4 CHAPTER 1. OVERTURE

Win (R iy
MEN ESCAPE <[ Aonm]” /)

ey /

Figure 1.1: A physicist's bare bones game of
pinball.

1.3 The future as in a mirror

All you need to know about chaos is contained in the
introduction of [ChaosBook]. However, in order to
understand the introduction you will first have to read
the rest of the book.

Gary Morriss

That deterministic dynamics leads to chaos is no surprise to anyone who
has tried pool, billiards or snooker — the game is about beating chaos —
so we start our story about what chaos is, and what to do about it, with
a game of pinball. This might seem a trifle, but the game of pinball is
to chaotic dynamics what a pendulum is to integrable systems: thinking
clearly about what “chaos” in a game of pinball is will help us tackle more
difficult problems, such as computing diffusion constants in deterministic
gases, or computing the helium spectrum.

We all have an intuitive feeling for what a ball does as it bounces among
the pinball machine’s disks, and only high-school level Euclidean geometry
is needed to describe its trajectory. A physicist’s pinball game is the game of
pinball stripped to its bare essentials: three equidistantly placed reflecting
disks in a plane, figure[[1 A physicist’s pinball is free, frictionless, point-
like, spin-less, perfectly elastic, and noiseless. Point-like pinballs are shot
at the disks from random starting positions and angles; they spend some
time bouncing between the disks and then escape.

At the beginning of the 18th century Baron Gottfried Wilhelm Leibniz
was confident that given the initial conditions one knew everything a deter-
ministic system would do far into the future. He wrote [[1]], anticipating
by a century and a half the oft-quoted Laplace’s “Given for one instant
an intelligence which could comprehend all the forces by which nature is
animated...”:

That everything is brought forth through an established destiny is
just as certain as that three times three is nine. [...] If, for example,
one sphere meets another sphere in free space and if their sizes and
their paths and directions before collision are known, we can then
foretell and calculate how they will rebound and what course they will
take after the impact. Very simple laws are followed which also apply,
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Figure 1.2: Sensitivity to initial conditions:
two pinballs that start out very close to each
other separate exponentially with time. 2313

no matter how many spheres are taken or whether objects are taken
other than spheres. From this one sees then that everything proceeds
mathematically — that is, infallibly — in the whole wide world, so that
if someone could have a sufficient insight into the inner parts of things,
and in addition had remembrance and intelligence enough to consider
all the circumstances and to take them into account, he would be a
prophet and would see the future in the present as in a mirror.

Leibniz chose to illustrate his faith in determinism precisely with the type
of physical system that we shall use here as a paradigm of “chaos”. His
claim is wrong in a deep and subtle way: a state of a physical system
can never be specified to infinite precision, there is no way to take all the
circumstances into account, and a single trajectory cannot be tracked, only
a ball of nearby initial points makes physical sense.

1.3.1 What is “chaos”?

I accept chaos. I am not sure that it accepts me.
Bob Dylan, |Bringing It All Back Home

A deterministic system is a system whose present state is in principle fully
determined by its initial conditions, in contrast to a stochastic system. For
a stochastic system the initial conditions determine the future only par-
tially, due to noise, or other external circumstances beyond our control:
the present state reflects the past initial conditions plus the particular re-
alization of the noise encountered along the way.

A deterministic system with sufficiently complicated dynamics can fool
us into regarding it as a stochastic one; disentangling the deterministic from
the stochastic is the main challenge in many real-life settings, from stock
markets to palpitations of chicken hearts. So, what is “chaos”?

In a game of pinball, any two trajectories that start out very close to
each other separate exponentially with time, and in a finite (and in practice,
a very small) number of bounces their separation dx(t) attains the magni-
tude of L, the characteristic linear extent of the whole system, figure
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This property of sensitivity to initial conditions can be quantified as
16x(t)] ~ e|0x(0)]

where A, the mean rate of separation of trajectories of the system, is called
the Lyapunov exponent. For any finite accuracy dz = |0x(0)| of the initial
data, the dynamics is predictable only up to a finite Lyapunov time

1
T yap ~ —Xln |ox/L|, (1.1)

despite the deterministic and, for Baron Leibniz, infallible simple laws that
rule the pinball motion.

A positive Lyapunov exponent does not in itself lead to chaos. One
could try to play 1- or 2-disk pinball game, but it would not be much of
a game; trajectories would only separate, never to meet again. What is
also needed is miring, the coming together again and again of trajectories.
While locally the nearby trajectories separate, the interesting dynamics is
confined to a globally finite region of the phase space and thus the separated
trajectories are necessarily folded back and can re-approach each other
arbitrarily closely, infinitely many times. For the case at hand there are
2™ topologically distinct n bounce trajectories that originate from a given
disk. More generally, the number of distinct trajectories with n bounces
can be quantified as

N(n)~ e

where the topological entropy h (h = 1n2 in the case at hand) is the growth
rate of the number of topologically distinct trajectories.

