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18.5 One verifies explicitly that the expression satisfies the equation of motion (18-5).
The constant in front is determined by requiringZ ∞

−∞
vx(y, t) dy =

Z ∞

−∞
vx(y, 0) dy

For t → 0 the Gaussian becomes infinitely narrow (a δ-function) and thus vx(y, t) →
vx(y, 0). Finally, assuming that vx(y, 0) = 0 for |y| ≤ a one gets for |y| → ∞ and
4νt À a2

vx(y, t) ≈ 1

2
√

πνt
exp

�
− y2

4νt

�Z ∞

−∞
vx(y′, 0) dy′ (18-A7)

18.6 a) The average of 〈ninj〉 over all directions of n does not itself depend on any
direction, so that it must be proportional to Kronecker’s delta, 〈ninj〉 = kδij . The
constant k is determined by taking the trace of both sides, 1 = 〈n2〉 = 3k.

18.7 a) L ≈ 10 km, U ≈ 1 m/s, Re ≈ 1010. b) L ≈ 30 m, U ≈ 30 m/s, Re ≈ ×109. c)
L ≈ 1000 km, U ≈ 10 m/s, Re ≈ 1012. d) L ≈ 500 km, U ≈ 50 m/s, Re ≈ 3× 1012. e)
L ≈ 1 km, U ≈ 100 m/s, Re ≈ 1010

19 Plates and tubes

19.1 Use the general solution (19-7) and the no-slip conditions to get

vx =
G

2η
y(d− y) + U

y

d

The maximum happens at y =
d

2
+

Uη

Gd
and lies between the plates for 2Uη < Gd2.

19.2 Let the pressure gradient be G along the x-direction and the relative plate ve-
locity U along the z-direction. Assume that the field is of the form v = (vx(y), 0, vz(y)).
Then the Navier-Stokes equations imply that p and vx are as in the planar pressure
driven case, whereas vz is as in the velocity driven case.

19.3 If pressure were used to drive the planar sheet, there would have to be a linearly
falling pressure along the open surface. But that is impossible because the open surface
requires constant pressure.

19.8 First calculate the “tensor product” of the cylindrical gradient operator (C-6)
with the velocity field,

rv = (er∇r + eφ∇φ + ez∇z)vz(r)ez = erez
dvz

dr
.

From this result we immediately recover that the divergence vanishes, r·v = Tr[rv] =
0, as well as the convective acceleration v · (rv) = 0. Dotting from the left with the
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gradient we obtain the Laplacian

r2v =r ·rv = (er∇r + eφ∇φ + ez∇z) · erez
dvz

dr

= ez
d2vz

dr2
+ ez

1

r

dvz

dr
= ez

1

r

d

dr

�
r
dvz

dr

�
19.9 The effective pressure gradient is G = ρ0g0 and the Reynolds number (19-24)
becomes

Re =
g0a

3

4ν2
(19-A1)

Solving for a we find

a =

�
4ν2

g0
Re

� 1
3

≈ 0.07 mm× Re
1
3 (19-A2)

19.10 The simplest way is to recognize that the mass dimension (kg) contained in ρ0

and η can only be removed by forming the ratio ν = η/ρ0 of dimension m2/s. Since
Q has dimension of m3/s, the time unit can only be removed by forming the ratio Q/ν
which has dimension of m. Finally, dividing with a, we get the dimensionless number
Q/νa which is proportional to the Reynolds number.

19.13

D = πa2∆p = 8πηULf(Re) , (19-A3)

P = πa2∆pU = 8πηU2Lf(Re) . (19-A4)

19.15 a) Use the no-slip boundary conditions on (19-20). b) The shear stress is

σzr(r) = η
dvz

dr
= −1

2
Gr +

ηA

r
.

The total drag per unit of length on the two inner surfaces becomes σzr(a)2πa −
σzr(b)2πb = πG(b2 − a2).

19.17 a) The pressure at the entrance to the pipe is p = p0 + ρ0g0h where p0 is the
air pressure. The effective pressure gradient in the tube is G = ρ0g0(1+h/L) and using
the Hagen-Poiseuille law (19-22) we get

Q = −πb2 dh

dt
=

πa4

8η
ρ0g0

�
1 +

h

L

�
b) Solving this equation one gets

L + h(t) = (L + h0)e
−t/τ , τ =

8b2Lν

a4g0

Emptying time is t0 = τ log(1+h0/L). c) For h0 ¿ L we have t0 = τh0/L = 8b2ν/a4g0.
The reason is that there is no extra hydrostatic pressure from the water in the tank,
but only the gradient due to gravity in the pipe.
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