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ABSTRACT

Wave Chaos in Elastodynami Sattering

Niels S�ndergaard

The exat sattering resonanes are alulated for a system of several ylindrial

avities in plane strain elastodynamis. A basis of sattering states is onstruted

and the sattering determinant is found. The high frequeny limit is investigated

by studying the Green's funtion for one avity. In the high frequeny limit the

spetrum is dominated by in�nitely many periodi orbits, eah orbit onsisting of

lassial partile trajetory segments with varying polarizations, and surfae wave

segments, with ontributions of longer orbits dereasing in importane with the orbit

length.
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Chapter 1

Introdution

The goal of the researh desribed in this thesis is to formulate an approximate short-

wavelength theory of wave haos in elastodynamis, paralleling the Gutzwiller semi-

lassial periodi orbit theory of quantal spetra of systems whose lassial dynamis

is haoti.

We start by providing the bakground needed to understand the terms used in

the above sentene: haos, wave haos, Gutzwiller semilassial periodi orbit theory.

In this we follow the exposition of ref. [1℄. The stage set, in set. 1.5 we turn to the

work to be undertaken here.

1.1 Deterministi haos

A deterministi system is a system whose present state is fully determined by its

initial onditions, in ontradistintion to a stohasti system, for whih the initial

onditions determine the present state only partially, due to noise, or other external

irumstanes beyond our ontrol. A deterministi system with suÆiently ompli-

ated dynamis an fool us into regarding it as a stohasti one; disentangling the

deterministi from the stohasti is the main hallenge in many experimental situa-

tions. So, what is \haos"?

In a game of pinball two trajetories that start out very lose to eah other separate

exponentially with time, and in a �nite (and in pratie, a very small) number of

1
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bounes their separation Æx(t) attains the magnitude of L, the harateristi linear

extent of the whole system, �g. 1.1. This property of sensitivity to initial onditions

an be quanti�ed as

jÆx(t)j � e

�t

jÆx(0)j

where �, the mean rate of separation of trajetories of the system, is alled the

Lyapunov exponent. For any �nite auray Æx of the initial data, the dynamis is

preditable only up to a �nite Lyapunov time

T

Lyap

� �

1

�

ln jÆx=Lj ; (1.1)

despite the deterministi laws that rule the pinball motion.

A positive Lyapunov exponent does not in itself lead to haos. One ould try to

play 1- or 2-disk pinball game, but it would not be muh of a game; trajetories would

only separate, never to meet again. What is also needed ismixing, the oming together

again and again of trajetories. While loally the nearby trajetories separate, the

interesting dynamis is on�ned to a globally �nite region of the phase spae and thus

of neessity the separated trajetories are folded bak and an re-approah eah other

arbitrarily losely, in�nitely many times. The number of distint trajetories with n

bounes an be quanti�ed as

N(n) � e

hn

where the topologial entropy h is the growth rate of the number of topologially

distint trajetories.

When a physiist says that a ertain system exhibits \haos", he means that the

system obeys deterministi laws of evolution, but that the outome is highly sensitive

to small unertainties in the spei�ation of the initial state. The word \haos" has in

this ontext taken on a narrow tehnial meaning. If a deterministi system is loally

unstable (positive Lyapunov exponent) and globally mixing (positive entropy), it is

said to be haoti.

In a haoti system any open ball of initial onditions, no matter how small, will in

�nite time overlap with any other �nite region and in this sense spread over the extent
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Figure 1.1: Sensitivity to initial onditions:

two pinballs that start out very lose to eah

other separate exponentially with time.

1

2

3

23132321
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of the entire asymptotially aessible phase spae. One this is grasped, the fous

of theory shifts from attempting preise predition of individual trajetories (whih

is impossible) to desription of the geometry of the spae of possible outomes, and

evaluation of averages over this spae.

