Problem 1 (8.1):
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Problem 2 (8.2):
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Integrate over k° with a contour integral in the complex plain. When t > ¢/
(vice t < t'), the contour is closed in the lower (vice upper) half-plane so that
R(—iko(t —t')) < 0. Closing up includes a pole at —w + i, for w = vm? + k2,
and closing down gets the pole at w — i€ with a minus sign because the countour
is clockwise. Computing the residues yields
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Figure 1: Contours and poles in the kg plane.



Problem 3:

Start with
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Since the §(t — t’) is well-defined only in the context of an integration over ¢ or
t’, its derivative is defined in terms of integration by parts, so that
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Using this, we have
(=02 +m?)if(t —t) / dk =) — gt — ') / d( — w? + k2 + m2)etke—2)
+o(t—1t) / dk wetk(@=")
1 B3k . N /
— 25t -+t ik(x—x")  —iw(t—t")
20t =) / 2r)3° ‘
oo~ a)
= _§(xr—=
2
We got the last line by using w? = k2 + m? and noting that, because §(t — t')

vanishes unless ¢ = ¢/, we can set e (=) to 1. The second term in (195)
yields an identical contribution.