The appellation “chaos” is a confusing misnomer, as in deterministic
dynamics there is no chaos in the everyday sense of the word; everything
proceeds mathematically — that is, as Baron Leibniz would have it, infalli-
bly. When a physicist says that a certain system exhibits “chaos,” he means
that the system obeys deterministic laws of evolution, but that the outcome
is highly sensitive to small uncertainties in the specification of the initial
state. The word “chaos” has in this context taken on a narrow technical
meaning. If a deterministic system is locally unstable (positive Lyapunov
exponent) and globally mixing (positive entropy) - figure - it is said to
be chaotic.

While mathematically correct, the definition of chaos as “positive Lya-
punov + positive entropy” is useless in practice, as a measurement of these
quantities is intrinsically asymptotic and beyond reach for systems observed
in nature. More powerful is Poincaré’s vision of chaos as the interplay of
local instability (unstable periodic orbits) and global mixing (intertwining
of their stable and unstable manifolds). In a chaotic system any open ball
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Figure 1.3: Dynamics of a chaotic dynamical system is (a) everywhere locally unsta-

ble (positive Lyapunov exponent) and (b) globally mixing (positive entropy).
hansen)

of initial conditions, no matter how small, will in finite time overlap with
any other finite region and in this sense spread over the extent of the entire
asymptotically accessible phase space. Once this is grasped, the focus of
theory shifts from attempting to predict individual trajectories (which is
impossible) to a description of the geometry of the space of possible out-
comes, and evaluation of averages over this space. How this is accomplished
is what ChaosBook is about.

A definition of “turbulence” is even harder to come by. Intuitively,
the word refers to irregular behavior of an infinite-dimensional dynamical
system described by deterministic equations of motion - say, a bucket of
sloshing water described by the Navier-Stokes equations. But in practice
the word “turbulence” tends to refer to messy dynamics which we under-
stand poorly. As soon as a phenomenon is understood better, it is reclaimed
and renamed: “a route to chaos”, “spatiotemporal chaos”, and so on.

In ChaosBook we shall develop a theory of chaotic dynamics for low
dimensional attractors visualized as a succession of nearly periodic but un-
stable motions. In the same spirit, we shall think of turbulence in spatially
extended systems in terms of recurrent spatiotemporal patterns. Pictorially,
dynamics drives a given spatially extended system (clouds, say) through a
repertoire of unstable patterns; as we watch a turbulent system evolve, ev-
ery so often we catch a glimpse of a familiar pattern:

other swirls =—

For any finite spatial resolution, the system follows approximately for a
finite time a pattern belonging to a finite alphabet of admissible patterns,
and the long term dynamics can be thought of as a walk through the space
of such patterns. In ChaosBook we recast this image into mathematics.

ChaosBook.org/version11.9, Dec 4 2006 intro - 2dec2006

(A. Jo-

D appendix



D chapter

8 CHAPTER 1. OVERTURE

Figure 1.4: [Katherine Jones-Smith), "“Untitled
5," the drawing used by K. Jones-Smith and
R.P. Taylor to test the fractal analysis of Pol-

lock’s drip paintings [1.3].

1.3.2 When does “chaos” matter?

In dismissing Pollock’s fractals because of their lim-
ited magnification range, Jones-Smith and Mathur
would also dismiss half the published investigations
of physical fractals.

Richard P. Taylor| [T, [[H]

When should we be mindful of chaos? The solar system is “chaotic”,
yet we have no trouble keeping track of the annual motions of planets. The
rule of thumb is this; if the Lyapunov time ([[II) (the time by which a phase
space region initially comparable in size to the observational accuracy ex-
tends across the entire accessible phase space) is significantly shorter than
the observational time, you need to master the theory that will be devel-
oped here. That is why the main successes of the theory are in statistical
mechanics, quantum mechanics, and questions of long term stability in ce-
lestial mechanics.

In science popularizations too much has been made of the impact of
“chaos theory,” so a number of caveats are already needed at this point.

