Dirac Matrices and Lorentz Spinors

The Dirac Matrices γ^{μ} generalize the anti-commutation properties of the Pauli matrices σ^{i} to the $3+1$ Minkowski dimensions:

$$
\begin{equation*}
\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \times \mathbf{1}_{4 \times 4} \tag{5}
\end{equation*}
$$

The γ^{μ} are 4×4 matrices, but there are several different conventions for their specific form.

The γ^{0} matrix is hermitian while the γ^{1}, γ^{2}, and γ^{3} matrices are anti-hermitian. Apart from that, the specific forms of the matrices are not important, the physics follows from the anticommutation relations (5).

In 4D, the vector product becomes the antisymmetric tensor product,

$$
\begin{equation*}
S^{\mu \nu}=-S^{\nu \mu} \stackrel{\text { def }}{=} \frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right] \tag{7}
\end{equation*}
$$

Thanks to the anti-commutation relations (5) for the γ^{μ} matrices, the $S^{\mu \nu}$ obey the commutation relations of the Lorentz generators $\hat{J}^{\mu \nu}=-\hat{J}^{\nu \mu}$. Moreover, the commutation relations of the spin matrices $S^{\mu \nu}$ with the Dirac matrices γ^{μ} are similar to the commutation relations of the $\hat{J}^{\mu \nu}$ with a Lorentz vector such as \hat{P}^{μ}.

Lemma:

$$
\begin{equation*}
\left[\gamma^{\lambda}, S^{\mu \nu}\right]=i g^{\lambda \mu} \gamma^{\nu}-i g^{\lambda \nu} \gamma^{\mu} \tag{8}
\end{equation*}
$$

Proof: Combining the definition (7) of the spin matrices as commutators with the anticommutation relations (5), we have

$$
\begin{equation*}
\gamma^{\mu} \gamma^{\nu}=\frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\nu}\right\}+\frac{1}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]=g^{\mu \nu} \times \mathbf{1}_{4 \times 4}-2 i S^{\mu \nu} \tag{9}
\end{equation*}
$$

Since the unit matrix commutes with everything, we have

$$
\begin{equation*}
\left[X, S^{\mu \nu}\right]=\frac{i}{2}\left[X, \gamma^{\mu} \gamma^{\nu}\right] \quad \text { for any matrix } X, \tag{10}
\end{equation*}
$$

and the commutator on the RHS may often be obtained from the Leibniz rules for the commutators or anticommutators:

$$
\begin{align*}
& {[A, B C]=[A, B] C+B[A, C]=\{A, B\} C-B\{A, C\},} \tag{11}\\
& \{A, B C\}=[A, B] C+B\{A, C\}=\{A, B\} C-B[A, C] .
\end{align*}
$$

In particular,

$$
\begin{equation*}
\left[\gamma^{\lambda}, \gamma^{\mu} \gamma^{\nu}\right]=\left\{\gamma^{\lambda}, \gamma^{\mu}\right\} \gamma^{\nu}-\gamma^{\mu}\left\{\gamma^{\lambda}, \gamma^{\nu}\right\}=2 g^{\lambda \mu} \gamma^{\nu}-2 g^{\lambda \nu} \gamma^{\mu} \tag{12}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left[\gamma^{\lambda}, S^{\mu \nu}\right]=\frac{i}{2}\left[\gamma^{\lambda}, \gamma^{\mu} \gamma^{\nu}\right]=i g^{\lambda \mu} \gamma^{\nu}-i g^{\lambda \nu} \gamma^{\mu} \tag{13}
\end{equation*}
$$

Theorem: The $S^{\mu \nu}$ matrices commute with each other like Lorentz generators,

$$
\begin{equation*}
\left[S^{\kappa \lambda}, S^{\mu \nu}\right]=i g^{\lambda \mu} S^{\kappa \nu}-i g^{\lambda \nu} S^{\kappa \mu}-i g^{\kappa \mu} S^{\lambda \nu}+i g^{\kappa \nu} S^{\lambda \mu} \tag{14}
\end{equation*}
$$

