
Chapter 15

Stretch, fold, prune

I.1. Introduction to conjugacy problems for diffeomor-
phisms. This is a survey article on the area of global anal-
ysis defined by differentiable dynamical systems or equiv-
alently the action (differentiable) of a Lie group G on a
manifold M. Here Diff(M) is the group of all diffeomor-
phisms of M and a diffeomorphism is a differentiable map
with a differentiable inverse. (. . . ) Our problem is to study
the global structure, i.e., all of the orbits of M.

—Stephen Smale, Differentiable Dynamical Systems

We have learned that the Rössler attractor is very thin, but otherwise the re-
turn maps that we found were disquieting – figure 3.3 did not appear to
be a one-to-one map. This apparent loss of invertibility is an artifact of

projection of higher-dimensional return maps onto their lower-dimensional sub-
spaces. As the choice of a lower-dimensional subspace is arbitrary, the resulting
snapshots of return maps look rather arbitrary, too. Such observations beg a ques-
tion: Does there exist a natural, intrinsic coordinate system in which we should
plot a return map?

We shall argue in sect. 15.1 that the answer is yes: The intrinsic coordinates
are given by the stable/unstable manifolds, and a return map should be plotted as
a map from the unstable manifold back onto the immediate neighborhood of the
unstable manifold. In chapter 5 we established that Floquet multipliers of periodic
orbits are (local) dynamical invariants. Here we shall show that every equilibrium
point and every periodic orbit carries with it stable and unstable manifolds which
provide topologically invariant global foliation of the state space. They will en-
able us to partition the state space in a dynamically invariant way, and assign
symbolic dynamics itineraries to trajectories.

The topology of stretching and folding fixes the relative spatial ordering of tra-
jectories, and separates the admissible and inadmissible itineraries. We illustrate
how this works on Hénon map example 15.3. Determining which symbol se-
quences are absent, or ‘pruned’ is a formidable problem when viewed in the state
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CHAPTER 15. STRETCH, FOLD, PRUNE 262

space, [x1, x2, ..., xd] coordinates. It is equivalent to the problem of determining
the location of all homoclinic tangencies, or all turning points of the Hénon attrac-
tor. They are dense on the attractor, and show no self-similar structure in the state
space coordinates. However, in the ‘danish pastry’ representation of sect. 15.3
(and the ‘pruned danish,’ in American vernacular, of sect.15.4), the pruning prob-
lem is visualized as crisply as the New York subway map; any itinerary which
strays into the ‘pruned region’ is banned.

The level is distinctly cyclist, in distinction to the pedestrian tempo of the
preceding chapter. Skip most of this chapter unless you really need to get into
nitty-gritty details of symbolic dynamics.

fast track:

chapter 16, p. 292

15.1 Goin’ global: stable/unstable manifolds

The complexity of this figure will be striking, and I shall
not even try to draw it.

— H. Poincaré, on his discovery of homoclinic tan-
gles, Les méthodes nouvelles de la méchanique céleste

The Jacobian matrix Jt transports an infinitesimal neighborhood, its eigenvalues
and eigen-directions describing deformation of an initial infinitesimal frame of

neighboring trajectories into a distorted frame time t later, as in figure4.1.
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Nearby trajectories separate exponentially along the unstable directions, approach
each other along the stable directions, and creep along the marginal directions.

The fixed point q Jacobian matrix J(x) eigenvectors (5.8) form a rectilinear
coordinate frame in which the flow into, out of, or encircling the fixed point is

linear in the sense of sect. 4.3.