At present the theory is in practice applicable only to systems with a
low intrinsic dimension — the minimum number of coordinates necessary to
capture its essential dynamics. If the system is very turbulent (a descrip-
tion of its long time dynamics requires a space of high intrinsic dimension)
we are out of luck. Hence insights that the theory offers in elucidating
problems of fully developed turbulence, quantum field theory of strong in-
teractions and early cosmology have been modest at best. Even that is a
caveat with qualifications. There are applications — such as spatially ex-
tended (nonequilibrium) systems, plumber’s turbulent pipes, etc. — where
the few important degrees of freedom can be isolated and studied profitably
by methods to be described here.
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Thus far the theory has had limited practical success when applied to the
very noisy systems so important in the life sciences and in economics. Even
though we are often interested in phenomena taking place on time scales
much longer than the intrinsic time scale (neuronal interburst intervals, car-
diac pulses, etc.), disentangling “chaotic” motions from the environmental
noise has been very hard.

In 1980’s something happened that might be without parallel; this is
an area of science where the advent of cheap computation had actually
subtracted from our collective understanding The computer pictures and
numerical plots of fractal science of the 1980’s have overshadowed the deep
insights of the 1970’s, and these pictures have since migrated into text-
books. By a regrettable oversight, ChaosBook has none, so “Untitled 5”
of figure [[4] will have to do as the illustration of the power of fractal anal-
ysis. Fractal science posits that certain quantities (Lyapunov exponents,
generalized dimensions, ...) can be estimated on a computer. While some
of the numbers so obtained are indeed mathematically sensible characteri-
zations of fractals, they are in no sense observable and measurable on the
length-scales and time-scales dominated by chaotic dynamics.

Even though the experimental evidence for the fractal geometry of na-
ture is circumstantial [I.2], in studies of probabilistically assembled fractal
aggregates we know of nothing better than contemplating such quantities.
In deterministic systems we can do much better.

1.4 A game of pinball

Formulas hamper the understanding.
S. Smale

We are now going to get down to the brasstacks. Time to fasten your
seatbelts and turn off all electronic devices. But first, a disclaimer: If you
understand the rest of this chapter on the first reading, you either do not
need this book, or you are delusional. If you do not understand it, it is not
because the people who wrote it are smarter than you: the most you can
hope for at this stage is to get a flavor of what lies ahead. If a statement
in this chapter mystifies/intrigues, fast forward to a section indicated by

on the margin, read only the parts that you feel you need. Of course,
we think that you need to learn ALL of it, or otherwise we would not have
selected it in the first place.

Confronted with a potentially chaotic dynamical system, we analyze
it through a sequence of three distinct stages; I. diagnose, II. count, III.
measure. First we determine the intrinsic dimension of the system — the
minimum number of coordinates necessary to capture its essential dynam-
ics. If the system is very turbulent we are, at present, out of luck. We know
only how to deal with the transitional regime between regular motions and
chaotic dynamics in a few dimensions. That is still something; even an
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Figure 1.5: Binary labeling of the 3-disk pin-

ball trajectories; a bounce in which the trajec- ‘@70@ 2
tory returns to the preceding disk is labeled 0,
and a bounce which results in continuation to @ ;

the third disk is labeled 1.

infinite-dimensional system such as a burning flame front can turn out to
have a very few chaotic degrees of freedom. In this regime the chaotic dy-
namics is restricted to a space of low dimension, the number of relevant
parameters is small, and we can proceed to step II; we count and classify
all possible topologically distinct trajectories of the system into a hierarchy
whose successive layers require increased precision and patience on the part
of the observer. This we shall do in sect. [CZTl If successful, we can proceed
with step III: investigate the weights of the different pieces of the system.

D chapter [
D chapter

We commence our analysis of the pinball game with steps I, II: diagnose,
count. We shall return to step III — measure — in sect.
D chapter [

With the game of pinball we are in luck — it is a low dimensional system,
free motion in a plane. The motion of a point particle is such that after a
collision with one disk it either continues to another disk or it escapes. If we
label the three disks by 1, 2 and 3, we can associate every trajectory with
an itinerary, a sequence of labels indicating the order in which the disks are
visited; for example, the two trajectories in figure[[2have itineraries _2313_,
-23132321_ respectively. The itinerary is finite for a scattering trajectory,
coming in from infinity and escaping after a finite number of collisions,
infinite for a trapped trajectory, and infinitely repeating for a periodic orbit.
D O Parenthetically, in this subject the words “orbit” and “trajectory” refer to
vaze one and the same thing.

Such labeling is the simplest example of symbolic dynamics. As the
particle cannot collide two times in succession with the same disk, any two
consecutive symbols must differ. This is an example of pruning, a rule
that forbids certain subsequences of symbols. Deriving pruning rules is in
general a difficult problem, but with the game of pinball we are lucky -

there are no further pruning rules.
D chapter [ p &

The choice of symbols is in no sense unique. For example, as at each
bounce we can either proceed to the next disk or return to the previous
disk, the above 3-letter alphabet can be replaced by a binary {0,1} alpha-
bet, figure A clever choice of an alphabet will incorporate important

D et features of the dynamics, such as its symmetries.

