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This homework is optional (meaning that you will get bonus points for problems worked

through), but you are encouraged to read through this set of problems, alert me if there

are topics you feel need a review. Recommendation: do 3 and 4 first, then 6 and 7, and

then which ever (if any) that interest you. Homework assignments will be posted on the

web latest on Tuesday and will be due next Tuesday in class.

1) R. P. Agnew’s snow plow problem (after Bender and Orszag , as are probs. 2 and

3 and quite a few more, this semester): One day it started snowing at a heavy and steady

rate. A snow plow started out at noon, going two miles the first hour and one mile the

second hour. What time did it start snowing? [Hint: The speed of the plow is inversely

proportional to the depth of the snow.]

You may also wish to try the more sophisticated version due to M. S. Klamkin, known

as The great snow plow chase: One day it started snowing at a heavy and steady rate.

Three identical snow plows started out at noon, 1 p.m., and 2 p.m., from the same place,

and all collided at the same time. What time did it start snowing? When did the snow

plows collide?

2) Four caterpillars: Four caterpillars, initially at rest at the four corners of a square

centered at the origin, start walking counter-clockwise, each caterpillar walking directly

towards the one in front of him. If each caterpillar walks with unit velocity, show that

the trajectories satisfy the differential equation y′ = (y − x)/(y + x). By making the

substitution x = r cos θ, y = r sin θ show that the trajectories are logarithmic spirals.

3) Farmer and the pig: At t = 0, a pig, initially at the origin, runs along the x-axis

with constant speed v. At t = 0, a farmer, initially 20 m north of the origin, also runs

with constant speed v. If the farmer’s instantaneous velocity is always directed towards

the instantaneous position of the pig, show that the farmer never gets closer than 10 m

from the pig.

4) The needle of Georges Louis Leclerc, Comte de Buffon (1707-1788): A grid

of parallel lines, equally spaced, is drawn on the ground. A needle, of length equal to the

line spacing, is dropped at random. Show that the probability that the needle does not

intersect a line is given by 2/π. (This provides an experimental method for determining

π.) Generalize to the case in which the needle length need not equal the line spacing.

Note: A computational perspective on this first example of stochastic geometry is given by

W. Krauth in Algorithms and Computations (Oxford University Press, 2006), pp. 9-15.

5) The method of similarity: Consider a particle of mass m, which moves along a

certain trajectory r(t) according to the equation of motion mr̈ = −∂U/∂r. [Note the
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alternative notation: ∂/∂r ≡ ∇.] Suppose (as is usually the case) that the potential

energy U is independent of m.

a) Show that a particle of mass αm, moving in the same potential U , can follow the

trajectory R(t) = r(βt), and find the appropriate value of the constant β in terms of

the constant α.

b) By using the result of part (a) show that if the mass of a particle is decreased by a

factor of 4 then the particle can travel the same orbit in the same force field twice as

fast.

Suppose that the potential energy of a central force field is a homogeneous function of

degree ν. This means that U(r) = w(r) and w(γr) = γνw(r), where r ≡ |r|.
c) Show that if the curve r(t) is a classical trajectory then the (rescheduled, and inflated

or deflated) curve γr(εt) is also a classical trajectory, albeit with different initial con-

ditions, for some suitable choice of ε. If these trajectories are closed orbits, determine

the ratio of their periods.

d) Hence deduce that, in the linear regime, pendulum oscillations of any amplitude all

have the same period. State the value of ν to which this corresponds?

e) Similarly, deduce Kepler’s third law (see, e.g., Marion and Thornton, eq. 7.48). To

which value of ν does this correspond?

f) A desert animal has to cover great distances between sources of water. How does the

maximal time the animal can run depend on the size of the animal?

g) How does the running speed of an animal on level ground and uphill depend on the

size L of the animal?

h) How does the height of an animal’s jump depend on its size?

[Source for (f-h): V. I. Arnol’d, Mathematical Methods in Classical Mechanics, pp. 51-

52, who cites J. M. Smith, Mathematical Ideas in Biology (Cambridge, 1968).]