Confronted with a potentially haoti dynamial system, we analyze it through

a sequene of three distint stages; diagnose, ount, measure. I. First we determine

the intrinsi dimension of the system { the minimum number of degrees of freedom

neessary to apture its essential dynamis. Step II; we ount and lassify all possible

topologially distint trajetories of the system into a hierarhy whose suessive lay-

ers require inreased preision and patiene on the part of the observer. If suessful,

we an proeed with step III: investigate the weights of the di�erent piees of the

system.

When should we be mindful of haos? The solar system is \haoti", yet we have

no trouble keeping trak of the annual motions of planets. The rule of thumb is this;

if the Lyapunov time (1.1), the time in whih phase spae regions omparable in

size to the observational auray extend aross the entire aessible phase spae, is

signi�antly shorter than the observational time, we need methods that will be devel-

oped here. That is why the main suesses of the theory are in statistial mehanis,

quantum mehanis, and questions of long term stability in elestial mehanis. At

this time the theory is in pratie appliable only to systems with a low intrinsi

dimension of the system { the minimum number of degrees of freedom neessary to

apture its essential dynamis.
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1.2 Quantum haos

What happens quantum mehanially, that is, if we satter waves rather than point-

like pinballs? Were the game of pinball a losed system, quantum mehanially one

would determine its stationary eigenfuntions and eigenenergies. For open systems

one seeks instead for omplex resonanes or sattering phase shifts. The imaginary

part of the eigenenergy desribes the rate at whih the quantum wave funtion leaks

out of the entral multiple sattering region whereas the phase shift measures whether

the wave funtion gets drawn into or expelled from the sattering zone.

A fundamental onept in physis is the spetrum. The spetrum, for instane an

energy- or frequeny spetrum, an be seen, an be measured, and that information

gives diret knowledge of the objet upon whih we perform a measurement. We may

say that the spetrum is a �ngerprint of the objet. A large part of physis onsists

in developing theories that an explain or even predit new spetra. Even though few

have seen a hydrogen atom, its spetrosopy gives us a very detailed understanding

of its struture.

In the beginning of quantum mehanis de Broglie explained the spetrum of

the hydrogen atom in a very elegant way by onsidering standing eletron waves

on a irular orbit around the nuleus. However, this naive piture of quantizing

integrable systems ould not explain the spetra of many-eletron atoms even as

simple as the helium atom. On formalizing this theory one ould in priniple (and

also in pratie with the advent of omputers) alulate many energy spetra. Some of

the formalization with Shr�odinger's wave mehanis and Heisenberg's matrix theory

was at the expense of understanding, and an explanation of the atual form of the

spetra was not given. During the last quarter of the entury, however, a new theory,

quantum haos, has emerged whih is muh more desriptive sine it inludes lassial

dynamis in a very diret way.

Quantum haos is mainly onerned with the wave nature of the quantum parti-

les. In this projet we will work on a generalization of the traditional free quantum

partile in a box by studying a similar objet in elastodynamis. Generalizations to

di�erent wave types like eletromagneti �elds in optis are possible as well. Exper-

imental studies of these systems in terms of onepts of quantum haos are already

in progress, whereas a further development is needed with regard to theory.

As an example of experimental results we mention the eigenfrequenies of optial

avity resonators (laser) and the transport properties related to ertain integrated

optial omponents (photonis). These devies are inspired by the developments in
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mesosopi physis, where the transport and ondutivity in eletron \billiards" are

investigated. New insights about these systems are gained in terms of quantum haos

onepts.

What do we atually mean by the Bohr orrespondene priniple if lassially the

dynamis is haoti? Can suh systems be quantized? During the last two deades

signi�ant progress has been made in answering this question quantatively. The two

main approahes are the random matrix theory and the periodi orbit theory.

1.2.1 Random matrix theory

The random matrix theory was originally invented by Wigner [4℄ to treat ompliated

spetra of nulear physis. The theory is based on the realist assumption that for

a many-body system with ompliated interations the omplete Hamiltonian is not

known. Therefore one studies statistial properties of measured spetra, omparing

the results to what would be expeted were the Hamiltonian a random operator.