Proof: Again, we use the Leibniz rule and eq. (9):

$$
\begin{align*}
{\left[\gamma^{\kappa} \gamma^{\lambda}, S^{\mu \nu}\right]=} & \gamma^{\kappa}\left[\gamma^{\lambda}, S^{\mu \nu}\right]+\left[\gamma^{\kappa}, S^{\mu \nu}\right] \gamma^{\lambda} \\
= & \gamma^{\kappa}\left(i g^{\lambda \mu} \gamma^{\nu}-i g^{\lambda \nu} \gamma^{\mu}\right)+\left(i g^{\kappa \mu} \gamma^{\nu}-i g^{\kappa \nu} \gamma^{\mu}\right) \gamma^{\lambda} \\
= & i g^{\lambda \mu}\left(\gamma^{\kappa} \gamma^{\nu}=g^{\kappa \nu}-2 i S^{\kappa \nu}\right)-i g^{\lambda \nu}\left(\gamma^{\kappa} \gamma^{\mu}=g^{\kappa \mu}-2 i S^{\kappa \mu}\right) \tag{15}\\
& +i g^{\kappa \mu}\left(\gamma^{\nu} \gamma^{\lambda}=g^{\lambda \nu}+2 i S^{\lambda \nu}\right)-i g^{\kappa \nu}\left(\gamma^{\mu} \gamma^{\lambda}=g^{\lambda \mu}+2 i S^{\lambda \mu}\right) \\
= & 2 g^{\lambda \mu} S^{\kappa \nu}-2 g^{\lambda \nu} S^{\kappa \mu}-2 g^{\kappa \mu} S^{\lambda \nu}+2 g^{\kappa \nu} S^{\lambda \mu}
\end{align*}
$$

since all the $\pm i g^{\cdots} g^{\cdots}$ cancel each other, hence

$$
\begin{equation*}
\left[S^{\kappa \lambda}, S^{\mu \nu}\right]=\frac{i}{2}\left[\gamma^{\kappa} \gamma^{\lambda}, S^{\mu \nu}\right]=i g^{\lambda \mu} S^{\kappa \nu}-i g^{\lambda \nu} S^{\kappa \mu}-i g^{\kappa \mu} S^{\lambda \nu}+i g^{\kappa \nu} S^{\lambda \mu} \tag{16}
\end{equation*}
$$

In light of this theorem, the $S^{\mu \nu}$ matrices represent the Lorentz generators $\hat{J}^{\mu \nu}$ in the 4-component spinor multiplet.

Finite Lorentz transforms:

Any continuous Lorentz transform - a rotation, or a boost, or a product of a boost and a rotation - obtains from exponentiating an infinitesimal symmetry

$$
\begin{equation*}
X^{\prime \mu}=X^{\mu}+\epsilon^{\mu \nu} X_{\nu} \tag{17}
\end{equation*}
$$

where the infinitesimal $\epsilon^{\mu \nu}$ matrix is antisymmetric when both indices are raised (or both lowered), $\epsilon^{\mu \nu}=-\epsilon^{\nu \mu}$. Thus, the L_{ν}^{μ} matrix of any continuous Lorentz transform is a matrix exponential

$$
\begin{equation*}
L_{\nu}^{\mu}=\exp (\Theta)_{\nu}^{\mu} \equiv \delta_{\nu}^{\mu}+\Theta_{\nu}^{\mu}+\frac{1}{2} \Theta_{\lambda}^{\mu} \Theta_{\nu}^{\lambda}+\frac{1}{6} \Theta_{\lambda}^{\mu} \Theta_{\kappa}^{\lambda} \Theta_{\nu}^{\kappa}+\cdots \tag{18}
\end{equation*}
$$

of some matrix Θ that becomes antisymmetric when both of its indices are raised or lowered, $\Theta^{\mu \nu}=-\Theta^{\nu \mu}$. Note however that in the matrix exponential (18), the first index of Θ is raised while the second index is lowered, so the antisymmetry condition becomes $(g \Theta)^{\top}=-(g \Theta)$ instead of $\Theta^{\top}=-\Theta$.

The Dirac spinor representation of the finite Lorentz transform (18) is the 4×4 matrix

$$
\begin{equation*}
M_{D}(L)=\exp \left(-\frac{i}{2} \Theta_{\alpha \beta} S^{\alpha \beta}\right) \tag{19}
\end{equation*}
$$

The group law for such matrices

$$
\begin{equation*}
\forall L_{1}, L_{2} \in \mathrm{SO}^{+}(3,1), \quad M_{D}\left(L_{2} L_{1}\right)=M_{D}\left(L_{2}\right) M_{D}\left(L_{1}\right) \tag{20}
\end{equation*}
$$

follows automatically from the $S^{\mu \nu}$ satisfying the commutation relations (14) of the Lorentz generators. When the Dirac matrices γ^{μ} are sandwiched between the $M_{D}(L)$ and its inverse, they transform into each other as components of a Lorentz 4-vector,

$$
\begin{equation*}
M_{D}^{-1}(L) \gamma^{\mu} M_{D}(L)=L_{\nu}^{\mu} \gamma^{\nu} \tag{21}
\end{equation*}
$$

This formula makes the Dirac equation transform covariantly under the Lorentz transforms.

