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Abstract

This term paper is a report on some results obtained in the paper "Hamilton-Jacobi method for molecular distribution
function in a chemical oscillator" by Nakanishi, Sakaue, and Wakou [1]. None of the material presented here is new work by
the author of this term-paper.

1 Introduction

The basic model is a Markov process for the evolution of species in a chemical reaction. Our state variable is {Xi(t)},
which represents the number of molecules of the i−th chemical species, where i = 1, ...d. X(t) = {Xi(t)} evolves in time
as a stochastic process due to in�ow, out�ow, and reaction processes. We can represent them all by "reactions" indexed
as ρ = 1, 2, ...r. Let the system volume be denoted by Ω. In general, the reaction rate of the ρ−th reaction Wρ = Wρ(X)
depends on the concentration of chemicals X and Ω.

The master equation for the probability distribution P̄ (X, t) at time t can be written as follows:

dP̄ (X, t)

dt
=

r∑
ρ=1

[Wρ(X−∆Xρ)P̄ (X−∆Xρ)−Wρ(X)P̄ (X)] (1)

where ∆Xρ is the change in X due to the reaction ρ. The �rst and second terms in the ρ−th sum, can be interpreted as the
gain and loss terms, respectively. Notice that the above equation preserves the normalization

∑
{Xi} P̄ (X, t) = 1.

2 The Model

Let's start with the master equation (1). De�ne the intensive parameter x = X
Ω . The next step is to obtain an evolution

equation for the probability distribution P (x, t) := ΩdP̄ (X, t) in the large Ω regime or "weak noise" regime. In this regime, the
jumps in the Markov process become relatively small, and hence we can approximate the functionWρ(X−∆Xρ)P̄ (X−∆Xρ)
through a truncated Taylor expansion. We get the generalized Fokker-Planck equation

1

Ω

∂P (x, t)

∂t
= − 1

Ω

∑
i

∂

∂xi
{[Fi(x) +

1

Ω
Gi(x)]P (x, t)}+

1

Ω2

∑
i,j

∂2

∂xi∂xj
{Qij(x)P (x, t)} (2)

where

Fi(x) = lim
Ω→∞

1

Ω

r∑
ρ=1

∆Xi
ρWρ(Ωx)

Qij(x) = lim
Ω→∞

1

2Ω

r∑
ρ=1

∆Xi
ρ∆X

j
ρWρ(Ωx)

Gi(x) = lim
Ω→∞

[

r∑
ρ=1

∆Xi
ρWρ(Ωx)− ΩFi(x)]

This evolution preserves the probability
∫
P (x, t)dx = 1. Note that the deterministic macroscopic time evolution is governed

by the rate equation

dx

dt
= F(x) (3)
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In the following, we use the Hamilton-Jacobi approach to �nd approximate solutions of the Fokker-Planck equation (2), which
signify the evolution of the noise about the rate equation orbit.

3 The Hamilton-Jacobi Approach

Assume a solution to (2) of the form P (x, t) = eΩφ(x,t). Substituting this in (2) and only retaining the leading term, we end
up with having to solve the following Hamilton-Jacobi equation:

∂φ

∂t
+H(x,

∂φ

∂x
) = 0 (4)

where H(x,p) =
∑
piFi(x) +

∑
pipjQij(x). Let us assume that the initial distribution is given by φ(x, 0) = φ0(x). To solve

(4), we study the �ow in the x − p space starting from the point (x0,p0), where pi(0) = ∂φ
∂xi
|x0

. The �ow is given through
the Hamiltonian H as follows:

dx

ds
=
∂H

∂p
= Fi(x)−

∑
j

2Qij(x)pj

dp

ds
= −∂H

∂x
= −

∑
j

∂Fj(x)

∂xi
pj +

∑
j,k

∂Qjk(x)

∂xi
pjpk

Through this �ow, we can express the function φ(x, t) as follows:

φ(x, t) =

∫ t

0

ds(
∑

piẋi −H(x(s),p(s))) + φ0(x) (5)

To summarize, given φ(x, 0), do the following to �nd φ(x, t):

1. Generate the initial conditions x0 and p0 = ∂φ
∂x |x0 such that x(t) = x.

2. Evolve along the Hamiltonian �ow in the x− p space until time t.

3. Plug in the result of the above into (5).

The relationship p = ∂φ
∂x will be preserved through the evolution.