Empirially it appears that the dimensionality of the problem does not have to be

very high for a reasonable agreement with the preditions of the random matrix

theory. In fat, the quantum spetrum of just one partile in a box of generi shape

seems to already agree with the random matrix preditions.

Up to this day, the random matrix hypothesis remains just that - a hypothesis -

and no proof that it follows from haoti dynamis has been devised as yet. We shall

not pursue the random matrix approah in this thesis.

1.2.2 Periodi orbit theory

The random matrix theory is a mathematial statement of what a spetrum would

look like were it ompletely random - it uses almost no information about any par-

tiular given physial system.

In ontrast, the periodi orbit theory aims to ompute the spetrum for the physial

system studied. The lassial periodi orbit theory is an exat theory that yields

all averages and orrelations that an be extrated from a given lassial haoti

dynamial system [1℄. The semi-lassial periodi orbit theory of quantum systems

derived by Gutzwiller [31℄ in 1970 expresses quantum quantities suh as the spetral

density in terms of sums over lassial unstable periodi orbits [34℄. In quantum
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mehanis the periodi orbit theory arose from studies of (eminently appliable) semi-

ondutors, and the unstable periodi orbits have been measured in experiments on

the very paradigm of Bohr's atom, the hydrogen atom, in strong external �elds.

Rederiving this theory here would take us too far a�eld - we refer the reader to

[1℄, and limit ourselves to stating the relevant key formulas. Tehnially, the theory

is formulated in terms of the Gutzwiller trae formula

TrG

s

(E) =

1

i�h

X

p

T

p

1

X

r=1

1

jdet(1� J

r

p

)j

1=2

e

r(

i

�h

S

p

�

i�

2

m

p

)

: (1.2)

Here S

p

= S

p

(E) is the ation evaluated along the prime yle p, the single, shortest

traversal of a periodi orbit. J is the monodromy matrix omputed on a surfae of

setion transverse to the orbit within the onstant energy shell E = H(q; p). The

Maslov index m

p

= m

p

(E) ounts the number of hanges of sign of the matrix of

seond derivatives evaluated along the prime periodi orbit p. The sum is over all

prime yles p and their rth repeats, as any repeat of a periodi orbit is also a periodi

orbit. The ation and the Maslov index are additive along the trajetory, so for rth

repeat they simply get multiplied by r. The monodromy matrix of the rth repeat of

a prime yle p is (by the hain rule for derivatives) J

r

p

, where J

p

is the prime yle

monodromy matrix. In deriving the formula one assumes that J

p

has no marginal

eigenvalues, that the the periodi orbits are isolated and do not form families, unlike

the ase of integrable systems or in the KAM tori of systems with mixed phase spae,

so the formula is valid only for the hyperboli and ellipti periodi orbits.

In pratie, all quantum haos alulations take the stationary phase approxi-

mation to quantum mehanis (the Gutzwiller trae formula, possibly improved by

inluding tunneling periodi trajetories, di�ration orretions, et) as the point of

departure. One the stationary phase approximation is made, what follows is lassial

in the sense that all quantities used in periodi orbit alulations - ations, stabilities,

geometrial phases - are lassial quantities. While various periodi orbit formulas

are formally equivalent, pratie shows that some are preferable to others. Three

lasses of periodi orbit formulas are frequently used:

1. Trae formulas. Easy to derive, in atual alulations the Gutzwiller trae

formulas (1.2) are hard to use for anything other than the leading eigenvalue estimates,

as they tend to be divergent in the region of physial interest.
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2. Ruelle or dynamial zeta funtions

1=�(s) =

Y

p

(1� t

p

); t

p

=

1

q

j�

p

j

e

i

�h

S

p

�i�m

p

=2

: (1.3)

Here t

p

is the quantum amplitude assoiated with a given prime yle, �

p

is the

produt over expanding stability eigenvalues of J

p

, and the produt is over all prime

yles p.

