stepsize Ar =0.1. The solutions have the shape expected from Section 2.3. =

Computers are indispensable for studying dynamical systems. We will use them
liberally throughout this book, and you should do likewise.

EXERCISES FOR CHAPTER 2

2.1 A Geometric Way of Thinking

In the next three exercises, interpret x = sin x as a flow on the line.
2.1.1  Find all the fixed points of the flow.
2.1.2 At which points x does the flow have greatest velocity to the right?

2.1.3
a) Find the flow’s acceleration ¥ as a function of x.
b) Find the points where the flow has maximum positive acceleration.

2.1.4 (Exact solution of x =sin x) As shown in the text, x =sin x has the solu-

tion = ln](csc x, +cotx,)f{cscx+ cotx)|, where x; = x(0) is the initial value

of x.

a) Given the specific initial condition x, = x/4, show that the solution above can
be inverted to obtain

x(f)=2tan"(l:[\5}

Conclude that x{t) = m as 1 — =0, as claimed in Section 2.1. (You need to be good

with trigonometric identities to solve this problem.)

b) Try to find the analytical solution for x(¢), given an arbitrary initial condition
Xy

2.1.5 (A mechanical analog)
a) Find a mechanical system that is approximately governed by x =sin x.

b) Using your physical intuition, explain why it now becomes obvious that x* =0
is an unstable fixed point and x* = & is stable.

2,2 Fixed Points and Stability

Analyze the following equations graphically. In each case, sketch the vector field
on the real line, find all the fixed points, classify their stability, and sketch the
graph of x(r) for different initial conditions. Then try for a few minutes to obtain
the analytical solution for x(¢); if you get stuck, don’t try for too long since in sev-
eral cases it’s impossible to solve the equation in closed form!
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22,1 i=4x"-16 222 x=1-x
223 x=x-x 224 x=¢e ‘sinx

225 x=l+Llcosx 226 x=1-2cosx

2.2,7 x=¢ —cosx (Hint: Sketch the graphs of ¢' and cos x on the same
axes, and look for intersections. You won’t be able to find the fixed points explic-
itly, but you can still find the qualitative behavior.)

2.2.8 (Working backwards, from flows to equations) Given an equation x = f(x),
we know how to sketch the corresponding flow on the real line. Here you are asked
to solve the opposite problem: For the phase portrait shown in Figure 1, find an
equation that is consistent with it. (There are an infinite number of correct an-
swers—and wrong ones too.}

—_— - @ -t -
-1 0 2
Figure 1

2.2.9 (Backwards again, now from solutions to equations) Find an equation
x = f(x) whose solutions x(t) are consistent with those shown in Figure 2.
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Figure 2

2.2.10 (Fixed points) For each of (a)-(e), find an equation x = f(x) with the
stated properties, or if there are no examples, explain why not. (In all cases, as-
sume that f{x) is a smooth function.)

a) Every real number is a fixed point.

b) Every integer is a fixed point, and there are no others.

¢) There are precisely three fixed points, and all of them are stable.

d) There are no fixed points.

e) There are precisely 100 fixed points.

2.2.11 (Analytical solution for charging capacitor) Obtain the analytical solu-

Q

tion of the initial value problem Q:E—R

Example 2.2.2.

, with Q(0) =0, which arose in

2.2.12 (A nonlinear resistor) Suppose the resistor in Example 2.2.2 is replaced

by a nonlinear resistor. In other words, this resistor does not have a linear
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a) Separate variables and integrate, using partial fracticns.

b) Make the change of variables x = 1/N. Then derive and solve the resulting dif-
ferential equation for x.