J

+   x δ

δp

x0

0x +      x

The continuations of the span of the local stable, unstable eigen-directions into
global curvilinear invariant manifolds are called the stable, respectively unstable
manifolds. They consist of all points which march into the fixed point forward,
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CHAPTER 15. STRETCH, FOLD, PRUNE 263

respectively backward in time

W s =
{
x ∈ M : f t(x) − xq → 0 as t → ∞

}
Wu =

{
x ∈ M : f−t(x) − xq → 0 as t → ∞

}
. (15.1)

Eigenvectors e(i) of the monodromy matrix J(x) play a special role - on them the
action of the dynamics is the linear multiplication by Λi (for a real eigenvector)
along 1-dimensional invariant curve Wu,s

(i) or spiral in/out action in a 2-D surface
(for a complex pair). For t → ±∞ a finite segment on Ws

(c), respectively Wu
(e)

converges to the linearized map eigenvector e(c), respectively e(e), where (c), (e)

stand respectively for ‘contracting,’ ‘expanding.’ In this sense each eigenvector
defines a (curvilinear) axis of the stable, respectively unstable manifold.

example 15.2

p. 282

Actual construction of these manifolds is the converse of their definition (15.1):
one starts with an arbitrarily small segment of a fixed point eigenvector and lets
evolution stretch it into a finite segment of the associated manifold. As a periodic
point x on cycle p is a fixed point of fTp(x), the fixed point discussion that follows
applies equally well to equilibria and periodic orbits.

Expanding real and positive Floquet multiplier. Consider ith expanding eigen-
value, eigenvector pair (Λi, e(i)) computed from J = Jp(x) evaluated at a fixed
point x,

J(x)e(i)(x) = Λie(i)(x) , x ∈ Mp , Λi > 1 . (15.2)

Take an infinitesimal eigenvector e(i)(x), ||e(i)(x)|| = ε � 1, and its return Λie(i)(x)
after one period Tp. Sprinkle the straight interval between [ε,Λiε] ⊂ Wu

(i) with a

large number of points x(k), for example equidistantly spaced on logarithmic scale
between ln ε and lnΛi + ln ε . The successive returns of these points fTp(x(k)),
f 2Tp(x(k)), · · · , f mTp(x(k)) trace out the 1d curve Wu

(i) within the unstable manifold.
As separations between points tend to grow exponentially, every so often one
needs to interpolate new starting points between the rarified ones. Repeat for
−e(i)(x).

Contracting real and positive Floquet multiplier. Reverse the action of the
map backwards in time. This turns a contracting direction into an expanding one,
tracing out the curvilinear stable manifold Ws

(i) as a continuation of e(i).

Expanding/contracting real negative Floquet multiplier. As above, but every
even iterate f2Tp(x(k)), f 4Tp(x(k)), f 6Tp(x(k)) continues in the direction e(i), every
odd one in the direction −e(i).

Complex Floquet multiplier pair, expanding/contracting. The complex Flo-
quet multiplier pair {Λj,Λ j+1 = Λ

∗
j} has Floquet exponents (4.8) of form λ( j) =
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CHAPTER 15. STRETCH, FOLD, PRUNE 264

Figure 15.1: A 2d unstable manifold obtained by
continuation from the linearized neighborhood of a
complex eigenvalue pair of an unstable equilibrium
of plane Couette flow, a projection from a 61,506-
dimensional state space ODE truncation of the (∞-
dimensional) Navier-Stokes PDE. (J.F. Gibson, 8
Nov. 2005 blog entry [5])

μ( j) ± iω( j), with the sign of μ(k j) � 0 determining whether the linear neighbor-
hood is out / in spiralling. The orthogonal pair of real eigenvectors {Re e( j), Im e( j)}
spans a plane. T = 2π/ω( j) is the time of one turn of the spiral, JT Re e( j)(x) =
|Λ j|Re e( j)(x) . As in the real cases above, sprinkle the straight interval between
[ε, |Λ j|ε] along Re e( j)(x) with a large number of points x(k). The flow will now
trace out the 2d invariant manifold as an out / in spiralling strip. Two low-
dimensional examples are the unstable manifolds of the Lorenz flow, figure14.8 (a),
and the Rössler flow, figure 14.7 (a). For a highly non-trivial example, see fig-
ure 15.1.

