
mathematical methods - week 2

Eigenvalue problems

Georgia Tech PHYS-6124
Homework HW #2 due Wednesday, September 4, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort

Exercise 2.1 Three masses on a loop 8 points

Bonus points
Exercise 2.2 A simple stable/unstable manifolds pair 4 points

edited September 9, 2019

21



22 MATHEMATICAL METHODS - WEEK 2. EIGENVALUE PROBLEMS

Week 2 syllabus Monday, August 26, 2019

• Intro to normal modes: example 2.1 Vibrations of a classical CO2 molecule

• Work through Grigoriev notes 8 Normal modes

• Linear stability : example 2.2 Stable/unstable manifolds

• Optional reading: Stone & Goldbart Appendix A; Arfken & Weber Arfken and
Weber [1] Chapter 3

• Optional: Work through Grigoriev notes p. 6.6 crankshaft;

The big idea of this is week is symmetry: If our physical problem is defined by a (per-
haps complicated) Hamiltonian H, another matrix M (hopefully a very simple matrix)
is a symmetry if it commutes with the Hamiltonian

[M,H] = 0 . (2.1)

Than we can use the spectral decomposition (1.37) of M to block-diagonalize H into
a sum of lower-dimensional sub-matrices,

H =
∑
i

Hi , Hi = PiHPi , (2.2)

and thus significantly simplify the computation of eigenvalues and eigenvectors of H,
the matrix of physical interest.

2.1 Normal modes
Example 2.1. Vibrations of a classical CO2 molecule: Consider one carbon and
two oxygens constrained to the x-axis [1] and joined by springs of stiffness k, as shown
in figure 2.1. Newton’s second law says

ẍ1 = − k

M
(x1 − x2)

ẍ2 = − k

m
(x2 − x3)− k

m
(x2 − x1)

ẍ3 = − k

M
(x3 − x2) . (2.3)

The normal modes, with time dependence xj(t) = xj exp(itω) , are the common fre-
quency ω vibrations that satisfy (2.3),

Hx =

 A −A 0
−a 2 a −a
0 −A A

x1

x2

x3

 = ω2

x1

x2

x3

 , (2.4)

where a = k/m, A = k/M . Secular determinant det (H− ω21) = 0 now yields a cubic
equation for ω2.

http://ChaosBook.org/~predrag/courses/PHYS-6124-19/ln8.pdf
http://www.chaosbook.org/~predrag/courses/PHYS-6124-19/StGoAppA.pdf
http://chaosbook.org/~predrag/courses/PHYS-6124-19/ln6.pdf
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Figure 2.1: A classical colinear CO2 molecule [1].

You might be tempted to stick this [3×3] matrix into Mathematica or whatever, but
please do that in some other course. What would understood by staring at the output?
In this course we think.

First thing to always ask yourself is: does the system have a symmetry? Yes! Note
that the CO2 molecule (2.3) of figure 2.1 is invariant under x1 ↔ x3 interchange, i.e.,
coordinate relabeling by matrix σ that commutes with our law of motion H,

σ =

0 0 1
0 1 0
1 0 0

 , σH = Hσ =

 0 −A A
−a 2 a −a
A −A 0

 . (2.5)

We can now use the symmetry operator σ to simplify the calculation. As σ2 =
1, its eigenvalues are ±1, and the corresponding symmetrization, anti-symmetrization
projection operators (1.43) are

P+ =
1

2
(1 + σ) , P− =

1

2
(1− σ) . (2.6)

The dimensions di = trPi of the two subspaces are

d+ = 2 , d− = 1 . (2.7)

As σ and H commute, we can now use spectral decomposition (1.37) to block-diagonalize
H to a 1-dimensional and a 2-dimensional matrix.

On the 1-dimensional antisymmetric subspace, the trace of a [1×1] matrix equals
its sole matrix element equals it eigenvalue

λ− = HP− =
1

2
(trH− trHσ) = (a+A)− a =

k

M
,

so the corresponding eigenfrequency is ω2
− = k/M . To understand its physical mean-

ing, write out the antisymmetric subspace projection operator (2.7) explicitly. Its non-
vanishing columns are proportional to the sole eigenvector

P− =
1

2

 1 0 −1
0 0 0
−1 0 1

 ⇒ e(−) =

 1
0
−1

 . (2.8)

In this subspace the outer oxygens are moving in opposite directions, with the carbon
stationary.