2.3.2 (Autocatalysis) Consider the model chemical reaction

in which one molecule of X combines with one melecule of A to form two mole-
cules of X . This means that the chemical X stimulates its own production, a process
called autocaralysis. This positive feedback process leads to a chain reaction, which
eventually is limited by a “back reaction” in which 2X returns to A+ X,

According to the law of mass action of chemical kinetics, the rate of an elemen-
tary reaction is proportional to the product of the concentrations of the reactants.
We denote the concentrations by lowercase letters x =[X] and a=[A]. Assume
that there’s an enormous surplus of chemical A, so that its concentration ¢ can be
regarded as constant. Then the equation for the kinetics of x is

x=kax—k_x°

where &, and k_, are positive parameters called rate constants.
a) Find all the fixed points of this equation and classify their stability.
b) Sketch the graph of x(r} for various initial values x, .

2.3.3 (Tumor growth) The growth of cancerous tumors can be modeled by the
Gompertz law N = 4N In(bN), where N(1) is proportional to the number of cells
in the tumor, and a.b > 0 are parameters.

a) Interpret a and b biologically.

b) Sketch the vector field and then graph N(r) for various initial values.

The predictions of this simple model agree surprisingly well with data on tumor
growth, as long as N is not too small; see Aroesty et al. (1973) and Newton { 1980)
for examples.

2.3.4 (The Allee effect) For certain species of organisms, the effective growth

rate N/N is highest at intermediate N This is the called the Allee effect (Edel-

stein~Keshet 1988). For example, imagine that it is too hard to find mates when N

is very small, and there is too much competition for food and other resources when

N is large.

a) Show that N/N = r- a(N —b)" provides an example of Allee effect, if r, a.
and & satisfy certain constraints. to be determined.

b) Find all the fixed points of the system and classify their stability.

¢) Sketch the solutions N(1) for different initial condifions.

d) Compare the solutions N{r) to those found for the logistic equation. What are
the qualitative differences, if any”
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2.4 Linear Stability Analysis

Use linear stability analysis to classify the fixed points of the following systems, If
linear stability analysis fails because f’(x*)=0, use a graphical argument to de-
cide the stability,

2.41 x=x(l-x) 242 x=x(I-x)2-x)

243 x-=tanx . 2.4:4 i=x(6-1x)

245 x=l-¢" 2.46 i=Inx

2.4.7 x=ax-x",where a canbe positive, negative, or zero. Discuss all three
cases.

2.4.8  Using linear stability analysis, classify the fixed points of the Gompertz
model of tumor growth N =—-aNIn(bN). (As in Exercise 2.3.3, N(r) is propor-
tional to the number of cells in the tumor and g,b > are parameters.)

2.4.9 (Critica! slowing down) In statistical mechanics, the phenomencn of

“critical slowing down” is a signature of a second-order phase transition. At the

transition, the system relaxes to equilibrium much more slowly than usual. Here’s

a mathematical version of the effect;

a) Obtain the analytical solution to X =—x" for an arbitrary initial condition.
Show that x(r) = 0 as t - ==, but that the decay is not exponential. (You
should find that the decay is a much slower algebraic function of ¢ .)

b} To get some intuition about the slowness of the decay, make a numerically ac-
curate plot of the solution for the initial condition x, =10, for 0<+<10. Then,
on the same graph, plot the solution to x = —x for the same initial condition.

2.5 Existence and Uniqueness

2.5.1 (Reaching a fixed point in a finite time) A particle travels on the half-line

x 2 0 with a velocity given by x = —x", where ¢ is real and constant.

a) Find all values of ¢ such that the origin x = 0 is a stable fixed point.

b) Now assume that ¢ is chosen such that x =0 is stable. Can the particle ever
reach the origin in a finite time? Specifically, how long does it take for the par-
ticle to travel from x =1 to x = 0, as a function of ¢ ?

2.5.2 (“Blow-up”: Reaching infinity in a finite time) Show that the solution to
x=1+x"" escapes to +e= in a finite time, starting from any initial condition.
(Hint: Don"t try to find an exact solution; instead, compare the solutions to those of
x=1+x7)

2.5.3 Consider the equation £=rx+x’, where r>0 is fixed. Show that
x(1) — Zee in finite time, starting from any initial condition x, = 0.

2.5.4 (Infinitely many solutions with the same initial condition) Show that the
initial value problem x = x'*, x(0) = 0, has an infinite number of selutions. (Hint:
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