Remark 3.1. The case p = 0 would mean that ∂φ(x)
∂x = 0 and the Hamiltonian evolution lies on the invariant subspace

p = 0 and the evolution for x reduces to the rate equation (3). Hence, for instance, if this critical point is a maximum for φ
at value x∗, the motion of this peak in t is given by the rate equation �ow.

We now apply this formalism to study the evolution of the initial distribution given by the Gaussian φ0(x) = − 1
2σ2

0
(x− x0)2

peaked at x∗0. The plan will be to take the standard deviation σ0 → 0 to understand the evolution of the Dirac delta at x∗0.

First, we �nd the solution x∗(t) of the rate equation (3) with initial condition x∗(0) = x∗0. From the previous remark, we know
that this will give us the peak of the distribution φ(x, t) at time t. We can now compute φ(x, t) in the so-called "Gaussian
approximation" by Taylor-expanding it about its peak.

φ(x, t) = φ(x∗(t), t) + (x− x∗(t))T
∂φ

∂x
|∗ +

1

2

∑
i,j

∂2φ

∂xi∂xj
|∗(xi − x∗i (t))(xj − x∗j (t)) + ...

The linear term vanishes because x∗(t) is a local maximum. Also, note that the zeroth order term vanishes, which can be
seen as follows: To reach x∗(t) we can simply follow the rate equation evolution which entails p = 0. Using this in equation
(5), the claim is proved.

We hence obtain:

φ(x, t) ≈ −1

2

∑
i,j

M̂−1
ij (t)(xi − x∗i (t))(xj − x∗j (t)) (6)

in the truncated expansion, where the matrix M is de�ned using the above. Thus, the distribution P (x, t) given φ0(x) is:

P (x, t) = Z exp [−Ω

2
(x− x∗(t))T M̂−1(t)(x− x∗(t))] (7)
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where Z is the normalization. It remains to see how the M can be estimated numerically:

From the Taylor expansion, we see that

−M̂−1
ij (t) =

∂2φ(x, t)

∂xi∂xj
|∗ =

∂pj
∂xi
|∗

The second inequality follows from the relationship p = ∂φ
∂x . To be more precise, the pj in the above is pj(x0, t), where x0 is

that initial condition which drives the evolution to the required point x at time t.

Hence, we need to study the object
δpj
δxi

near the rate equation orbit x∗(t). To understand its behavior, we study the
Hamiltonian �ow linearized about x∗(t). Set δx(t) = x(t)− x∗(t) and δp(t) = p(t) so that we get:

δẋ(t) = L̂(t)δx(t)− 2Q̂L(t)δp(t) (8)

δp(t) = −L̂T (t)δp(t) (9)

De�ne the time evolution operator ÛL(t, t0) for the evolution of δx(t) within the p = 0 subspace. Since L̂ is just the Jacobian
of vector �eld of the rate equation (3), ÛL corresponds to the evolution of the deviation speci�ed by the rate equation alone.

Then, a solution of (8) and (9) can be written as:

δx(t) = ÛL(t, 0)[δx(0)− 2Q̂L(t)δp(0)] (10)

δp(t) = ÛTL (0, t)δp(0) (11)

where Q̂L(t) =
∫ t

0
duÛL(0, u)Q̂(u)ÛTL (0, u).

We will now show how to compute the matrix δp(t)
δx(t) from equations (10) and (11), in the limit σ0 → 0. For starters, what is

this matrix at time 0?