3. Selberg-type zeta funtions, Fredholm determinants, spetral determinants,

funtional determinants are the natural objets for spetral alulations. The semi-

lassial zeta funtion

�(E) = exp

 

�

X

p

1

X

r=1

1

r

e

ir(S

p

=�h�m

p

�=2)

jdet(1� J

r

p

)j

1=2

!

(1.4)

is formally equivalent to the trae formula (1.2) and follows from it by simple manipu-

lations. Its Selberg-type zeta funtion in�nite produt representation for Hamiltonian

systems with 2 degrees of freedom is

�(E) =

Y

p

1

Y

k=0

 

1�

e

iS

p

=�h�i�m

p

=2

j�

p

j

1=2

�

k

p

!

:

The billiards that we shall study here belong to this lass of quantum systems. For

hyperboli systems both the dynamial zeta funtions and the spetral determinants

have good onvergene and are powerful tools for determination of quantum mehan-

ial resonanes. Most periodi orbit alulations are based on yle expansions of

suh determinants.

Similar zeta funtions have already been derived muh earlier [26℄ for the speial

ase of spetral determinants of Laplae operators on spaes of onstant negative

urvature, with the spetral determinants expressed in terms of the losed, periodi

geodesis. For the deterministi dynamial ows and number theory, zeta funtions

are exat. The quantum-mehanial ones, derived by the Gutzwiller approah, are at

best only the stationary phase approximations to the exat quantum spetral deter-

minants, and for quantum mehanis an important oneptual problem arises already

at the level of derivation of zeta funtions; how aurate are they, and an the periodi

orbit theory be systematially improved?
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1.3 Symboli dynamis

At �rst using orbits in alulations may seem like a hopeless task sine in general there

are in�nitely many unstable periodi orbits. The key tool in dealing with this in�nity

of orbits is the onept of symboli dynamis borrowed from the theory of dynamial

systems and ergodi theory [34, 1℄. The idea is to assoiate to eah trajetory a

unique bi-in�nite symboli sequene :::a

�2

a

�1

a

0

:a

1

a

2

:::, and vie versa, establish

that there is one and only one trajetory for a given bi-in�nite symboli sequene.

This is espeially valuable when the symbols an be hosen from a �nite alphabet

subjeted to a �nite number of rules (grammar). Here periodi orbits have periodi

symboli sequenes (e.g. a period three orbit is denoted a

1

a

2

a

3

). Calulations of

zeta funtions are organized in terms of inreasing word lengths of suh orbits. As

the length of the words inluded in a yle expansion of (1.4) is inreased, an inrease

in the onvergene of the quantum resonane estimates is observed. This onvergene

an be haraterized as super-exponential in the most optimal ases, meaning that

the number of signi�ant digits one gains is not �xed at say two but grows at eah

step. Thus symboli dynamis is not only useful for lassifying and �nding the orbits,

it an also be numerially e�etive.

In quantum mehanial appliations this rather brave semi-lassial periodi or-

bit quantization aomplishes something altogether remarkable; putting together all

ingredients that make the pinball game unpreditable, it yields surprisingly aurate

helium quantum spetrum [5℄. Even though the yle expansion was based on the

semilassial approximation whih is expeted to be good only in the lassial large

energy limit, the eigenenergies are good to 1% all the way down to the ground state.

Gutzwiller's semilassial quantization has been applied to the helium atom, the

anisotropi Kepler problem, the hydrogen atom in a magneti �eld and to the wave

sattering for the salar Helmholtz equation from several diss. However, the method

does not appear to be generally valid. The onvergene is severely degraded for generi

dynamial systems whose phase spae is mixed between haoti and integrable. It

has been seen that for intermittent systems the zeta funtions may develop branh

points [42℄.