Proof: In light of the exponential form (19) of the matrix $M_{D}(L)$ representing a finite Lorentz transform in the Dirac spinor multiplet, let's use the multiple commutator formula (AKA the Hadamard Lemma): for any 2 matrices F and H,

$$
\begin{equation*}
\exp (-F) H \exp (+F)=H+[H, F]+\frac{1}{2}[[H, F], F]+\frac{1}{6}[[[H, F], F], F]+\cdots \tag{22}
\end{equation*}
$$

In particular, let $H=\gamma^{\mu}$ while $F=-\frac{i}{2} \Theta_{\alpha \beta} S^{\alpha \beta}$ so that $M_{D}(L)=\exp (+F)$ and $M_{D}^{-1}(L)=$ $\exp (-F)$. Consequently,

$$
\begin{equation*}
M_{D}^{-1}(L) \gamma^{\mu} M_{D}(L)=\gamma^{\mu}+\left[\gamma^{\mu}, F\right]+\frac{1}{2}\left[\left[\gamma^{\mu}, F\right], F\right]+\frac{1}{6}\left[\left[\left[\gamma^{\mu}, F\right], F\right], F\right]+\cdots \tag{23}
\end{equation*}
$$

where all the multiple commutators turn out to be linear combinations of the Dirac matrices. Indeed, the single commutator here is

$$
\begin{equation*}
\left[\gamma^{\mu}, F\right]=-\frac{i}{2} \Theta_{\alpha \beta}\left[\gamma^{\mu}, S^{\alpha \beta}\right]=\frac{1}{2} \Theta_{\alpha \beta}\left(g^{\mu \alpha} \gamma^{\beta}-g^{\mu \beta} \gamma^{\alpha}\right)=\Theta_{\alpha \beta} g^{\mu \alpha} \gamma^{\beta}=\Theta_{\lambda}^{\mu} \gamma^{\lambda} \tag{24}
\end{equation*}
$$

while the multiple commutators follow by iterating this formula:

$$
\begin{equation*}
\left[\left[\gamma^{\mu}, F\right], F\right]=\Theta_{\lambda}^{\mu}\left[\gamma^{\lambda}, F\right]=\Theta_{\lambda}^{\mu} \Theta_{\nu}^{\lambda} \gamma^{\nu}, \quad\left[\left[\left[\gamma^{\mu}, F\right], F\right], F\right]=\Theta_{\lambda}^{\mu} \Theta_{\rho}^{\lambda} \Theta_{\nu}^{\rho} \gamma^{\nu}, \ldots \tag{25}
\end{equation*}
$$

Combining all these commutators as in eq. (23), we obtain

$$
\begin{align*}
M_{D}^{-1} \gamma^{\mu} M_{D} & =\gamma^{\mu}+\left[\gamma^{\mu}, F\right]+\frac{1}{2}\left[\left[\gamma^{\mu}, F\right], F\right]+\frac{1}{6}\left[\left[\left[\gamma^{\mu}, F\right], F\right], F\right]+\cdots \\
& =\gamma^{\mu}+\Theta_{\nu}^{\mu} \gamma^{\nu}+\frac{1}{2} \Theta_{\lambda}^{\mu} \Theta^{\lambda} \gamma^{\nu}+\frac{1}{6} \Theta_{\lambda}^{\mu} \Theta_{\rho}^{\lambda} \Theta^{\rho}{ }_{\nu} \gamma^{\nu}+\cdots \\
& =\left(\delta_{\nu}^{\mu}+\Theta_{\nu}^{\mu}+\frac{1}{2} \Theta_{\lambda}^{\mu} \Theta_{\nu}^{\lambda}+\frac{1}{6} \Theta_{\lambda}^{\mu} \Theta_{\rho}^{\lambda} \Theta_{\nu}^{\rho}+\cdots\right) \gamma^{\nu} \tag{26}\\
& \equiv L_{\nu}^{\mu} \gamma^{\nu} .
\end{align*}
$$