On the 2-dimensional symmetric subspace, the trace yields the sum of the remain-
ing two eigenvalues

λ+ + λ0 = trHP+ =
1

2
(trH + trHσ) = (a+A) + a =

k

M
+ 2

k

m
.
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We could disentangle the two eigenfrequencies by evaluating trH2P+, for example, but
thinking helps again.

There is still another, translational symmetry, so obvious that we forgot it; if we
change the origin of the x-axis, the three coordinates xj → xj − δx change, for any
continuous translation δx, but the equations of motion (2.3) do not change their form,

Hx = Hx + H δx = ω2x ⇒ H δx = 0 . (2.9)

So any translation e(0) = δx = (δx, δx, δx) is a nul, ‘zero mode’ eigenvector of H
in (2.5), with eigenvalue λ0 = ω2

0 = 0, and thus the remaining eigenfrequency is
ω2

+ = k/M + 2 k/m. As we can add any nul eigenvector e(0) to the corresponding
e(+) eigenvector, there is some freedom in choosing e(+). One visualization of the cor-
responding eigenvector is the carbon moving opposite to the two oxygens, with total
momentum set to zero.

2.2 Stable/unstable manifolds

Figure 2.2: The stable/unstable manifolds
of the equilibrium (xq, xq) = (0, 0) of 2-
dimensional flow (2.10).

y

x

Example 2.2. A simple stable/unstable manifolds pair: Consider the 2-dimensional
ODE system

dx

dt
= −x, dy

dt
= y + x2 , (2.10)

The flow through a point x(0) = x0, y(0) = y0 can be integrated

x(t) = x0 e
−t, y(t) = (y0 + x2

0/3) et − x2
0 e
−2t/3 . (2.11)

Linear stability of the flow is described by the stability matrix

A =

(
−1 0
2x 1

)
. (2.12)

The flow is hyperbolic, with a real expanding/contracting eigenvalue pair λ1 = 1, λ2 =
−1, and area preserving. The right eigenvectors at the point (x, y)

e(1) =

(
0
1

)
, e(2) =

(
1
−x

)
. (2.13)

can be obtained by acting with the projection operators (see example 1.2 Decomposition
of 2-dimensional vector spaces)

Pi =
A− λj1
λi − λj

: P1 =

[
0 0
x 1

]
, P2 =

[
1 0
−x 0

]
(2.14)
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Figure 2.3: Three identical masses are constrained to move on a hoop, connected by
three identical springs such that the system wraps completely around the hoop. Find
the normal modes.

on an arbitrary vector. Matrices Pi are orthonormal and complete.
The flow has a degenerate pair of equilibria at (xq, yq) = (0, 0), with eigenvalues

(stability exponents), λ1 = 1, λ2 = −1, eigenvectors e(1) = (0, 1), e(2) = (1, 0). The
unstable manifold is the y axis, and the stable manifold is given by (see figure 2.2)

y0 +
1

3
x2

0 = 0⇒ y(t) +
1

3
x(t)2 = 0 . (2.15)

(N. Lebovitz)
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Exercises
2.1. Three masses on a loop. Three identical masses, connected by three identical springs,

are constrained to move on a circle hoop as shown in figure 2.3. Find the normal modes.
Hint: write down coupled harmonic oscillator equations, guess the form of oscillatory
solutions. Then use basic matrix methods, i.e., find zeros of a characteristic determinant,
find the eigenvectors, etc.. See also Exercise 13.1. (Kimberly Y. Short)

2.2. A simple stable/unstable manifolds pair. Integrate flow (2.10), verify (2.11).
Check that the projection matrices Pi (2.14) are orthonormal and complete. Use them
to construct right and left eigenvectors; check that they are mutually orthogonal. Explain
why is (2.15) the equation for the stable manifold. (N. Lebovitz)

http://books.google.com/books?vid=ISBN9780120598762
http://books.google.com/books?vid=ISBN9780120598762