1.4 Experimental elastodynamis

Having skethed the broad historial bakdrop, we are ready to turn to the beautiful

experimental work that motivates our undertaking.
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Why elastodynamis? Besides the experimental aessibility and the high quality

experimental spetra new and interesting features show up: The ray splitting and

surfae waves. The elastodynami wave equation desribes the propagation of waves

with two di�erent wave speeds. When a plane wave hits a boundary, two or more

plane waves are emitted at di�erent angles. In the high-frequeny limit this leads

to a so-alled branhing Hamiltonian system. The surfae waves are important as

they an propagate without attenuation along the boundaries. Thus, ompared to

eletrodynamis and quantum mehanis of salar �elds we have to take into aount

radially di�erent periodi orbits.

While the surfae waves an already be seen in the simpler ase of the salar

Helmholtz equation with impedane onditions

�u

�n

= �ikZu [15℄, our goal in the

following is to address the problem of physial elastodynamis with free boundary

onditions, the onditions experimentally realized in the highest Q-value (5 � 10

6

for

a quartz sphere) measurements up to date. Here there are some lear advantages

in studying elastodynamis in for example experiments with quartz ompared to the

more onventional systems in atomi physis, miro-wave avities and eletronial

nanostrutures. In spite that elastodynami experiments are usually performed on

marosopi systems the spetra are remarkably good with sharp and well-de�ned

resonane lines. The quality fator, the Q-value is introdued as a measure of the

\goodness" of a resonane. The Q-value is de�ned as the ratio between the line with

and the resonane frequeny. Thus the Q-value of quartz is about 10

6

whereas for

a typial mesosopi experiment its approximately 20. This means roughly that a

sound beam is reeted inside quartz resonator millions of times before it fades away,

whereas the eletron wave dies out after only 20 reetions. Another advantage is

the low dimensional phase spae whih greatly redues the number of orbits and

the numerial work in �nding them. A third advantage is the low degree of non-

linearity in the elastodynami wave equation. Hene, the eigenmodes are almost

un-oupled, and the theoretial ompliations found in strongly orrelated eletroni

systems are avoided. Nor should it be underestimated from a pratial point of

view that elastodynami experiments tend to be muh simpler and heaper than

their ounterparts in atomi physis, helium-ooled mirowave avities and eletroni

nano-devies.

1.4.1 Tests of the random matrix theory

So far the preditions of the random matrix theory have been tested on the resonane

spetra for a large number of di�erent lassially haoti systems, with good quali-

tative agreement. The ommon belief is that the lassially haoti billiards should
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have spetral statistis di�erent from the lassially integrable billiards, and that is

borne out by experiments. Hene from the spetrum alone it appears that one an

determine whether or not a system is haoti or integrable.

A partiularly strong test of these preditions omes from the experiments of

Oxborrow et al. [23℄ on quartz resonators. These experiments are remarkable for the

high Q-value of the resonanes, of order 10

5

� 10

6

. This stands in sharp ontrast

with the nulear physis and the room temperature mirowave experiments for whih

the Q-values are orders of magnitude lower, typially � 100. Thus in elastodynamis

highly aurate spetra an be measured, with the attendant spetral statistis of

unparalleled quality.

1.4.2 Tests of the periodi orbit theory

In quantum mehanis the atomi physis measurements of Welge et al. [32℄ and the

theoretial investigations of Wintgen et al. [33℄ gave a dramati demonstration of the

underlying periodi orbit struture of spetra of hydrogen in strong external �elds. Up

to this day there has been no experimental veri�ation of the orresponding periodi

orbit theory in elastodynamis. This unsatisfatory state of a�airs is, of ourse, the

raison d'etre for the entire theoretial e�ort desribed in this thesis.

1.5 Wave haos in elastodynamis

Elastodynamis in rystals is desribed by linear partial di�erential equations [17, 21℄.