From the relationship p = ∂φ
∂x , and using φ0 = − 1

σ2
0
(x− x0)2, we get that δp(0) = − 1

2σ2
0
δx(0). Substituting this in equations

(10) and (11), we end up with

δp(t) = ÛTL (0, t)
(−1

σ2
0

)
[1 +

2

σ2
0

Q̂L(t)]−1ÛL(0, t)δx(t)

Expanding the matrix inverse term in the bracket and taking the limit of small σ0, �nally, we get

M̂(t) = ÛL(t, 0)2Q̂L(t)ÛTL (t, 0)

How does this help us compute the matrix elements of M? Notice that the operators ÛL and Q̂L govern the evolution in
equations (8) and (9). So all we need to do is solve those equations with appropriate initial conditions. More precisely,

〈i|M̂ |j〉 = 〈i|ÛL(t, 0)2Q̂L(t)ÛTL (t, 0)|j〉

=
∑
α

〈i|ÛL(t, 0)2Q̂L(t)|α〉〈α|ÛTL (t, 0)|j〉

where |α〉 are elements of an orthonormal basis of Rd.

Now, notice from (10) that −ÛL(t, 0)2Q̂L(t)|α〉 is the solution of (8), (9) with initial condition δx = 0, δp = |α〉.
Similarly, from (11), we see that 〈α|ÛTL (t, 0) is the transpose of the solution to (8), (9) with initial condition δx = |α〉, δp = 0.

The conclusion is that we can obtain M̂ by solving (8), (9) with appropriate initial conditions. In the next section, we apply
this formalism to the Brusselator model.

4 Brusselator

The Brusselator models the interaction of two species, whose concentrations are given by x and y, respectively. The macro-
scopic behaviour is governed by the rate equations (for a particular set of parameter values):
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dx

dt
=

1

2
− 3

2
x+ x2y − x

dy

dt
=

3

2
x− x2y

This system admits a stable periodic orbit x∗(t) = (x∗(t), y∗(t)). See attached picture.
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It is expected the the �uctuations to this trajectory in the Gaussian approximation can be understood through the solutions
of the corresponding generalized Fokker-Planck equation via the Hamilton-Jacobi approach. For this model:

Qxx =
1

2
(
1

2
+

3

2
x+ x2y + x)

Qxy = Qyx = −1

2
(
3

2
x+ x2y)

Qyy =
1

2
(
3

2
x+ x2y)

The components of the matrix L, where Lij(t) = ∂Fi

∂xj
|x∗(t) are:

Lxx(t) = −3

2
+ 2x∗(t)y∗(t)− 1

Lxy(t) = x∗(t)2

Lyx(t) =
3

2
− 2x∗(t)y∗(t)

Lyy(t) = −x∗(t)2

4.1 Numerical Results for the Brusselator

We simply re-generate some of the results in [1] using the ideas in [1]. Starting from an initial point (0.8, 2.6), we obtain the
covariance matrix M(t) at di�erent times using the method described in the previous section. They are depicted pictorially
on a series of snapshots at selected times. The blue lines represent the rate equation orbit, which converges to the limit cycle.
The black ellipses are graphs of the equation µxx(x− x∗(t))2 + 2µxy(x− x∗(t))(y − y∗(t)) + µyy(y − y∗(t))2 = 4

Ω , where µij
are the elements of M̂−1. We choose, as in the paper, Ω = 104.

The times are indicated on the graphs.
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Before reaching the limit cycle, the distributions seem to extend perpendicular to the orbit, but it expands along the orbit
after reaching the limit cycle. We observe that the distributions indicated by the ellipses narrow down even after deviating
widely from the limit cycle orbit at intermediate times.

In [1], the relaxation time to the steady state distribution is also computed, the description of which we leave out in this
term-paper.

5 Conclusion

We report one of the main results in [1], that is the computation of the covariance matrix of the Gaussian approximation of a
distribution evolving through a chemical Fokker-Planck equation, under some assumptions. We also obtain similar numerical
estimates as in the paper for a Brusselator model.
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