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Abstract

We present an investigation of a two-dimensional inelastic impact os-

cillator representing a friction force microscope. This paper includes the

equations of motion, an analysis of the Jacobi matrix, and the funda-

mental domain. By applying periodic orbit theory to these and then

calculating the diffusion, we find a possible link between nanotribology

and everyday kinetic friction. Included is a simulation, trajectory plots,

and Poincareḿaps.

1



1 Introduction

An impact oscillator is a system which has a forcing function driving a particle

to repeatedly impact a barrier. The impact oscillator has been an important

system to study for both engineers and physicists. For engineers, it has such

applications as earthquake vibrations [1], articulated mooring towers [2], and

engine rattling [3]. Fermi investigated the same system when dealing with cos-

mic rays impacting the atmosphere [4]. The impact osciallator is also ideal for

studying the dynamics of a seemingly chaotic system: it is conceptually easy to

understand, yet there is still much to learn about it.

One particular generalization of the impact oscillator is to consider a particle

bouncing on a two dimensional, infinitely long, infinitely dense table with some

known periodic defect or curvature. The particle is moving at some velocity

and there exists a potential due to a combination of a vertical and horizontal

springs acting on the particle. The ball has some coefficient of restitution that

results in energy loss at the barrier interaction. There may also be energy loss

tangent to the surface [5] due to some friction which will resist the translational

motion of the ball along the surface.

This model is important to study because of its inherent connection to mi-

croscopic friction. Although the Tomlinson model [6] is the most widely used

for approximations to the friction force microscope (FFM), we use the more

realistic Gyalog-Thomas model [7]. In this paper we model an FFM as it moves

across a surface with regular defects with a velocity large enough to bounce

chaotically off the surface. The parameters chosen for the simulation are in ac-

cordance with what can be attainable in the labratory. The natural frequency

for the verticle spring is ωy =
√

ky

m
= 35 kHz, the horizontal spring’s natural

frequency is given by ωx =
√

kx

m
= 442 kHz. Drift velocities will be bounded

by 1 nm
s

< vc < 50 µm
s

.

The goal of this research is to study the dynamics of the system described

above. This project will include an investigation of what velocities the chaotic

bouncing will occur, both theoretically and numerically by using tools such as
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Figure 1: Simplified Atomic Force Microscope

bifurcation diagrams with the varied parameter being velocity. The impact oscil-

lator will be recast into a billiard system and will then readily admit a Jacobian

which implies a 3-dimensional Poincare’ map can be found. The project will

also include an investigation of the system using periodic orbit theory. A few

additional facets to play with is using a Lorentz map of the maximum height the

ball reaches relative to the surface verses the previous maximum height. This

work will be a natural extention to the work done by Berg and Briggs [8].

The ultimate, and therefore ideal, goal of the project is to understand The

impact system well enough to make a prediction of the coefficient of kinetic

friction using deterministic diffusion.

2 Equations and Theory

2.1 Above the Table

We first consider the table to be composed of a sinusoidal curvature given by:

C = A ∗ sin(
2π

a
x) . (1)

Where A is the scanning height and a is the lattice spacing. Now, with velocity

given by vc, potential by U, spring constants k, and mass m, the potential of

the system while above the table is given by:

Ux =
1

2
∗ kx ∗ (x − vct)

2

Uy =
1

2
∗ ky ∗ (y − Ye)

2 (2)
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Neglecting gravity, the forces on the particle while above the table are given by:

mẍ = −kxx + kxvt

mÿ = −kyy + kyYe

It is easily seen that the horizontal trajectory is given by:

x(t) = Ax sin(ωx t) + Bx cos(ωx t) + vt

ẋ(t) = Ax ωx cos(ωx t) − Bx ωx sin(ωx t) + v (3)

While the verticle trajectory is given by:

y(t) = Ay sin(ωy t) + By cos(ωy t) + Ye

ẏ(t) = Ay ωy cos(ωy t) − By ωy sin(ωy t) (4)

Knowing that the particle will be at a position xi with velocity v+
xi and yi with

velocity v+
yi after it impacts the table, the initial conditions for each bounce will

be:

x(0) = xi = Bx

ẋ(0) = v+
xi = Ax ωx + v

y(0) = yi = By + Ye

ẏ(0) = v+
xi = Ay ωy

Solving for Ax, Bx, Ay, By, and plugging these into 3 and 4 we have:

x(t) =
(v+

xi − v)

