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Chirality is a key concept pervading physics, chemistry and with enormous impact in biology.
Traditionally, chirality is defined mathematically in a geometrical way, using symmetry operations
centered on reflections about symmetry planes. In field theory it appears as .... Here we show a
new class of orbits, chiral orbits, exists in profusion in the skeleton of infinite unstable periodic
orbits embedded in chaotic attractors which are or paramount importance in the interpretation of
quantum-mechanical spectra of systems whose classical counterpart exhibit chaotic behavior. These
orbits are a natural consequence of the dynamics, may be described by simple maps and imply
simplifications of summations of trace formulas used to describe atomic spectra semi-classically.

I. INTRODUCTION

holomophic fields, respectively. How the field content of

One of the major themes in drug design, discovery
and development is chirality, the property shown by two
structures that are mirror images of each other. The im-
portance of chiral activity is probably best known from
the thalidomide tragedy of the 1960s, when administra-
tion of a mixture of both left- and right-handed versions
(enantiomers) of the drug to pregnant women caused a
number of birth defects [1]. In physics, two examples
suffice to show the great importance of chirality both in
applications and at a more fundamental level.

First, the discovery of superfluidity in *He was followed
by evidence that for other novel types of superconductiv-
ity for which the Cooper pairs may also exist in states
with nontrivial internal structure. Therefore it is impor-
tant to find probes sensitive to the internal degrees of
freedom of the Cooper pairs in condensates with com-
plicated broken symmetries, such as heavy fermions and
high-T, superconductors. add references here

Second, Kawamura and coworkers [6] have made large-
scale numerical investigations of the chiral driven order-
ing mechanisms which they postulated to explain freez-
ing in Heisenberg spin glasses with no anisotropy. It was
clearly shown that chirality is a primary ingredient of spin
glass ordering in vector systems. Chirality is here a “hid-
den” parameter and no technique was known to monitor
it experimentally until Tatara and Kawamura proposed
that the Extraordinary Hall effect should present a di-
rect signature of the chiral susceptibility [7]. This was
recently measured directly [8] .. bla bla bla.... polish this
here.

Second, the presence of infinite dimensional chiral sym-
metries is central to the study of two dimensional confor-
mal field theories. These theories, called chiral algebras,
are formed by the purely holomorphic and purely anti-
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a conformal field theory is organized into representations
of the chiral algebras is encoded in the fusion ring. As
pointed out by Kausch[2], the task of solving and classify-
ing general conformal field theories can be split into two
separate problems: to find chiral algebras of conformal
field theories and to determine possible fusion rings of chi-
ral algebras. Such program has been most succesful for
the Virasoro minimal series [3], where the fields fall into
infinitely many representations of the Virasoro algebra.
This has subsequently enabled the complete characteri-
zation of the field content of such theories[2, 4]. Beilinson
and Drinfeld translated the key concept of chiral algebras
of 2D conformal field theory into the language of alge-
braic geometry. This bridge allows one to recognize chiral
algebras to be crucial for certain questions of represen-
tation theory and arithmetics. In particular, they seem
to present a new approach to the geometric version of
Langlands correspondence introduced by Drinfeld some

Condense the above physical justification/motivations ...

The purpose of this letter is ......

In addition to the well-known sensitivity to initial con-
ditions leading to chaos in dynamical systems, we report
an additional type of sensitivity to initial conditions seen
in multidimensional systems: phase degeneracy. Phase
degeneracy means that orbital points may be combined in
more than one way to produce orbital motions. These im-
plies that degeneracies of equations of motion may be far
more numerous than believed. Additional consequences
of phase sensitivy are discussed.

Strongly anharmonic and translationally invariant sys-
tems in arbitrary dimensions, exhibit a class of time
periodic and stable solutions carrying an energy flow
as well as the standard plane waves which are special
cases. In general, the spatial distribution of these energy
flows is very inhomogeneous and form arbitrarily com-
plex networks of channels and vortices. These solutions
are constructed from arbitrary, finite, or infinite clusters
of breathers (multibreathers) with twisted phases. Ex-
amples of these solutions are numerically calculated in
several one and two-dimensional nonlinear models.



II. CHIRAL ORBITS

Chiral orbits appear when there is a factor with mul-
tiplicity higher than 1 in Si(c). Following Ref. [9], we
denote such factors by Ay (o), k being the periodicity of
the orbit. In the Hamiltonian limit and for a = 6 we have

Se(0) = A§(0) Bs(o) Co(0), 1)
Si(0) = Ai(o) Br(0), (2)
Sg(o) = Ag(U)BS(U)CS(U)a ()
where

AG(O') = 0—2, (4)
A7(0) = 6> =20 -6, (5)

Ag(o) = o® —40° - 520" +208¢°
+67202 — 26880 — 16, (6)

and all other coefficients, not needed here, are given in
Ref. [9].
Therefore, chiral orbits exist for the factors ...