The unstable manifolds of a flow are du-dimensional. Taken together with the
marginally stable direction along the flow, they are rather hard to visualize. A
more insightful visualization is offered by (d−1)-dimensional Poincaré sections
(3.2) with the marginal flow direction eliminated (see also sect. 3.1.2). Stable,
unstable manifolds for maps are defined by

Ŵ s =
{
x ∈ P : Pn(x) − xq → 0 as n → ∞

}
Ŵu =

{
x ∈ P : P−n(x) − xq → 0 as n → ∞

}
, (15.3)

where P(x) is the (d−1)-dimensional return map (3.1). In what follows, all invari-
ant manifolds Wu, W s will be restricted to their Poincaré sections Ŵu, Ŵ s.

example 15.3

p. 282

In general the full state space eigenvectors do not lie in a Poincaré section; the
eigenvectors ê( j) tangent to the section are given by (5.20). Furthermore, while in
the linear neighborhood of fixed point x the trajectories return with approximate
periodicity Tp, this is not the case for the globally continued manifolds; τ(x), or
the first return times (3.1) differ, and the Ŵu

( j) restricted to the Poincaré section is
obtained by continuing trajectories of the points from the full state space curve
Wu

( j) to the section P.

For long times the unstable manifolds wander throughout the connected er-
godic component, and are no more informative than an ergodic trajectory. For
example, the line with equitemporal knots in figure 15.1 starts out on a smoothly
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curved neighborhood of the equilibrium, but after a ‘turbulent’ episode decays
into an attractive equilibrium point. The trick is to stop continuing an invariant
manifold while the going is still good.
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15.2 Horseshoes

If you find yourself mystified by Smale’s article abstract quoted on page 266,
about ‘the action (differentiable) of a Lie group G on a manifold M,’ time has
come to bring Smale to everyman. If you still remain mystified by the end of
this chapter, reading chapter 19 might help; for example, the Liouville operators
form a Lie group of symplectic, or canonical transformations acting on the (p, q)
manifold.

If a flow is locally unstable but globally bounded, any open ball of initial
points will be stretched out and then folded. An example is a 3-dimensional in-
vertible flow sketched in figure 14.7 (a) which returns a Poincaré section of the
flow folded into a ‘horseshoe’ (we shall belabor this in figure 15.4). We now

exercise 15.1
offer two examples of locally unstable but globally bounded flows which return
an initial area stretched and folded into a ‘horseshoe,’ such that the initial area
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CHAPTER 15. STRETCH, FOLD, PRUNE 267

Figure 15.2: Binary labeling of trajectories of the
symmetric 3-disk pinball; a bounce in which the tra-
jectory returns to the preceding disk is labeled 0, and a
bounce which results in continuation to the third disk
is labeled 1.

Figure 15.3: The 3-disk game of pinball of fig-
ure 14.5, generated by starting from disk 1, pre-
ceded by disk 2, coded in binary, as in figure 15.2.
(a) Strips Msi. j which have survived a bounce in
the past and will survive a bounce in the future.
(b) Iteration corresponds to the decimal point shift;
for example, all points in the rectangle [1.01] map
into the rectangles [0.10], [0.11] in one iteration.

(a)

si
nØ

1

0

−1
−2.5 0 2.5s

0.0 1.1

0. .01. .1

0.1

1.0

(b)

si
n

θ

s

1.

0.01

0.010.01

0.

0.00

is intersected at most twice. We shall refer to such mappings with at most 2n

transverse self-intersections at the nth iteration as the once-folding maps.

The first example is the 3-disk game of pinball figure 14.5, which, for suf-
ficiently separated disks (see figure 14.6), is an example of a complete Smale
horseshoe. We start by exploiting its symmetry to simplify it, and then partition
its state space by its stable / unstable manifolds.

example 15.4

p. 283

The 3-disk repeller does not really look like a ‘horseshoe;’ the ‘fold’ is cut
out of the picture by allowing the pinballs that fly between the disks to fall off the
table and escape. Next example captures the ‘stretch & fold’ horseshoe dynamics
of return maps such as Rössler’s, figure 3.2.

example 15.5

p. 283

What is the significance of the subscript such as .011 which labels the M.011

future strip? The two strips M.0,M.1 partition the state space into two regions
labeled by the two-letter alphabet A = {0, 1}. S+ = .011 is the future itinerary
for all x ∈ M.011. Likewise, for the past strips all x ∈ Ms−m···s−1s0. have the past
itinerary S - = s−m · · · s−1s0 . Which partition we use to present pictorially the
regions that do not escape in m iterations is a matter of taste, as the backward
strips are the preimages of the forward ones

M0. = f (M.0) , M1. = f (M.1) .