6) Separable ordinary differential equations: An ordinary differential equation is

said to be separable if it can be written in the form

y′ ≡ dy

dx
= a(x) b(y).

a) Show that the solution is given by∫ y(x) dt

b(t)
=

∫ x

ds a(s) + c ,

where c is a constant of integration.

b-1) Solve y′ = exp(x+ y).

b-2) Solve y′ = xy + x+ y + 1.

c) Discuss briefly the problem of determining whether the right hand side of y′ =

a(x) b(y) does indeed have the separable form a(x) b(y).
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7) Cartesian vectors: The aim of this question is to familiarize you with some of the

notational conventions that I shall be using throughout the course, and also to give you

some practice with summation convention.

Consider a Cartesian basis, {e1, e2, e3}, for 3-dimensional vectors x. Suppose that

the basis vectors are normalized to unity and are mutually orthogonal (i.e., they are or-

thonormal); then they possess the scalar products eµ · eν = δµν , where µ and ν take the

values 1, 2, or 3 (or x, y or z). Here, δµν is the Kronecker symbol, which equals 1 when

µ = ν, and equals 0 otherwise. You may think of this as the identity matrix δ11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 δ33

 =

 1 0 0
0 1 0
0 0 1

 .

An arbitrary vector x is a linear combination of basis vectors, x =
∑3
µ=1 xµeµ, with

the set of coefficients (called components) {xµ}3µ=1. Notice that we can extract a compo-

nent by taking the scalar product of a vector with the appropriate basis vector,

eµ · x = eµ ·
3∑

ν=1

xνeν =
3∑

ν=1

eµ · eνxν =
3∑

ν=1

δµνxν = xµ.

It is very useful to adopt a convention, called summation convention, in which sum-

mation is implied over any twice-repeated indices; for example

x =
3∑

µ=1

xµeµ ≡ xµeµ.

In true tensorial equations a given index, say µ, never need occur more than twice. Singly

occurring indices are called effective indices, whilst repeated indices are called dummy

indices and may be replaced by another index: e.g., x = xνeν = xµeµ. Dummy indices are

rather like dummy variables in integrals.

If two vectors a and b are equal then their components are equal, i.e., aµ = bµ. This

follows from taking the scalar product of both sides of the equation a = b with the basis

vector eµ. Notice that unrepeated indices balance throughout all terms of an equation.

For example, if a + b = c then aµ + bµ = cµ. Indices are only considered repeated if they

occur in the same term. For example, the equation aµ = bµ contains one effective index

and no repeated indices. Using eµ · eν = δµν and eµ · x = xµ, and also the definition of

δµν , verify the following statements:

a-1) x · x = xµxµ

a-2) x · y = xµyµ

a-3) δµν δνρ = δµρ

a-4) aµ = aνδνµ
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a-5) δµµ = 3.

Now consider scalar and vector fields, i.e., scalar-valued functions, f(x), and vector-

valued functions, g(x) = eµ gµ(x), of a position vector, x. For Cartesian coordinates, the

gradient operator ∇ is defined by

∇ ≡
3∑

µ=1

eµ
∂

∂xµ
= eµ

∂

∂xµ
= eµ ∂µ

where, for convenience, we have written ∂µ for ∂/∂xµ.

Verify the following results:

b-1) ∇ · g(x) = ∂µgµ(x)

b-2) ∇f(x) = eµ∂µf(x)

b-3) (x · ∇) f(x) = xµ ∂µf(x)

b-4) ∇ ·
(
∇f(x)

)
= ∇2f(x) where ∇2 ≡ ∂2

x + ∂2
y + ∂2

z = ∂µ∂µ

b-5) ∇ · x = ∂µ xµ = δµµ = 3

b-6) ∇(x · x) = 2 x

b-7) ∇2 (x · x) = 6

b-8) ∇|x| = x/|x|
b-9) ∂µ

(
xν/|x|

)
=
(
x2δµν − xµ xν

)
/x3 .

