp(L) x (20, — m)¥(a), (49

Lorentz

which proves the covariance of the Dirac equation.



Dirac Lagrangian

The Dirac equation is a first-order differential equation, so to obtain it as an Euler—
Lagrange equation, we need a Lagrangian which is linear rather than quadratic in the spinor

field’s derivatives. Thus, we want
L = VUx ("9, — m)V (46)

where U(z) is some kind of a conjugate field to the W(x). Since V¥ is a complex field, we
treat ¥ and U as linearly-independent from each other, so the Euler-Lagrange equation for

the U immediately gives us the Dirac equation for the W(z) field,

oL oL
5~ Yo = (07— m¥ — 0) ()

To keep the action S = [d*zL Lorentz-invariant, the Lagrangian (46) should transform
as a Lorentz scalar, £/'(2') = L(z). In light of eq. (19) for the ¥(z) field and covariance (45)

of the Dirac equation, the conjugate field ¥(x) should transform according to
(') = U(z) x MBl(L) — ['(2)) = L(2). (48)

Note that the Mp(L) matrix is generally not unitary, so the inverse matrix Mp(L) in
eq. (48) is different from the hermitian conjugate Mg(L). Consequently, the conjugate
field W(z) cannot be identified with the hermitian conjugate field UT(z), since the latter

transforms to
V() = Ol(e) x M (L) # O(2) x M;Y(L). (49)
Instead of the hermitian conjugate, we are going to use the Dirac conjugate spinor, see below.

Dirac conjugates:
Let ¥ be a 4-component Dirac spinor and I' be any 4 x 4 matrix; we define their Dirac

conjugates according to
U =0 x~% T = 4"xIT x40 (50)

Thanks to 799° = 1, the Dirac conjugates behave similarly to hermitian conjugates or

transposed matrices:



e For a a product of 2 matrices, (I'y x I'y) = I'y x Ty.

Likewise, for a matrix and a spinor, (I' x ¥) = ¥ x T

e The Dirac conjugate of a complex number is its complex conjugate, (¢ x 1) = ¢* x 1.

For any two spinors ¥; and ¥y and any matrix I, U TUy = (WQF\IQ)*.

o The Dirac spinor fields are fermionic, so they anticommute with each other, even
in the classical limit. Nevertheless, (\I/L\IJB)T = —HIIE\IIOC, and therefore for any
matrix I’ U TUy = +(@2F\I/1)*.

The point of the Dirac conjugation (50) is that it works similarly for all four Dirac

matrices v,

o= (51)

Proof: For ;1 = 0, the 4¥ is hermitian, hence

0 = 200 = 149900 = 110 (52)

For 1 =i =1,2,3, the 4* are anti-hermitian and also anticommute with the 4%, hence
7 =0 = % = %Y = (53)
Corollary: The Dirac conjugate of the matrix
Mp(L) = exp(—5£0,,5") (19)

representing any continuous Lorentz symmetry L = exp(©) is the inverse matrix

Mp(L) = MpH(L) = exp(+40,,5"). (54)

Proof: Let
X = —40,5" = +10u[*,7"] = +10unr” (55)
for some real antisymmetric Lorentz parameters ©,, = —6,,,. The Dirac conjugate of the
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X matrix is

X = 10wt = JO,7T" = 10w = 10w = —10w"y" = —X. (56)
Consequently,
(57)
and hence
1 — 1
SO0 = X 4% = S L0 = enx) 58
n n

In light of eq. (55), this means

exp(—%@uyS/“’) = exp(—l—%@wS””), (59)

that is,

Mp(L) = Mp'(L). (60)

The Dirac Lagrangian:
Thanks to the theorem (60), the conjugate field ¥(z) in the Lagrangian (46) is simply the
Dirac conjugate of the Dirac spinor field ¥(x),

U(z) = Ul(z) x4, (61)

which transforms under Lorentz symmetries as

U (z') = U(x') = Mp(L) x ¥(z) = ¥U(r) x Mp(z) = ¥(x) x MBl(L). (62)
Consequently, the Dirac Lagrangian
L= Ux (i 9, —m)¥ = VAEVER (iv"0, — m)V (46)

is a Lorentz scalar and the action is Lorentz invariant.
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