Ω, the non–wandering set (2.3) of M., is the union of all points whose forward
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Figure 15.4: The Hénon map (15.20) for a = 6,
b = −1: fixed point 0 with segments of its sta-
ble, unstable manifolds Ws , Wu, and fixed point
1. (a) Their intersection bounds the region M. =

0BCD which contains the non–wandering set Ω.
(b) The intersection of the forward image f (M.)
with M. consists of two (future) strips M0., M1.,
with points BCD brought closer to fixed point 0
by the stable manifold contraction. (c) The inter-
section of the forward image f (M.) with the back-
ward backward f−1(M.) is a four-region cover of
Ω. (d) The intersection of the twice-folded for-
ward horseshoe f 2(M.) with backward horseshoe
f −1(M.). (e) The intersection of f 2(M.) with
f −2(M.) is a 16-region cover of Ω. Iteration yields
the complete Smale horseshoe non–wandering set
Ω, i.e., the union of all non-wandering points of f ,
with every forward fold intersecting every back-
ward fold. (P. Cvitanović and Y.
Matsuoka)
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0 W
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and backward trajectories remain trapped for all time, given by the intersections
of all images and preimages of M:

Ω =

{
x | x ∈ lim

m,n→∞
f m(M.)

⋂
f −n(M.)

}
. (15.6)

Two important properties of the Smale horseshoe are that it has a complete
binary symbolic dynamics and that it is structurally stable.

For a complete Smale horseshoe every forward fold fn(M) intersects transver-
sally every backward fold f−m(M), so a unique bi-infinite binary sequence can be
associated to every element of the non–wandering set. A point x ∈ Ω is labeled
by the intersection of its past and future itineraries S (x) = · · · s−2s−1s0.s1s2 · · ·,
where sn = s if f n(x) ∈ M.s , s ∈ {0, 1} and n ∈ Z.

remark A.1

The system is said to be structurally stable if all intersections of forward and
backward iterates of M remain transverse for sufficiently small perturbations f →
f + δ of the flow, for example, for slight displacements of the disks in the pinball
problem, or sufficiently small variations of the Hénon map parameters a, b. While

section 1.8
structural stability is exceedingly desirable, it is also exceedingly rare. About this,
more later.

section 24.2

15.3 Symbol plane

Consider a system for which you have succeeded in constructing a covering sym-
bolic dynamics, such as a well-separated 3-disk system. Now start moving the
disks toward each other. At some critical separation a disk will start blocking
families of trajectories traversing the other two disks. The order in which trajec-
tories disappear is determined by their relative ordering in space; the ones closest
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Figure 15.5: Kneading orientation preserving danish
pastry: mimic the horsheshoe dynamics of figure 15.6
by: (1) squash the unit square by factor 1/2, (2) stretch
it by factor 2, and (3) fold the right half back over the
left half.

B

A

A

B

B

A

to the intervening disk will be pruned first. Determining inadmissible itineraries
requires that we relate the spatial ordering of trajectories to their time ordered
itineraries.

exercise 15.8

So far we have rules that, given a state space partition, generate a temporally
ordered itinerary for a given trajectory. Our next task is the converse: given a
set of itineraries, what is the spatial ordering of corresponding points along the
trajectories? In answering this question we will be aided by Smale’s visualization
of the relation between the topology of a flow and its symbolic dynamics by means
of ‘horseshoes,’ such as figure 15.4.

15.3.1 Kneading danish pastry

The danish pastry transformation, the simplest baker’s transformation appropriate
to Hénon type mappings, yields a binary coordinatization of all possible periodic
points.

The symbolic dynamics of once-folding map is given by the danish pastry
transformation. This generates both the longitudinal and transverse alternating
binary tree. The longitudinal coordinate is given by the head of a symbolic se-
quence; the transverse coordinate is given by the tail of the symbolic sequence.
The dynamics on this space is given by symbol shift permutations; volume pre-
serving, with 2 expansion and 1/2 contraction.