For bulk vibrations these equations are vetorial, and in general three di�erent modes

of polarization are found. When a wave of a given polarization hits a boundary this re-

sults for free boundary onditions in normally three new outgoing waves, the so-alled

wave split phenomenon. Another property of aousti waves is the extraordinary re-

fration, i.e. the fat that the phase veloity is in general not parallel to the group

veloity. Finally there is also the possibility of surfae waves. Thus ompared to the

Shr�odinger equation in quantum mehanis the aousti wave equation exhibits new

features.



11

1.5.1 What is known so far?

Exat results

At �rst we should have the orresponding exat sattering spetrum. This work has

already been done in the ase of one avity [12, 13℄. However, for multiple avities the

exat S-matrix annot be written down in losed form. We will use the of S-matrix

formalism and follow the strategy of Wirzba's [2℄ derivation for the salar Helmholtz

equation with Dirihlet onditions. For the experimental elastodynamis (resonator

in vauum) purposes, the boundary should be taken as free. Next we shall derive a

fatorization of the spetral determinant in a oherent part among di�erent satters

and inoherent parts for individual satters.

Wirzba's approah [2℄ is based on the partial wave expansions and the Sommerfeld-

Watson transformation. In the multi-sattering ase it has been shown that also

reeping along di�erent satters matters. Thus for low frequenies these orbits have

to be inluded also. We expet similar e�ets in elastodynamis. This we shall study

for the two avity system. The surprise is that while the lassial two dis system has

only one unstable orbit, the semilassial ase has in�nitely many orbits of Rayleigh

type and is in this sense haoti. This will go beyond the usual lassial notions

of symboli dynamis sine the Rayleigh and reeping orbits are essentially omplex

orbits. They reside in the omplexi�ed phase spae and do not sit on the lassial

objet, the haoti repeller. One may speulate that omplex orbits are exatly what

is needed in a more general theory. How omplex orbits enter, however, is not lear

at all for general systems.

Geometrial theory of wave elastodynamis

Keller and ollaborators have treated surfae waves and di�ration in a more general

setting [15, 16℄. From only a few assumptions di�ration onstants and propagation

segments are derived. By studying a limited number of examples, wedges, points,

reeping around diss ... enough knowledge about general di�ration is gathered. This

theory is often alled the geometrial theory of di�ration. In partiular onerning

surfae waves using a WKB expansion the urvature orretion to the Rayleigh wave

speed has been found [25, 20℄. Therefore surfaes with varying urvature an be

treated.

Conerning the speial ase of one dis respetive avity, the individual satter,

there is already a sophistiated theory in terms of orbits. The main tool is the
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Sommerfeld-Watson transformation whih transforms slowly onverging sums of par-

tial waves to a fast onverging sum over omplex reeping orbits [22℄. Creeping here

refers to irumferential orbits. This transformation is used in the high frequeny

limit. For instane onsider the sattering of visible light from an a = 1 mm diameter

drop of water. Here one �nds that one has to use approximately � = ka � 5000 par-

tial waves. Now similar results are obtained using just a few reeping orbits (� � 1

requires only four). Nussenzweig [22℄ reports, for example, that for � = ka > 100 the

error is better than 1 ppm. This tehnique was �rst used by Watson in the study of

the transmission of radio waves around the earth. Later it was applied in high energy

physis, where it goes under the name of the method of Regge poles [6℄. Similar

alulations have been done in elastodynamis [19℄. Here pratial appliations are in

the study of avities and other defets in materials and in seismography. The di�er-

ent polarizations and Rayleigh waves render the alulations more ompliated than

the salar ase. We shall derive a spetral determinant for one avity as a produt

over reeping orbits and Rayleigh orbits. The quantization is partiularly simple with

phase mathing on just one periodi orbit. Here reeping orbits onstantly leaks out

rays leading to a loss of amplitude. This is then inorporated by using a omplex

wave number leading to sattering resonanes with �nite lifetime. This e�et is also

seen for the Rayleigh wave beause of the urvature.