Dirac Equation and Dirac Spinor Fields

Dirac had thought that the source of all troubles was the ugly form of relativistic Hamiltonian $\hat{H}=\sqrt{\hat{\mathbf{p}}^{2}+m^{2}}$ in the coordinate basis, and that he could solve all the problems with the Klein-Gordon equation by rewriting the Hamiltonian as a first-order differential operator

$$
\begin{equation*}
\hat{H}=\hat{\mathbf{p}} \cdot \vec{\alpha}+m \beta \quad \Longrightarrow \quad \text { Dirac equation } i \frac{\partial \psi}{\partial t}=-i \vec{\alpha} \cdot \nabla \psi+m \beta \psi \tag{27}
\end{equation*}
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta$ are matrices acting on a multi-component wave function. Specifically, all four of these matrices are Hermitian, square to 1 , and anticommute with each other,

$$
\begin{equation*}
\left\{\alpha_{i}, \alpha_{j}\right\}=2 \delta_{i j}, \quad\left\{\alpha_{i}, \beta\right\}=0, \quad \beta^{2}=1 \tag{28}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
(\vec{\alpha} \cdot \hat{\mathbf{p}})^{2}=\alpha_{i} \alpha_{j} \times \hat{p}_{i} \hat{p}_{j}=\frac{1}{2}\left\{\alpha_{i}, \alpha_{j}\right\} \times \hat{p}_{i} \hat{p}_{j}=\delta_{i j} \times \hat{p}_{i} \hat{p}_{j}=\hat{\mathbf{p}}^{2} \tag{29}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\hat{H}_{\text {Dirac }}^{2}=(\vec{\alpha} \cdot \hat{\mathbf{p}}+\beta m)^{2}=(\vec{\alpha} \cdot \hat{\mathbf{p}})^{2}+\left\{\alpha_{i}, \beta\right\} \times \hat{p}_{i} m+\beta^{2} \times m^{2}=\hat{\mathbf{p}^{2}}+0+m^{2} \tag{30}
\end{equation*}
$$

This, the Dirac Hamiltonian squares to $\hat{\mathbf{p}}^{2}+m^{2}$, as it should for the relativistic particle.

The Dirac equation is the equation of motion for a Dirac spinor field $\Psi(x)$, comprising 4 complex component fields $\Psi_{\alpha}(x)$ arranged in a column vector

$$
\Psi(x)=\left(\begin{array}{c}
\Psi_{1}(x) \tag{31}\\
\Psi_{2}(x) \\
\Psi_{3}(x) \\
\Psi_{4}(x)
\end{array}\right)
$$

and transforming under the continuous Lorentz symmetries $x^{\mu}=L_{\nu}^{\mu} x^{\nu}$ according to

$$
\begin{equation*}
\Psi^{\prime}\left(x^{\prime}\right)=M_{D}(L) \Psi(x) \tag{32}
\end{equation*}
$$

The classical Euler-Lagrange equation of motion for the spinor field is the Dirac equation

$$
\begin{equation*}
i \frac{\partial}{\partial t} \Psi+i \vec{\alpha} \cdot \nabla \Psi-m \beta \Psi=0 \tag{33}
\end{equation*}
$$

To recast this equation in a Lorentz-covariant form, let

$$
\begin{equation*}
\beta=\gamma^{0}, \quad \alpha^{i}=\gamma^{0} \gamma^{i} \tag{34}
\end{equation*}
$$

it is easy to see that if the γ^{μ} matrices obey the anticommutation relations (5) then the $\vec{\alpha}$ and β matrices obey the relations (28) and vice verse. Now let's multiply the whole LHS of the Dirac equation (33) by the $\beta=\gamma^{0}$:

$$
\begin{equation*}
0=\gamma^{0}\left(i \partial_{0}+i \gamma^{0} \vec{\gamma} \cdot \nabla-m \gamma^{0}\right) \Psi(x)=\left(i \gamma^{0} \partial_{0}+i \gamma^{i} \partial_{i}-m\right) \Psi(x) \tag{35}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi(x)=0 \tag{36}
\end{equation*}
$$