ωx

sin(ωx t) + xi cos(ωx t) + vt (5)

y(t) =
v+

yi

ωy

sin(ωy t) + (yi − Ye) cos(ωy t) + Ye (6)

2.2 Impact

We now consider the equations of motion when the ball impacts the table. Let

φ be the angle of the line perpendicular to the curvature of the table, with

respect to the x-axis. First rotate the axis by an angle φ − π
2 Then apply the
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two damping effects at impact: one due to a coefficient of restitution of the

particle, γ, and the tangential damping due to kinetic friction, µk. These will

show up as v
′+
y = −γ v

′−
y and v

′+
x = −µk v

′−
x . We then rotate the coordinates

back to the original. We then have the following transform:





v+
x

v+
y



 =





sin(φ) cos(φ)

− cos(φ) sin(φ)









µk 0

0 −γ









sin(φ) − cos(φ)

cos(φ) sin(φ)









v−x

v−y



 (7)

In the simulation muk = 1. This leads us to the following tranformation:





v+
x

v+
y



 =





−γ cos2(φ) + sin2(φ) −(1 + γ) cos(φ) sin(φ)

−(1 + γ) cos(φ) sin(φ) −γ sin2(φ) + cos2(φ)









v−x

v−y



 (8)

If the velocity is tangential enough or small enough to not leave the table, the tip

will drag along the surface as is the normal use of the atomic force microscope.

2.3 The Jacobian

All the necessary tools are in our bag to find the Jacobian Matricies of our

system. There are two important matricies to find. The first is for the motion

while the particle is in transit above the table, which will be refered to as JT .

The second describes the affects of the impact on the particle, which is called

JR. The latter shall be described first, as it requires intuition, rather than

mathematical riggor.

The foundations for the theory to follow are based on the principles defined

here. The particle has a coefficience of restitution, γ <= 1 which is the factor by

which the velocity is damped normal to the surface. Let the phase coordinates

be chosen as ~x = (x′, z, p′x, pz). For ease of calculations, the mass is set equal

to 1. Let x′ = x − vc t, with x as defined above, putting us in the frame of

the moving support. Let z = y − Ye − T , where z is then the height above the

table, with respect to the equalibrium of the FFM. vx ,́ vz are their respective

momenta.

As the simplest example, consider a flat, motionless table, and two particles

bouncing vertically off of it. There is a variation of position along the flow,
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normal to the flow, and there is also a small variation of their velocities along

the flow. The first particle impacts the table at some time τ1, and slows down

to a velocity v+
z = −γv−z . The second particle continues at v−

z until it impacts

the table at time τ2, slowing down to v+
z = −γv−z . We now know δv+

z = −γδv−
z .

The difference in time,

∆τ = τ2 − τ1 =
δz−

δv−z

Which implies

δz+ =
δz−

δv−z
∗ δv+

z

but since δv+
z = −γδv−

z , we have δq+
z = −γδq−z .

Now take the particles to impact the table at some angle φ. We take the

velocity tangent to the surface to remain constant. Because the velocity stays

in the same direction and the ordering of two nearby points remains the same,

the matrix equation is given by:

















δx+

δv+
x

δz+

δv+
z

















=

















1 0 0 0

0 1 0 0

0 0 −γ 0

0 0 0 −γ

































δx−

δv−x

δz−

δv−z

















the Jacobian matrix for reflection off a flat table at some angle φ is then

given by:

JR =

















1 0 0 0

0 1 0 0

0 0 −γ 0

0 0 0 −γ

















Note that the Hamiltonian of a particle attached to a spring in the y and x

directions, yet uncoupled is given by:

Hx =
p2

x

2m
+

1

2
mω2

x(x − vc t)