Suppose you wanted to play a good game of pinball, that is, get the
pinball to bounce as many times as you possibly can — what would be a
winning strategy? The simplest thing would be to try to aim the pinball so
it bounces many times between a pair of disks — if you managed to shoot
it so it starts out in the periodic orbit bouncing along the line connecting
two disk centers, it would stay there forever. Your game would be just as
good if you managed to get it to keep bouncing between the three disks
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a) 1 1
3 3
12123 13132
b)
Figure 1.6: Some examples of 3-disk cycles: )
(a) 12123 and 13132 are mapped into each ¢
other by the flip across 1 axis. Similarly (b)
123 and 132 are related by flips, and (c) 1213,
1232 and 1323 by rotations. (d) The cycles ) )
121212313 and 121212323 are related by ro-
taion and time reversal. These symmetries are  d) 1 1
discussed in more detail in chapter P2 (from 3 3
ref. [1.6]) 121212313 121212323

forever, or place it on any periodic orbit. The only rub is that any such
orbit is unstable, so you have to aim very accurately in order to stay close
to it for a while. So it is pretty clear that if one is interested in playing
well, unstable periodic orbits are important — they form the skeleton onto
which all trajectories trapped for long times cling.

1.4.1 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting position and momentum.
We shall refer to the set of periodic points that belong to a given periodic
orbit as a cycle.

Short periodic orbits are easily drawn and enumerated - some examples
are drawn in figure [[A - but it is rather hard to perceive the systematics
of orbits from their shapes. In mechanics a trajectory is fully and uniquely
specified by its position and momentum at a given instant, and no two
distinct phase space trajectories can intersect. Their projections onto ar-
bitrary subspaces, however, can and do intersect, in rather unilluminating
ways. In the pinball example the problem is that we are looking at the pro-
jections of a 4-dimensional phase space trajectories onto a 2-dimensional
subspace, the configuration space. A clearer picture of the dynamics is
obtained by constructing a phase space Poincaré section.

Suppose that the pinball has just bounced off disk 1. Depending on its
position and outgoing angle, it could proceed to either disk 2 or 3. Not much
happens in between the bounces — the ball just travels at constant velocity
along a straight line — so we can reduce the four-dimensional flow to a two-
dimensional map f that takes the coordinates of the pinball from one disk
edge to another disk edge. Let us state this more precisely: the trajectory

ChaosBook.org/version11.9, Dec 4 2006 intro - 2dec2006
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Figure 1.7: (a) The Poincaré section coordinates for the 3-disk game of pinball. (b)
Collision sequence (s1,p1) — (s2,p2) — (s3,p3) from the boundary of a disk to the

boundary of the next disk presented in the Poincaré section coordinates.

Figure 1.8: (a) A trajectory starting out from
disk 1 can either hit another disk or escape. (b)
Hitting two disks in a sequence requires a much
sharper aim. The cones of initial conditions that
hit more and more consecutive disks are nested
within each other, as in figure [CA

just after the moment of impact is defined by marking s,,, the arc-length
position of the nth bounce along the billiard wall, and p, = psin ¢, the
momentum component parallel to the billiard wall at the point of impact,
figure [L7 Such a section of a flow is called a Poincaré section, and the
particular choice of coordinates (due to Birkhoff) is particularly smart, as
it conserves the phase-space volume. In terms of the Poincaré section, the
dynamics is reduced to the return map P : (Sp,pn) — (Snt1,Pnt1) from the
boundary of a disk to the boundary of the next disk. The explicit form of
this map is easily written down, but it is of no importance right now.

Next, we mark in the Poincaré section those initial conditions which
do not escape in one bounce. There are two strips of survivors, as the
trajectories originating from one disk can hit either of the other two disks,
or escape without further ado. We label the two strips M, M7. Embedded
within them there are four strips Mg, Mg, Mo1, M1 of initial conditions
that survive for two bounces, and so forth, see figures[L8 and [LI Provided
that the disks are sufficiently separated, after n bounces the survivors are
divided into 2" distinct strips: the M,th strip consists of all points with
itinerary i = $15283...5,, s = {0,1}. The unstable cycles as a skeleton
of chaos are almost visible here: each such patch contains a periodic point
515283 ... 5, with the basic block infinitely repeated. Periodic points are
skeletal in the sense that as we look further and further, the strips shrink
but the periodic points stay put forever.