For a better visualization of 2-dimensional non–wandering sets, fatten the in-
tersection regions until they completely cover a unit square, as in figure15.7.

exercise 15.3
exercise 15.4We shall refer to such a ‘map’ of the topology of a given ‘stretch & fold’ dynam-

ical system as the symbol square. The symbol square is a topologically accurate
representation of the non–wandering set and serves as a street map for labeling its
pieces. Finite memory of m steps and finite foresight of n steps partitions the sym-
bol square into rectangles [s−m+1 · · · s0.s1s2 · · · sn], such as those of figure 15.6. In
the binary dynamics symbol square the size of such rectangle is 2−m × 2−n; it cor-
responds to a region of the dynamical state space which contains all points that
share common n future and m past symbols. This region maps in a nontrivial way
in the state space, but in the symbol square its dynamics is exceedingly simple; all
of its points are mapped by the decimal point shift (14.13)

σ(· · · s−2s−1s0.s1s2s3 · · · ) = · · · s−2s−1s0s1.s2s3 · · · , (15.7)
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Figure 15.6: The dynamics maps two (past) strips
strips M.0, M.1 into two (future) strips M0., M1..
The corners are labeled to aid visualization. Note
that the BCGH strip is rotated by 180 degrees. (P.
Cvitanović and Y. Matsuoka)

(e)

0. 1.
.1

0

.0D

B

C

F

E

H

G

Figure 15.7: Kneading danish pastry: symbol
square representation of an orientation preserving
once-folding map obtained by fattening the Smale
horseshoe intersections of (a) figure 15.6 (b) fig-
ure 15.4 into a unit square. Also indicated: the
fixed points 0, 1 and the 2-cycle points {01,10}. In
the symbol square the dynamics maps rectangles
into rectangles by a decimal point shift.

(a) .1.0

0.

1.

0

1

(b)

01.

11.

00.

10.

.00 .01 .11 .10

0

01

10

1

Example 15.1 A Hénon repeller subshift: (continued from example 15.5) The
Hénon map acts on the binary partition as a shift map. Figure 15.6 illustrates ac-
tion f (M.0) = M0.. The square [01.01] gets mapped into the rectangles σ[01.01] =
[10.1] = {[10.10], [10.11]}, see figure 15.4 (e). Further examples can be gleaned from
figure 15.4.

As the horseshoe mapping is a simple repetitive operation, we expect a simple
relation between the symbolic dynamics labeling of the horseshoe strips, and their
relative placement. The symbol square points γ(S+) with future itinerary S+ are
constructed by converting the sequence of sn’s into a binary number by the algo-
rithm (14.4). This follows by inspection from figure 15.9. In order to understand
this relation between the topology of horseshoes and their symbolic dynamics, it
might be helpful to backtrace to sect. 14.4 and work through and understand first
the symbolic dynamics of 1-dimensional unimodal mappings.

Under backward iteration the roles of 0 and 1 symbols are interchanged; M−1
0

has the same orientation as M, while M−1
1 has the opposite orientation. We assign

exercise 15.5
to an orientation preserving once-folding map the past topological coordinate
δ = δ(S -) by the algorithm:

wn−1 =

{
wn if sn = 0
1 − wn if sn = 1 , w0 = s0

δ(S -) = 0.w0w−1w−2 . . . =

∞∑
n=1

w1−n/2
n . (15.8)

Such formulas are best derived by solitary contemplation of the action of a folding
map, in the same way we derived the future topological coordinate (14.4).
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Figure 15.8: Kneading orientation preserving
danish pastry: symbol square representation of an
orientation preserving once-folding map obtained
by fattening the intersections of two forward iter-
ates / two backward iterates of Smale horseshoe
into a unit square.
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Figure 15.9: Kneading danish pastry: symbol square
representation of an orientation preserving once-
folding map obtained by fattening the Smale horse-
shoe intersections of figure 15.4 (e) into a unit square.
Also indicated: the fixed points 0, 1, and the 3-cycle
points {011,110,101}. In the symbol square the dynam-
ics maps rectangles into rectangles by a decimal point
shift.
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The coordinate pair (δ, γ) associates a point (x, y) in the state space Cantor
set of figure 15.4 to a point in the symbol square of figure 15.9, preserving the
topological ordering. The symbol square [δ, γ] serves as a topologically faithful
representation of the non–wandering set of any once-folding map, and aids us in
partitioning the set and ordering the partitions for any flow of this type.