b-10) ∇2 (1/|x|) = −4π δ(x) [Hint: apply the divergence theorem]

b-11) ∇
(
x · g(x)

)
= g(x) + eµxν∂µgν(x)

b-12) ∇ ·
(
x f(x)

)
= 3 f(x) + (x · ∇) f(x)

b-13) For constant h,
∮

Γ
dx ·

(
1
2h×x

)
= πh · n, where Γ is a any circle of unit radius, and

the unit vector n specifies the axis of the circle and the sense in which it is traversed

[Hint: apply Stokes’s theorem]

b-14) ∇ exp(ik · x) = ik exp(ik · x)

b-15) f(x + a) = f(x) + (a · ∇)f(x) + · · · = ea·∇f(x).

8) More on Cartesian vectors: The purpose of this question is two-fold. Firstly,

we will investigate some of the properties of the vector product, denoted ×, and the

related differential operator, curl, denoted ∇×. Secondly, we will solve the problems using

summation convention so that we get some more practice with it. As with the previous

problem, we consider an orthonormal basis, {e1, e2, e3} (i.e., {ex, ey, ez}) for 3-dimensional

Cartesian vectors, x. The basis is said to be right-handed because

e1×e2 = e3

e2×e3 = e1

e3×e1 = e2.

We can express these relationships much more compactly using the symbol εµνρ, known as

the Levi-Civita symbol, or the antisymmetric third-rank tensor. This tensor takes on the
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following values in all Cartesian coordinate systems:

εµνρ =

{
+1, if µνρ = 123, 231, or 312;
−1, if µνρ = 132, 213, or 321;

0, otherwise.

Notice that εµνρ is totally antisymmetric, i.e., its value changes sign whenever any pair

of indices are exchanged, e.g., ε123 = −ε213 = 1. This requirement forces εµνρ to vanish

whenever two or more of its indices are the same, e.g. ε113 = 0. This property is extremely

useful, as we shall see, when it comes to proving certain results involving vector products

and the curl operator.

In terms of εµνρ, the vector products between basis vectors become

eµ×eν = εµνρ eρ,

where the implied summation on ρ recovers the previously-given results for the cases µ 6= ν,

and also includes results when µ = ν.

Starting with these definitions, and the results from the previous problem, if necessary,

verify the following statements using summation convention:

a-1) εµνρ εµστ = δνσ δρτ − δντ δρσ
a-2) εµνρ εµντ = 2 δρτ

a-3) εµνρ εµνρ = 6

a-4) A×B = AµBν εµνρ eρ

a-5) (A×B)ρ = AµBν εµνρ

a-6) A · (B×C) = εµνρAµBν Cρ

a-7) (A×B) ·C = (B×C) ·A
a-8) A×A = 0

a-9) A×(B×C) = (A ·C) B− (A ·B) C

Now consider scalar and vector fields, i.e., scalar-valued functions, f(x), and vector-

valued functions, g(x) = eµ gµ(x), of a position vector, x. The curl operator, ∇×, operates

on a vector field, g(x) to produce new vector field, denoted ∇×g(x). It is defined in the

following way:

∇×g(x) ≡
3∑

µ,ν,ρ=1

eµ εµνρ
∂

∂xν
gρ(x) = eµ εµνρ

∂

∂xν
gρ(x) = eµ εµνρ ∂ν gρ(x).

Using these definitions, verify the following statements:

b-1) ∇×x = 0

b-2) ∇× (H×x) = 2 H, for constant H

b-3) ∇ ·
(
∇×g(x)

)
= 0

b-4) ∇×
(
∇f(x)

)
= 0

b-5) ∇×
(
f(x) g(x)

)
= f ∇×g + (∇f)×g

b-6) ∇×
(
g(x)×h(x)

)
= g∇ · h− h∇ · g + (h · ∇) g − (g · ∇) h
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