A. Period 6

The orbital equation for the simplest case of Eq. (4),
o=21is

O1(z) = 2° — 22° — 142* + 222° + 6222 — 60z — 83, (7)
which decomposes into O1(z) = fi(z) fo(z), where

filz) = 2° —(1+V3)2? =6z +5+6V3, (8)

fole) = 2 —(1-V3)22 -6z +5-6V3.  (9)

The zeros of fi are 1 = —2.409, z2 = 2.101, 23 = 3.040,
while those of fo are x4 = —2.317, x5 = —0.926, g =
2.511. These orbital points produce two rather different
orbits, namely

(.’L’l Tg T2 Ty I3 55'4) (10)

T4 1 Tg T2 Ty T3

and

(.’1)1 T4 T3 Ty X2 .’L'(;) (11)

g T1 T4 T3 Tz T2

1. Orbitas para Bg =0
2. Orbitas para Cs =0
B. Period 7

For period-7 there are 18 possible values for the sum of

orbital points. In this case Sy(0) = A7(0)? B;(0) where

A7(0) = 0> =20 —6, (12)
Br(0) = o' 420" — 40602 + 288 ¢! + 58540 o1°

FIG. 1: The two pairs of period-6 chiral orbits A =0 .

—136808 0” — 3708984 0 + 11996864 ¢
+107208320 0% — 411276032 ¢°
—1181332992 * + 5368452864 ¢
+901791744 0% — 11341783040 &
—3936915584. (13)

For A;(0), the orbital equation due to o = 1 ++/7 is

Pi(z) = 2" = (1+V7)2® —2(8 = V7)2®
+(6 4+ 14VT)z + (87 — 22V7)2®
+(21 = 61V7)2? —20(8 — 3V 7z
—125 + 76 V7, (14)

while its conjugate, for ¢ = 1 — /7, is easily obtained
from P;(z) by replacing +£v/7 — F/7.
Equacdo orbital para ¢ = 14+ /7

Pi(z) = 2" = (1+V7)2® —2(8 = V7)2®
+2(3+ 7VT)at + (87 — 22V7)a?
+(21 = 61V7)2? —20(8 — 3VT)z
—125+ 76 /7 (15)

Solucoes:

1 = —2.363529, z» = —2.313389, x3 = —0.7573026,
x4 = 0.9263635, x5 = 2.414733, z¢ = 2.727116, x7 =
3.011758

X1 g T4 Iy T3 T7 T2 (16)
Ty T1 Te T4 Ts T3 Tr)



FIG. 2: The two pairs of period-6 orbits related with Bg = 0.

T1 T2 T7 X3 Ts T4 Te (17)
Te T1 T2 Ty T3 Ts T4)

Equacéo orbital para o =1 — /7

Py(z) = 2" = (1=V7)z® -2+ V7)z®
+2(3—=7VT)z* + (22V7 + 87)2°
+(21 4 61V7)2? —20 (8 + 3V 7z
—125 — 767 (18)

Solugdes: x1 = —3.332654 z» =
—2.502687 x4, = —0.9173544 z5 =
2.552380 z7 = 3.069208

—2.603895 =3
2.089252 x4

T1 T3 Tr T4 Tz Te T2 (19)
To X1 T3 Ty T4 Ty Te)

Tr1 T2 g Iy T4 T7 T3 (20)
T3 T1 Tz Te Ts T4 T7 )’

C. Period 8

For period-8 there are 30 possible values for the sum of
orbital points. Now we find Sg(0) = A3(o) Bs(o) Cs(0)

where

Ag(0) = 0® —40° — 520" + 208 0°
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FIG. 3: Orbits of period-6 for Cs = 0 (factorc®> —60 —18 =0

+6720% — 2688 0 — 16, (21)
Bs(o) = 0°+80° —2085" —8965°
+12288 0% + 12288 o — 148480, (22)

Cs(o) = o' —4800'° 4+ 179207 + 64608 0°
—343296 07 — 2703200 o + 16598016 ¢°
+4347648 o* — 18550272 o°
—8025600 02 + 995328 0 + 553216.  (23)

Roots of Ag(0):

—5.299, —4.889, —0.00594, 4.0444, 4.811, 5.338.

As 6rbitas relacionadas com estas raizes encontram-se
na tabela I.
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FIG. 4: Orbits of period-6 for Cs = 0 (factor ¢® + 80> —
700 — 228 = 0).
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o | @i I yi |
4.0444625274632178345 | —2.4136818898204280512 | 2.5061371791343513022
—2.4136818898204280512 | —2.3319974443794833734
4.8119429971428316647 | —2.4249340808746823702 | —2.3839225073112408926
—2.4249340808746823702 | 2.5036172107166258738
5.3383419167222111074 | —2.3796082438653275681 | —2.3144711608338244915
—2.3796082438653275681 | 2.6519357665619015952
—.0059435657301925738354 | —3.3269320848103024024 | —2.5612116747899661454
—3.3269320848103024024 | —2.5072654221502590292
—4.8897858305569149683 | —3.3280553369341453824 | —2.6157097269493868247
—3.3280553369341453824 | —2.4602425987429100130
—5.2990180450411530644 | —3.4778667307895246147 | —3.4649778907246866276
—3.4778667307895246147 | —2.6305791064082163332
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TABLE I: Tabela de érbitas chirais para periodo 8, érbitas relacionadas com Ag(o) = 0.