Résumé

In the preceding and this chapter we start with a d-dimensional state space and
end with a 1-dimensional return map description of the dynamics. The arc-length
parametrization of the unstable manifold maintains the 1-to-1 relation of the full
d-dimensional state space dynamics and its 1-dimensional return-map representa-
tion. To high accuracy no information about the flow is lost by its 1-dimensional
return map description. We explain why Lorenz equilibria are heteroclinically
connected (it is not due to the symmetry), and how to generate all periodic orbits
of Lorenz flow up to given length. This we do, in contrast to the rest of the thesis,
without any group-theoretical jargon to blind you with.

For 1-dimensional maps the folding point is the critical point, and easy to
determine. In higher dimensions, the situation is not so clear - one can attempt
to determine the (fractal set of) folding points by looking at their higher iterates
- due to the contraction along stable manifolds, the fold gets to be exponentially
sharper at each iterate. In practice this set is essentially uncontrollable for the
same reason the flow itself is chaotic - exponential growth of errors. We prefer to
determine a folding point by bracketing it by longer and longer cycles which can
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be determined accurately using variational methods of chapter33, irrespective of
their period.

For a generic dynamical system a subshift of finite type is the exception rather
than the rule. Its symbolic dynamics can be arbitrarily complex; even for the lo-
gistic map the grammar is finite only for special parameter values. Only some
repelling sets (like our game of pinball) and a few purely mathematical constructs
(called Anosov flows) are structurally stable - for most systems of interest an
infinitesimal perturbation of the flow destroys and/or creates an infinity of trajec-
tories, and specification of the grammar requires determination of pruning blocks
of arbitrary length. The repercussions are dramatic and counterintuitive; for ex-
ample, the transport coefficients such as the deterministic diffusion constant of
sect. 24.2 are emphatically not smooth functions of the system parameters. The
importance of symbolic dynamics is often under appreciated; as we shall see in
chapters 23 and 28, the existence of a finite grammar is the crucial prerequisite for
construction of zeta functions with nice analyticity properties. This generic lack
of structural stability is what makes nonlinear dynamics so hard.

The conceptually simpler finite subshift Smale horseshoes suffice to motivate
most of the key concepts that we shall need for time being. Our strategy is akin
to bounding a real number by a sequence of rational approximants; we converge
toward the non–wandering set under investigation by a sequence of self-similar
Cantor sets. The rule that everything to one side of the pruning front is forbid-
den is striking in its simplicity: instead of pruning a Cantor set embedded within
some larger Cantor set, the pruning front cleanly cuts out a compact region in the
symbol square, and that is all - there are no additional pruning rules. A ‘self-
similar’ Cantor set (in the sense in which we use the word here) is a Cantor set
equipped with a subshift of finite type symbol dynamics, i.e., the corresponding
grammar can be stated as a finite number of pruning rules, each forbidding a finite
subsequence s1s2 . . . sn . Here the notation s1s2 . . . sn stands for n consecutive
symbols s11, s2, . . . , sn, preceded and followed by arbitrary symbol strings.

The symbol square is a useful tool in transforming topological pruning into
pruning rules for inadmissible sequences; those are implemented by constructing
transition matrices and/or graphs, see chapters 17 and 18.



CHAPTER 15. STRETCH, FOLD, PRUNE 283

Example 15.5 A Hénon repeller complete horseshoe: (continued from exam-
ple 3.6) Consider 2-dimensional Hénon map

exercise 3.5

(xn+1, yn+1) = (1 − ax2
n + byn, xn) . (15.20)

If you start with a small ball of initial points centered around the fixed point x0, and
iterate the map, the ball will be stretched and squashed along the unstable manifold
Wu

0 . Iterated backward in time,

(xn−1, yn−1) = (yn,−b−1(1 − ay2
n − xn)) , (15.21)

this small ball of initial points traces out the stable manifold W s
0 . Their intersections

enclose the region M. , figure 15.4 (a). Any point outside W s
0 border of M. escapes

to infinity forward in time, while –by time reversal– any point outside W u
0 border arrives

from infinity back in paste. In this way the unstable - stable manifolds define topologi-
cally, invariant and optimal initial region M .; all orbits that stay confined for all times are
confined to M. .