We see now why it pays to utilize a symbolic dynamics; it provides a
navigation chart through chaotic phase space. There exists a unique tra-
jectory for every admissible infinite length itinerary, and a unique itinerary
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Figure 1.9: The 3-disk game of pinball Poincaré section, trajectories emanating from
the disk 1 with xy = (arclength, parallel momentum) = (so,po) , disk radius : center
separation ratio a:R = 1:2.5. (a) Strips of initial points M3, M3 which reach disks
2, 3 in one bounce, respectively. (b) Strips of initial points M121, M131 Mi32 and
M 23 which reach disks 1, 2, 3 in two bounces, respectively. The Poincaré sections
for trajectories originating on the other two disks are obtained by the appropriate

relabeling of the strips. (Y. Lan)

labels every trapped trajectory. For example, the only trajectory labeled
by 12 is the 2-cycle bouncing along the line connecting the centers of disks
1 and 2; any other trajectory starting out as 12... either eventually escapes
or hits the 3rd disk.

1.4.2 [Escape rate

What is a good physical quantity to compute for the game of pinball? Such
system, for which almost any trajectory eventually leaves a finite region (the
pinball table) never to return, is said to be open, or a repeller. The repeller
escape rate is an eminently measurable quantity. An example of such a
measurement would be an unstable molecular or nuclear state which can
be well approximated by a classical potential with the possibility of escape
in certain directions. In an experiment many projectiles are injected into
such a non-confining potential and their mean escape rate is measured, as in
figure [Tl The numerical experiment might consist of injecting the pinball
between the disks in some random direction and asking how many times
the pinball bounces on the average before it escapes the region between the
disks.

For a theorist a good game of pinball consists in predicting accurately
the asymptotic lifetime (or the escape rate) of the pinball. We now show
how periodic orbit theory accomplishes this for us. Each step will be so
simple that you can follow even at the cursory pace of this overview, and
still the result is surprisingly elegant.

Consider figure again. In each bounce the initial conditions get
thinned out, yielding twice as many thin strips as at the previous bounce.
The total area that remains at a given time is the sum of the areas of the
strips, so that the fraction of survivors after n bounces, or the survival

ChaosBook.org/version11.9, Dec 4 2006 intro - 2dec2006
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Chapter 11

Qualitative dynamics, for
pedestrians

The classification of the constituents of a chaos, noth-
ing less is here essayed.

Herman Melville, Moby Dick, chapter 32

In this chapter we begin to learn how to use qualitative properties of a flow
in order to partition the phase space in a topologically invariant way, and
name topologically distinct orbits. This will enable us — in chapter [31 - to
count the distinct orbits, and in the process touch upon all the main themes
of this book, going the whole distance from diagnosing chaotic dynamics to
computing zeta functions.

We start by a simple physical example, symbolic dynamics of a 3-disk
game of pinball, and then show that also for smooth flows the qualitative
dynamics of stretching and folding flows enables us to partition the phase
space and assign symbolic dynamics itineraries to trajectories. Here we
illustrate the method on a 1—d approximation to Rossler flow. In chapter[3]
we turn this topological dynamics into a multiplicative operation on the
phase space partitions by means of transition matrices/Markov graphs, the
simplest examples of evolution operators. Deceptively simple, this subject
can get very difficult very quickly, so in this chapter we do the first pass, at
a pedestrian level, postponing the discussion of higher-dimensional, cyclist
level issues to chapter

Even though by inclination you might only care about the serious stuff,
like Rydberg atoms or mesoscopic devices, and resent wasting time on
things formal, this chapter and chapter [[3 are good for you. Read them.

11.1 Qualitative dynamics

(R. Mainieri and P. Cvitanovi¢)
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Figure 11.1: A trajectory with itinerary
021012.

What can a flow do to the phase space points? This is a very difficult
question to answer because we have assumed very little about the evolution
function f!; continuity, and differentiability a sufficient number of times.
Trying to make sense of this question is one of the basic concerns in the
study of dynamical systems. One of the first answers was inspired by the
motion of the planets: they appear to repeat their motion through the
firmament. Motivated by this observation, the first attempts to describe
dynamical systems were to think of them as periodic.

However, periodicity is almost never quite exact. What one tends to
observe is recurrence. A recurrence of a point xg of a dynamical system is
a return of that point to a neighborhood of where it started. How close
the point zg must return is up to us: we can choose a volume of any size
and shape, and call it the neighborhood M), as long as it encloses x(. For
chaotic dynamical systems, the evolution might bring the point back to the
starting neighborhood infinitely often. That is, the set

{yeMo: y=fz0), t>to} (11.1)

will in general have an infinity of recurrent episodes.