As expected from $\hat{H}_{\text {Dirac }}^{2}=\hat{\mathbf{p}}^{2}+m^{2}$, the Dirac equation for the spinor field implies the Klein-Gordon equation for each component $\Psi_{\alpha}(x)$. Indeed, if $\Psi(x)$ obey the Dirac equation,
then obviously

$$
\begin{equation*}
\left(-i \gamma^{\nu} \partial_{\nu}-m\right) \times\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi(x)=0 \tag{37}
\end{equation*}
$$

but the differential operator on the LHS is equal to the Klein-Gordon $m^{2}+\partial^{2}$ times a unit matrix:

$$
\begin{equation*}
\left(-i \gamma^{\nu} \partial_{\nu}-m\right)\left(i \gamma^{\mu} \partial_{\mu}-m\right)=m^{2}+\gamma^{\nu} \gamma^{\mu} \partial_{\nu} \partial_{\mu}=m^{2}+\frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\nu}\right\} \partial_{\nu} \partial_{\mu}=m^{2}+g^{\mu \nu} \partial_{\nu} \partial_{\mu} \tag{38}
\end{equation*}
$$

The Dirac equation (36) transforms covariantly under the Lorentz symmetries its LHS transforms exactly like the spinor field itself.
Proof: Note that since the Lorentz symmetries involve the x^{μ} coordinates as well as the spinor field components, the LHS of the Dirac equation becomes

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}^{\prime}-m\right) \Psi^{\prime}\left(x^{\prime}\right) \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
\partial_{\mu}^{\prime} \equiv \frac{\partial}{\partial x^{\prime \mu}}=\frac{\partial x^{\nu}}{\partial x^{\prime \mu}} \times \frac{\partial}{\partial x^{\nu}}=\left(L^{-1}\right)_{\mu}^{\nu} \times \partial_{\nu} \tag{40}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\partial_{\mu}^{\prime} \Psi^{\prime}\left(x^{\prime}\right)=\left(L^{-1}\right)_{\mu}^{\nu} \times M_{D}(L) \partial_{\nu} \Psi(x) \tag{41}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\gamma^{\mu} \partial_{\mu}^{\prime} \Psi^{\prime}\left(x^{\prime}\right)=\left(L^{-1}\right)_{\mu}^{\nu} \times \gamma^{\mu} M_{D}(L) \partial_{\nu} \Psi(x) \tag{42}
\end{equation*}
$$

But according to eq. (23),

$$
\begin{align*}
M_{D}^{-1}(L) \gamma^{\mu} M_{D}(L)=L_{\nu}^{\mu} \gamma^{\nu} & \Longrightarrow \gamma^{\mu} M_{D}(L)=L_{\nu}^{\mu} \times M_{D}(L) \gamma^{\nu} \\
& \Longrightarrow\left(L^{-1}\right)_{\mu}^{\nu} \times \gamma^{\mu} M_{D}(L)=M_{D}(L) \gamma^{\nu} \tag{43}
\end{align*}
$$

so

$$
\begin{equation*}
\gamma^{\mu} \partial_{\mu}^{\prime} \Psi^{\prime}\left(x^{\prime}\right)=M_{D}(L) \times \gamma^{\nu} \partial_{\nu} \Psi(x) \tag{44}
\end{equation*}
$$

Altogether,

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi(x) \underset{\text { Lorentz }}{ }\left(i \gamma^{\mu} \partial_{\mu}^{\prime}-m\right) \Psi^{\prime}\left(x^{\prime}\right)=M_{D}(L) \times\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi(x) \tag{45}
\end{equation*}
$$

which proves the covariance of the Dirac equation.

Dirac Lagrangian

The Dirac equation is a first-order differential equation, so to obtain it as an EulerLagrange equation, we need a Lagrangian which is linear rather than quadratic in the spinor field's derivatives. Thus, we want

$$
\begin{equation*}
\mathcal{L}=\bar{\Psi} \times\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi \tag{46}
\end{equation*}
$$

where $\bar{\Psi}(x)$ is some kind of a conjugate field to the $\Psi(x)$. Since Ψ is a complex field, we treat Ψ and $\bar{\Psi}$ as linearly-independent from each other, so the Euler-Lagrange equation for the $\bar{\Psi}$ immediately gives us the Dirac equation for the $\Psi(x)$ field,

$$
\begin{equation*}
0=\frac{\partial \mathcal{L}}{\partial \bar{\Psi}}-\partial_{\mu} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \bar{\Psi}}=\left(i \gamma^{\nu} \partial_{\nu}-m\right) \Psi-\partial_{\mu}(0) \tag{47}
\end{equation*}
$$