The Hénon map models qualitatively the Poincaré section return map of fig-
ure 14.7 (b). For b = 0 the Hénon map reduces to the parabola (14.5), and, as shown
in sects. 3.3 and 33.1, for b � 0 it is kind of a fattened parabola; by construction, it takes
a rectangular initial area and returns it bent as a horseshoe. Parameter a controls the
amount of stretching, while the parameter b controls the amount of compression of the
folded horseshoe. For definitiveness, fix the parameter values to a = 6, b = −1; the
map is then strongly stretching but area preserving, the furthest away from the strongly
dissipative examples discussed in sect. 14.2. The map is quadratic, so it has 2 fixed
points x0 = f (x0), x1 = f (x1) indicated in figure 15.4 (a). For the parameter values at
hand, they are both unstable.

smale - 16jan2014 ChaosBook.org version15.8, Oct 18 2016



CHAPTER 15. STRETCH, FOLD, PRUNE 284

Iterated one step forward, the region M. is stretched and folded into a Smale
horseshoe drawn in figure 15.4 (b). Label the two forward intersections f (M.) ∩M. by
Ms., with s ∈ {0, 1}. The horseshoe consists of the two strips M0.,M1. , and the bent
segment that lies entirely outside the W s

0 line. As all points in this segment escape to
infinity under forward iteration, this region can safely be cut out and thrown away.

Iterated one step backwards, the region M. is again stretched and folded into
a horseshoe, figure 15.4 (c). As stability and instability are interchanged under time
reversal, this horseshoe is transverse to the forward one. Again the points in the horse-
shoe bend wander off to infinity as n → −∞, and we are left with the two (past) strips
M.0,M.1 . Iterating two steps forward we obtain the four strips M11.,M01.,M00.,M10.,
and iterating backwards we obtain the four strips M.00,M.01,M.11,M.10 transverse to
the forward ones just as for 3-disk pinball game figure 15.2. Iterating three steps for-
ward we get an 8 strips, and so on ad infinitum. (continued in example 15.1)

click to return: p. 267
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Exercises

15.1. A Smale horseshoe. The Hénon map of example 3.6

[
x′

y′

]
=

[
1 − ax2 + by
x

]
(15.25)

maps the [x, y] plane into itself - it was constructed
by Hénon [6] in order to mimic the Poincaré section
of once-folding map induced by a flow like the one
sketched in figure 14.7. For definitiveness fix the pa-
rameters to a = 6, b = −1.

a) Draw a rectangle in the (x, y) plane such that its
nth iterate by the Hénon map intersects the rectan-
gle 2n times.

b) Construct the inverse of the (15.25).

c) Iterate the rectangle back in the time; how many
intersections are there between the n forward and
m backward iterates of the rectangle?

d) Use the above information about the intersections
to guess the (x, y) coordinates for the two fixed
points, a 2-periodic point, and points on the two
distinct 3-cycles from table 18.1. The exact peri-
odic points are computed in exercise 16.11.

15.2. A simple stable/unstable manifolds pair. Integrate
flow (15.12), verify (15.13). Check that the projection
matrices Pi (15.16) are orthonormal and complete. Use
them to construct right and left eigenvectors; check that
they are mutually orthogonal. Explain why is (15.17)
the equation for the stable manifold. (N. Lebovitz)

15.3. Kneading Danish pastry. Write down the (x, y) →
(x, y) mapping that implements the baker’s map

Figure: Kneading danish pastry: symbol square repre-
sentation of an orientation reversing once-folding map
obtained by fattening the Smale horseshoe intersections
of figure 15.4 into a unit square. In the symbol square
the dynamics maps rectangles into rectangles by a dec-
imal point shift. together with the inverse mapping.

Sketch a few rectangles in symbol square and their for-
ward and backward images. (Hint: the mapping is very
much like the tent map (14.20)).