To observe a recurrence we must look at neighborhoods of points. This
suggests another way of describing how points move in phase space, which
turns out to be the important first step on the way to a theory of dynamical
systems: qualitative, topological dynamics, or, as it is usually called, sym-
bolic dynamics. As the subject can get quite technical, a summary of the
basic notions and definitions of symbolic dynamics is relegated to sect. TGk
check that section whenever you run into obscure symbolic dynamics jar-
gon.

We start by cutting up the phase space up into regions M, Mp, ..., M.
This can be done in many ways, not all equally clever. Any such division
of the phase space into topologically distinct regions is a partition, and we
associate with each region (sometimes referred to as a state) a symbol s
from an N-letter alphabet or state set A = {A,B,C,---,Z}. As the dy-
namics moves the point through the phase space, different regions will be
visited. The visitation sequence - forthwith referred to as the itinerary -
can be represented by the letters of the alphabet A. If, as in the example
sketched in figure [Tl the phase space is divided into three regions My,
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23132321}

Figure 11.2: Two pinballs that start out very
close to each other exhibit the same qualitative
dynamics _2313_ for the first three bounces, but
due to the exponentially growing separation of
trajectories with time, follow different itineraries
thereafter: one escapes after _2313_, the other
one escapes after _23132321_. 2313

My, and Ma, the “letters” are the integers {0,1,2}, and the itinerary for
the trajectory sketched in the figureis 0 —2—1+— 01— 2+ ---.

If there is no way to reach partition M; from partition M,;, and con-
versely, partition M; from partition M;, the phase space consists of at
least two disconnected pieces, and we can analyze it piece by piece. An
interesting partition should be dynamically connected, i.e., one should be
able to go from any region M; to any other region M; in a finite number
of steps. A dynamical system with such partition is said to be metrically
indecomposable.

In general one also encounters transient regions - regions to which the
dynamics does not return to once they are exited. Hence we have to dis-
tinguish between (for us uninteresting) wandering trajectories that never
return to the initial neighborhood, and the non-wandering set (22) of the
recurrent trajectories.

The allowed transitions between the regions of a partition are encoded
in the [V x N]-dimensional transition matriz whose elements take values

T, — { 1 if a transition M; — M; is possible (11.2)

0 otherwise.

The transition matrix encodes the topological dynamics as an invariant law
of motion, with the allowed transitions at any instant independent of the
trajectory history, requiring no memory.

Example 11.1 Complete N-ary dynamics: All transition matrix entries equal
unity (one can reach any region from any other region in one step):

11 1
11 ...1

r.=|. . . .. (11.3)
11 1

Further examples of transition matrices, such as the 3-disk transition matrix (LH) and
the 1-step memory sparse matrix [L1I3), are peppered throughout the text.
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Figure 11.3: The 3-disk game of pinball Poincaré section, trajectories emanating
from the disk 1 with oy = (arclength, parallel momentum) = (sg, po) , disk radius : cen-
ter separation ratio a:R = 1:2.5. (a) Strips of initial points Mj2, M3 which reach
disks 2, 3 in one bounce, respectively. (b) Strips of initial points Mja1, Mi31 Mis2

and M3 which reach disks 1, 2, 3 in two bounces, respectively. (Y. Lan)

However, knowing that a point from M; reaches M, in one step is
not quite good enough. We would be happier if we knew that any point
in M, reaches Mj; otherwise we have to subpartition M; into the points
which land in M}, and those which do not, and often we will find ourselves
partitioning ad infinitum.

Such considerations motivate the notion of a Markov partition, a parti-
tion for which no memory of preceding steps is required to fix the transitions
allowed in the next step. Dynamically, finite Markov partitions can be gen-
erated by ezpanding d-dimensional iterated mappings f : M — M, if M
can be divided into N regions { Moy, My,..., My_1} such that in one step
points from an initial region M; either fully cover a region M;, or miss it
altogether,

either M; N f(M;) = 0 or M; C f(M;). (11.4)

Let us illustrate what this means by our favorite example, the game of
pinball.

Example 11.2 3-disk symbolic dynamics: Consider the motion of a free point

particle in a plane with 3 elastically reflecting convex disks. After a collision with a disk
a particle either continues to another disk or escapes, and any trajectory can be labeled
by the disk sequence. For example, if we label the three disks by 1, 2 and 3, the two
trajectories in figure [T have itineraries 2313_, 23132321 _ respectively. The 3-disk
prime cycles given in figures[LA and [[TA are further examples of such itineraries.