To keep the action $S=\int d^{4} x \mathcal{L}$ Lorentz-invariant, the Lagrangian (46) should transform as a Lorentz scalar, $\mathcal{L}^{\prime}\left(x^{\prime}\right)=\mathcal{L}(x)$. In light of eq. (19) for the $\Psi(x)$ field and covariance (45) of the Dirac equation, the conjugate field $\bar{\Psi}(x)$ should transform according to

$$
\begin{equation*}
\bar{\Psi}^{\prime}\left(x^{\prime}\right)=\bar{\Psi}(x) \times M_{D}^{-1}(L) \quad \Longrightarrow \quad \mathcal{L}^{\prime}\left(x^{\prime}\right)=\mathcal{L}(x) \tag{48}
\end{equation*}
$$

Note that the $M_{D}(L)$ matrix is generally not unitary, so the inverse matrix $M_{D}^{-1}(L)$ in eq. (48) is different from the hermitian conjugate $M_{D}^{\dagger}(L)$. Consequently, the conjugate field $\bar{\Psi}(x)$ cannot be identified with the hermitian conjugate field $\Psi^{\dagger}(x)$, since the latter transforms to

$$
\begin{equation*}
\Psi^{\prime \dagger}\left(x^{\prime}\right)=\Psi^{\dagger}(x) \times M_{D}^{\dagger}(L) \neq \Psi^{\dagger}(x) \times M_{D}^{-1}(L) \tag{49}
\end{equation*}
$$

Instead of the hermitian conjugate, we are going to use the Dirac conjugate spinor, see below.

Dirac conjugates:

Let Ψ be a 4 -component Dirac spinor and Γ be any 4×4 matrix; we define their Dirac conjugates according to

$$
\begin{equation*}
\bar{\Psi}=\Psi^{\dagger} \times \gamma^{0}, \quad \bar{\Gamma}=\gamma^{0} \times \Gamma^{\dagger} \times \gamma^{0} \tag{50}
\end{equation*}
$$

Thanks to $\gamma^{0} \gamma^{0}=1$, the Dirac conjugates behave similarly to hermitian conjugates or transposed matrices:

- For a a product of 2 matrices, $\overline{\left(\Gamma_{1} \times \Gamma_{2}\right)}=\bar{\Gamma}_{2} \times \bar{\Gamma}_{1}$.
- Likewise, for a matrix and a spinor, $\overline{(\Gamma \times \Psi)}=\bar{\Psi} \times \bar{\Gamma}$.
- The Dirac conjugate of a complex number is its complex conjugate, $\overline{(c \times \mathbf{1})}=c^{*} \times \mathbf{1}$.
- For any two spinors Ψ_{1} and Ψ_{2} and any matrix $\Gamma, \bar{\Psi}_{1} \bar{\Gamma} \Psi_{2}=\left(\bar{\Psi}_{2} \Gamma \Psi_{1}\right)^{*}$.
- The Dirac spinor fields are fermionic, so they anticommute with each other, even in the classical limit. Nevertheless, $\left(\Psi_{\alpha}^{\dagger} \Psi_{\beta}\right)^{\dagger}=+\Psi_{\beta}^{\dagger} \Psi_{\alpha}$, and therefore for any matrix $\Gamma, \bar{\Psi}_{1} \bar{\Gamma} \Psi_{2}=+\left(\bar{\Psi}_{2} \Gamma \Psi_{1}\right)^{*}$.

The point of the Dirac conjugation (50) is that it works similarly for all four Dirac matrices γ^{μ},

$$
\begin{equation*}
\overline{\gamma^{\mu}}=+\gamma^{\mu} . \tag{51}
\end{equation*}
$$

Proof: For $\mu=0$, the γ^{0} is hermitian, hence

$$
\begin{equation*}
\overline{\gamma^{0}}=\gamma^{0}\left(\gamma^{0}\right)^{\dagger} \gamma^{0}=+\gamma^{0} \gamma^{0} \gamma^{0}=+\gamma^{0} \tag{52}
\end{equation*}
$$