15.4. Kneading danish without flipping. The baker’s map
of exercise 15.3 includes a flip - a map of this type is
called an orientation reversing once-folding map. Write
down the (x, y) → (x, y) mapping that implements an
orientation preserving baker’s map (no flip; Jacobian de-
terminant= 1). Sketch and label the first few folds of the
symbol square.

15.5. Orientation reversing once-folding map. By adding
a reflection around the vertical axis to the horseshoe map
g we get the orientation reversing map g̃ shown in the
second Figure above. Q̃0 and Q̃1 are oriented as Q0 and
Q1, so the definition of the future topological coordi-
nate γ is identical to the γ for the orientation preserving
horseshoe. The inverse intersections Q̃−1

0 and Q̃−1
1 are

oriented so that Q̃−1
0 is opposite to Q, while Q̃−1

1 has the
same orientation as Q. Check that the past topological
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coordinate δ is given by

wn−1 =

{
1 − wn if sn = 0
wn if sn = 1 , w0 = s0

δ(x) = 0.w0w−1w−2 . . . =

∞∑
n=1

w1−n/2n .(15.26)

15.6. Infinite symbolic dynamics. Let σ be a function that
returns zero or one for every infinite binary string: σ :
{0, 1}N → {0, 1}. Its value is represented by σ(ε1, ε2, . . .)
where the εi are either 0 or 1. We will now define an op-
erator T that acts on observables on the space of binary
strings. A function a is an observable if it has bounded
variation, that is, if

‖a‖ = sup
{εi}

|a(ε1, ε2, . . .)| < ∞ .

For these functions

T a(ε1, ε2, . . .) = a(0, ε1, ε2, . . .)σ(0, ε1, ε2, . . .)

+a(1, ε1, ε2, . . .)σ(1, ε1, ε2, . . .) .

(a) (easy) Consider a finite version T n of the operator
T :

Tna(ε1, ε2, . . . , ε1,n) =

a(0, ε1, ε2, . . . , εn−1)σ(0, ε1, ε2, . . . , εn−1) +

a(1, ε1, ε2, . . . , εn−1)σ(1, ε1, ε2, . . . , εn−1) .

Show that Tn is a 2n × 2n matrix. Show that its
trace is bounded by a number independent of n.

(b) (medium) With the operator norm induced by the
function norm, show that T is a bounded operator.

(c) (hard) Show that T is not trace class.

15.7. 3-disk fundamental domain cycles. (continued

from exercise 11.1) Try to sketch 0, 1, 01, 001, 011, · · · .
in the fundamental domain, and interpret the symbols
{0, 1} by relating them to topologically distinct types of
collisions. Compare with table 15.2. Then try to sketch
the location of periodic points in the Poincaré section of
the billiard flow. The point of this exercise is that while
in the configuration space longer cycles look like a hope-
less jumble, in the Poincaré section they are clearly and
logically ordered. The Poincaré section is always to be
preferred to projections of a flow onto the configuration
space coordinates, or any other subset of state space co-
ordinates which does not respect the topological organi-
zation of the flow.

15.8. 3-disk pruning. (Not easy) Show that for 3-disk
game of pinball the pruning of orbits starts at R : a =
2.04821419 . . . , figure 14.6. (K.T. Hansen)
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Mécanique Céleste (Goutelas 1989), p. 285.

[15.35] C. Simo, in Dynamics and Mission Design Near Libration Points, Vol. 1-
4, (World Sci. Pub., Monograph Ser. Math., 2000-2001).
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[15.62] F. Christiansen, P. Cvitanović and V. Putkaradze, “Hopf’s last hope: spa-
tiotemporal chaos in terms of unstable recurrent patterns,” Nonlinearity 10,
55 (1997); arXiv:chao-dyn/9606016.

[15.63] S.E. Newhouse, Topology 13, 9 (1974).

[15.64] S.E. Newhouse, Publ. Math. IHES 50, 101 (1979).

[15.65] E. Demidov, “Chaotic maps,” www.ibiblio.org/e-notes

refsSmale - 22apr2007 ChaosBook.org version15.8, Oct 18 2016