At each bounce a cone of initially nearby trajectories defocuses (see figure[L8),
and in order to attain a desired longer and longer itinerary of bounces the initial point
xo = (So0,po) has to be specified with a larger and larger precision, and lie within
initial phase space strips drawn in figure I3 Similarly, it is intuitively clear that
as we go backward in time (in this case, simply reverse the velocity vector), we also
need increasingly precise specification of xo = (so,po) in order to follow a given past
itinerary. Another way to look at the survivors after two bounces is to plot Mg, s,,
the intersection of M, with the strips M, . obtained by time reversal (the velocity
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Figure 11.4: The Poincaré section of the phase space for the binary labeled pinball.
For definitiveness, this set is generated by starting from disk 1, preceded by disk 2.
Indicated are the fixed points 0, 1 and the 2-cycle periodic points 01, 10, together
with strips which survive 1, 2, ... bounces. lteration corresponds to the decimal point
shift; for example, all points in the rectangle [01.01] map into the rectangle [010.1] in
one iteration. See also figure T8 (b).

changes sign sing — —sing). Ms, s, figure is a “rectangle” of nearby
trajectories which have arrived from the disk s1 and are heading for the disk ss.

We see that a finite length trajectory is not uniquely specified by its
finite itinerary, but an isolated unstable cycle is: its itinerary is an in-
finitely repeating block of symbols. More generally, for hyperbolic flows
the intersection of the future and past itineraries, the bi-infinite itinerary
S™.ST = ...5_95_150.515983 - - - specifies a unique trajectory. This is intu-
itively clear for our 3-disk game of pinball, and is stated more formally in
the definition (ITA) of a Markov partition. The definition requires that the
dynamics be expanding forward in time in order to ensure that the cone
of trajectories with a given itinerary becomes sharper and sharper as the
number of specified symbols is increased.

Example 11.3 Pruning rules for a 3-disk alphabet: As the disks are convex,
there can be no two consecutive reflections off the same disk, hence the covering sym-
bolic dynamics consists of all sequences which include no symbol repetitions _11_, 22_,
_33_. This is a finite set of finite length pruning rules, hence, the dynamics is a subshift
of finite type (see (LILZ4) for definition), with the transition matrix (LL2) given by

01 1
T =110 1]. (11.5)
110

For convex disks the separation between nearby trajectories increases at every reflection,
implying that the stability matrix has an expanding eigenvalue. By the Liouville phase-
space volume conservation ([Z23), the other transverse eigenvalue is contracting. This
example demonstrates that finite Markov partitions can be constructed for hyperbolic
dynamical systems which are expanding in some directions, contracting in others.
Further examples are the 1-dimensional expanding mapping sketched in figure [[1.3
and more examples are worked out in sect. 232

Determining whether the symbolic dynamics is complete (as is the case
for sufficiently separated disks), pruned (for example, for touching or over-
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Figure 11.5: Binary labeling of the 3-disk

pinball trajectories; a bounce in which the tra- ‘@70@ 2
jectory returns to the preceding disk is labeled
0, and a bounce which results in continuation @ ;

to the third disk is labeled 1.

lapping disks), or only a first coarse graining of the topology (as, for ex-
ample, for smooth potentials with islands of stability) requires case-by-case
investigation, a discussion we postpone to sect. [L4land chapter For the
time being we assume that the disks are sufficiently separated that there is
no additional pruning beyond the prohibition of self-bounces.

fast track:
W sect. p.
11.2 A brief detour; recoding, symmetries, tilings

\
J Though a useful tool, Markov partitioning is not without drawbacks.
One glaring shortcoming is that Markov partitions are not unique: any of
many different partitions might do the job. The 3-disk system offers a
simple illustration of different Markov partitioning strategies for the same
dynamical system.

The A = {1, 2,3} symbolic dynamics for 3-disk system is neither unique,
nor necessarily the smartest one - before proceeding it pays to exploit the
symmetries of the pinball in order to obtain a more efficient description. In
chapter B2 we shall be handsomely rewarded for our labors.

As the three disks are equidistantly spaced, our game of pinball has a
sixfold symmetry. For instance, the cycles 12, 23, and 13 are related to
each other by rotation by £27/3 or, equivalently, by a relabeling of the
disks. Further examples of such symmetries are shown in figure The
disk labels are arbitrary; what is important is how a trajectory evolves as
it hits subsequent disks, not what label the starting disk had. We exploit
this symmetry by recoding, in this case replacing the absolute disk labels by

D am relative symbols, indicating the type of the collision.  For the 3-disk game
page of pinball there are two topologically distinct kinds of collisions, figure T3k
[]
page [[EA
] 0 pinball returns to the disk it came from (11.6)
ST 1 pinball continues to the third disk. :

This binary symbolic dynamics has two immediate advantages over the
ternary one; the prohibition of self-bounces is automatic, and the coding
utilizes the symmetry of the 3-disk pinball game in elegant manner. If the
disks are sufficiently far apart there are no further restrictions on symbols,
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Ny p