For $\mu=i=1,2,3$, the γ^{i} are anti-hermitian and also anticommute with the γ^{0}, hence

$$
\begin{equation*}
\overline{\gamma^{i}}=\gamma^{0}\left(\gamma^{i}\right)^{\dagger} \gamma^{0}=-\gamma^{0} \gamma^{i} \gamma^{0}=+\gamma^{0} \gamma^{0} \gamma^{i}=+\gamma^{i} \tag{53}
\end{equation*}
$$

Corollary: The Dirac conjugate of the matrix

$$
\begin{equation*}
M_{D}(L)=\exp \left(-\frac{i}{2} \Theta_{\mu \nu} S^{\mu \nu}\right) \tag{19}
\end{equation*}
$$

representing any continuous Lorentz symmetry $L=\exp (\Theta)$ is the inverse matrix

$$
\begin{equation*}
\bar{M}_{D}(L)=M_{D}^{-1}(L)=\exp \left(+\frac{i}{2} \Theta_{\mu \nu} S^{\mu \nu}\right) \tag{54}
\end{equation*}
$$

Proof: Let

$$
\begin{equation*}
X=-\frac{i}{2} \Theta_{\mu \nu} S^{\mu \nu}=+\frac{1}{8} \Theta_{\mu \nu}\left[\gamma^{\mu}, \gamma^{\nu}\right]=+\frac{1}{4} \Theta_{\mu \nu} \gamma^{\mu} \gamma^{\nu} \tag{55}
\end{equation*}
$$

for some real antisymmetric Lorentz parameters $\Theta_{\mu \nu}=-\Theta_{\nu \mu}$. The Dirac conjugate of the
X matrix is

$$
\begin{equation*}
\bar{X}=\overline{\frac{1}{4} \Theta_{\mu \nu} \gamma^{\mu} \gamma^{\nu}}=\frac{1}{4} \Theta_{\mu \nu}^{*} \bar{\gamma}^{\nu} \bar{\gamma}^{\mu}=\frac{1}{4} \Theta_{\mu \nu} \gamma^{\nu} \gamma^{\mu}=\frac{1}{4} \Theta_{\nu \mu} \gamma^{\mu} \gamma^{\nu}=-\frac{1}{4} \Theta_{\mu \nu} \gamma^{\mu} \gamma^{\nu}=-X \tag{56}
\end{equation*}
$$

Consequently,
$\overline{X^{2}}=\bar{X} \times \bar{X}=+X^{2}, \quad \overline{X^{3}}=\overline{X \times X^{2}}=\overline{X^{2}} \times \bar{X}=-X^{3}, \quad \ldots, \quad \overline{X^{n}}=(-X)^{n}$,
and hence

$$
\begin{equation*}
\overline{\exp (X)}=\sum_{n} \frac{1}{n!} \overline{X^{n}}=\sum_{n} \frac{1}{n!}(-X)^{n}=\exp (-X) \tag{58}
\end{equation*}
$$

In light of eq. (55), this means

$$
\begin{equation*}
\overline{\exp \left(-\frac{i}{2} \Theta_{\mu \nu} S^{\mu \nu}\right)}=\exp \left(+\frac{i}{2} \Theta_{\mu \nu} S^{\mu \nu}\right) \tag{59}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\bar{M}_{D}(L)=M_{D}^{-1}(L) \tag{60}
\end{equation*}
$$

The Dirac Lagrangian:

Thanks to the theorem (60), the conjugate field $\bar{\Psi}(x)$ in the Lagrangian (46) is simply the Dirac conjugate of the Dirac spinor field $\Psi(x)$,

$$
\begin{equation*}
\bar{\Psi}(x)=\Psi^{\dagger}(x) \times \gamma^{0} \tag{61}
\end{equation*}
$$

which transforms under Lorentz symmetries as

$$
\begin{equation*}
\bar{\Psi}^{\prime}\left(x^{\prime}\right)=\overline{\Psi^{\prime}\left(x^{\prime}\right)}=\overline{M_{D}(L) \times \Psi(x)}=\bar{\Psi}(x) \times \bar{M}_{D}(x)=\bar{\Psi}(x) \times M_{D}^{-1}(L) . \tag{62}
\end{equation*}
$$

Consequently, the Dirac Lagrangian

$$
\begin{equation*}
\mathcal{L}=\bar{\Psi} \times\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi=\Psi^{\dagger} \gamma^{0} \times\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi \tag{46}
\end{equation*}
$$

is a Lorentz scalar and the action is Lorentz invariant.