Hy =
p2

y

2m
+

1

2
mω2

y(y − Ye)
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Transforming these to the coordinates designated above, the solution to our

equations of motion are:

x− = x+ cos(ωxt) +
v+

x

ωx

sin(ωxt)

v−x = −ωxx+ sin(ωxt) + v+
x cos(ωxt)

z− = z+ cos(ωyt) +
v+

z

ωy

sin(ωyt) − A sin(
2π

a
(x− + vct)

v−z = −ωyz+ sin(ωyt) + v+
z cos(ωyt) −

2 ∗ π ∗ A

a
((v−x + vc) cos(

2π

a
(x− + vct))

Taking the infintesimal variations, setting m=1, with τ as the time of flight,

and small angle approximations then gives:

δx− = δx+ cos(ωxτ) + δv+
x

sin(ωxτ)

ωx

δv−x = −ωxδx+ sin(ωxτ) + δv+
x cos(ωxτ)

δz− = δz+ cos(ωyτ) + δv+
z

sin(ωyτ)

ωy

−
2 ∗ π ∗ A

a
(δx+ cos(ωxτ) + δv+

x

sin(ωxτ)

ωx

)

δv−z = −ωyδz
+ sin(ωyτ) + δv+

z cos(ωyτ) −
2 ∗ π ∗ A

a
(−ωxx+ sin(ωxτ) + v+

x cos(ωxτ))

This implies a transit Jacobian like:

JT =

















cos(ωx τ) sin(ωx τ)
ωx

0 0

−ωx sin(ωx τ) cos(ωx τ) 0 0

− 2πA
a

cos(ωx τ) − 2πA
a

sin(ωx τ)
ωx

cos(ωy τ)
sin(ωy τ)

ωy

2πA
a

ωx sin(ωx τ) − 2πA
a

cos(ωx τ) −ωy sin(ωy τ) cos(ωy τ)

















Note that taking ωy and ωx to be tiny (i.e. free particles) this reduces to a

nice free particle Jacobian. Also note that for vc = 0 and γ = 1 the determinant

of the Jacobian matricies are 1.

Another possibility of phase coordinates is to choose x = (q||, qT , p||, pT ).

For ease of calculations, the mass is set equal to 1. The variation is then given

by δx = (δq||, δqT , δv||, δvT ), where δq|| is the variation along the flow, δqT is

the variation normal to the flow, and δv||, δvT are their respective momenta.
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Recall the analysis of the first example of a ball impacting a motionless flat

table. Now take the particles to impact the table at some angle φ. From simply

geometry we see that

∆z

sin(φ)
=

δq−T
sin(π

2 − φ)
=

∆x

sin(π
2 )

which implies that ∆z = δq−T tan(φ). Now

δq+
|| =

∆z (δv−|| − δv+
|| )

δv−||
= ∆z (1 − γ) = δq−T (1 − γ) tan(φ)

Which gives:

δq+
|| = γδq−|| + δq−T (1 − γ) tan(φ)

The Jacobian matrix for reflection off a flat table at some angle φ is then

given by:

JR =

















γ 0 (1 − γ) tan(φk) 0

0 γ 0 0

0 0 −1 0

0 0 0 −1

















More analysis is left for future study.

2.4 The Fundamental Domain

A nice fundamental domain is always an important tool for cyclists, if it can be

found. It is an axiom of this project that the defects in the surface are periodic.

This allows for a natural fundamental domain to be defined as a the surface

as the bottom boundary, and two walls which preserve energy to be bounding

period of the of the defect. It may even be reduced more depending on the

specific defect. Consider the table composed of a sinusoidal defect, as in 1. The

elastic walls will then be placed at x´ = 0 and π
2 a

. There will be no boundry at

the top. This setup will have the same dynamics as that of the original system.

See 2. Sadly, because there is springs working in each direction, there are not

pruning rules for the setup.
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Figure 2: The Fundamental Domain

2.5 Deterministic De-friction?

2.6 The Simultation

Appendix 1 is a listing of the simulation code for the trajectories. Pictured are

the results from the simulation using the equations derived above. Figures 5 a,b

are of two nearby trajectories that give vastly different results as time goes on.

Figure 6 a,b are Poincareḿaps with the snapshots taken when vy = 0 and at

the impact of the table, respectively. Figure 7 is a Lorentz map of when vy = 0.

Figure 3: Nearby Initial Condition separate rapidly. Is this chaos?
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Figure 4: Vastly different behavior in the long run.
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