1 0
1

2 01

3 001
011

4 0001
0011
0111

5 00001
00011
00101
00111
01011
01111

6 000001
000011
000101
000111
001011
001101
001111
010111
011111

7 0000001
0000011
0000101

Ny p Ny p Ny D Ny D
7 0001001 8 00001111 9 000001101 9 001001111
0000111 00010111 000010011 001010111
0001011 00011011 000010101 001011011
0001101 00011101 000011001 001011101
0010011 00100111 000100011 001100111
0010101 00101011 000100101 001101011
0001111 00101101 000101001 001101101
0010111 00110101 000001111 001110101
0011011 00011111 000010111 010101011
0011101 00101111 000011011 000111111
0101011 00110111 000011101 001011111
0011111 00111011 000100111 001101111
0101111 00111101 000101011 001110111
0110111 01010111 000101101 001111011
0111111 01011011 000110011 001111101
8 00000001 00111111 000110101 010101111

00000011 01011111 000111001 010110111
00000101 01101111 001001011 010111011
00001001 01111111 001001101 001111111
00000111 9 000000001 001010011 010111111
00001011 000000011 001010101 011011111
00001101 000000101 000011111 011101111
00010011 000001001 000101111 011111111
00010101 000010001 000110111
00011001 000000111 000111011
00100101 000001011 000111101

Table 11.1: Prime cycles for the binary symbolic dynamics up to length 9.

the symbolic dynamics is complete, and all binary sequences are admissible

itineraries. As this type of symbolic dynamics pops up frequently, we list

the shortest binary prime cycles in table [Tl D

page [EA

Example 11.4 Recoding ternary symbolic dynamics in binary:
sequence and labels of 2 preceding disks, rule (IL4) fixes the subsequent binary symbols.
Here we list an arbitrary ternanry itinerary, and the corresponding binary sequence:

ternary

binary

The first 2 disks initialize the trajectory and its direction; 3 — 1 — 2 +— -

3121312321231323
10101101011010

Given a ternary

(11.7)

Due

to the 3-disk symmetry the six 3-disk sequences initialized by 12, 13, 21, 23, 31, 32
respectively have the same weights, the same size partitions, and are coded by a single
For periodic orbits, the equivalent ternary cycles reduce to binary
cycles of 1/3, 1/2 or the same length. How this works is best understood by inspection
of table[[TA figure[IT.8 and figure P23

binary sequence.

The 3-disk game of pinball is tiled by six copies of the fundamental do-
main, a one-sixth slice of the full 3-disk system, with the symmetry axes
acting as reflecting mirrors, see figure (b). Every global 3-disk trajec-
tory has a corresponding fundamental domain mirror trajectory obtained

by replacing every crossing of a symmetry axis by a reflection.

Depending

on the symmetry of the global trajectory, a repeating binary symbols block
corresponds either to the full periodic orbit or to an irreducible segment
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(a) Y //

Figure 11.6: The 3-disk game of pinball with the disk radius : center separation
ratio a:R = 1:2.5. (a) The three disks, with 12, 123 and 121232313 cycles indicated.
(b) The fundamental domain, i.e., the small 1/6th wedge indicated in (a), consisting
of a section of a disk, two segments of symmetry axes acting as straight mirror walls,
and an escape gap. The above cycles restricted to the fundamental domain are now

the two fixed points 0, 1, and the 100 cycle.

(examples are shown in figure and table [T2). An irreducible segment
corresponds to a periodic orbit in the fundamental domain. Table lists
some of the shortest binary periodic orbits, together with the correspond-
ing full 3-disk symbol sequences and orbit symmetries. For a number
of reasons that will be elucidated in chapter B2 life is much simpler in
the fundamental domain than in the full system, so whenever possible our
computations will be carried out in the fundamental domain.

Inspecting the figure we see that the relative ordering of regions
with differing finite itineraries is a qualitative, topological property of the
flow, so it makes sense to define a simple “canonical” representative par-
tition which in a simple manner exhibits spatial ordering common to an
entire class of topologically similar nonlinear flows.

: in depth:
g chapter 22 p.
11.3 Stretch and fold

Symbolic dynamics for N-disk game of pinball is so straightforward that one
may altogether fail to see the connection between the topology of hyperbolic
flows and their symbolic dynamics. This is brought out more clearly by
the 1-dimensional visualization of “stretch & fold” flows to which we turn
now.

Suppose concentrations of certain chemical reactants worry you, or the
variations in the Chicago temperature, humidity, pressure and winds affect
your mood. All such properties vary within some fixed range, and so do
their rates of change. Even if we are studying an open system such as the
3-disk pinball game, we tend to be interested in a finite region around the
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