Periodi orbit theory

There is already a andidate for quantization in elastodynamis based on the work by

Couhmann and Ott [10℄ whih studied a losed system, the stadium billiard. Their

artile is mainly devoted to the \lassial" behavior assoiated to elastodynamis in

the high frequeny limit fousing on wave splitting. Apparently not muh work has

been done on these branhing Hamiltonian systems. In partiular whether suitable

Fredholm determinants are entire and similar questions. The thesis of Couhmann

desribes the random matrix properties of these systems and ontains a derivation of

a Gutzwiller trae formula for the spetral density.

1.5.2 What is new in this thesis?

We shall present a derivation of the exat sattering determinant for a system of

several ylindrial avities. From this objet we shall extrat spetral quantities

fousing on mainly the phase shift and the assoiated Wigner time delay. Our analysis

will show that the results for this wave problem are strongly inuened by its lassial
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ray dynamis. Here the new feature are periodi orbits with surfae segments on the

boundaries of the avities. These surfae piees are of Rayleigh type and are only

slightly attenuated for high frequenies. In partiular already a system of two avities

will have in�nitely many orbits leading not only to haoti lassial behavior but also

to very omplex wave behavior.

1.5.3 Organization of the thesis

We review the requisite theory of elastiity and derive the linearized elastiity wave

equation in hapter 2. In hapter 3 we formulate the sattering problem for a set

of ylindrial avities in an in�nite elastodynami medium. In hapter 4 we study

the sattering resonanes in the high frequeny limit for the ases of a single avity.

We extrat from the Green's funtion in the presene of a avity the di�ration

onstants orresponding to geometrial reetion, refration and Rayleigh reeping

waves. Numerial investigations of the Wigner time delay are arried out in hapter 5.

A summary and outlook for future work is given in hapter 6.

While elastodynamis is a well founded, well studied lassial theory, and the re-

quired derivations are tehnially straightforward, due to the tensorial struture of

elastodynamis the intermediate steps are frequently rather heavy going for a asual

reader. Whenever permissible I have relegated suh details to appendies. The inde-

pendent omponents of the isotropi elastiity tensor are ounted in appendix A. The

deomposition of the Green's funtion in sattering states is desribed in appendix B,

and appendies C{E ontain omputational details of the sattering problem. Ap-

pendix G is on the Wigner time delay and �nally appendix H is on ray matries for

a system with wave splitting.



Chapter 2

Elastodynamis

In this hapter we will state a few basi results from linear elastodynamis [17, 27, 19℄.

A reader familiar with the subjet an pro�tably skip this hapter. We onsider an

elastodynami body with onstant mass density �. The Einstein repeated index

summation onvention is assumed throughout.

2.1 Displaement and stress

Consider a deformation of an elastodynami body, Fig. 2.1(a): The loal hange of

position of a partile is given by the displaement vetor �eld, u.

x

0

i

= u

i

(x) + x

i

: (2.1)

Some deformations have no e�et on the loal energy density at the point x. For

instane, a global parallel translation or a rotation does not matter, only loal varia-

tions orresponding to u

j;i

�

i

u

j

matter, sine the former displaements do not deform

the body. Furthermore, as a loal rotation around a given point preserves distanes

in a neighborhood of this point, the medium in this neighborhood is not strethed.

A loal rotation is measured by the (urlu)

i

= �

ijk

�

j

u

k

=

1

2

�

ijk

(�

j

u

k

� �

k

u

j

). Thus

we do not attribute any signi�ane to the antisymmetri part of �

i

u

j

. To show this

onsider the line element (squared distane) between two in�nitesimally lose points

after a deformation skethed in Fig. 2.1(b):

dx

02

= d(x+ u)

2

= dx

2

+ 2 dx � du+ du

2
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Figure 2.1: The ontinuous medium; de�nition of (a) the displaement vetor,

outward normal to the boundary; (b) deformation in the neighborhood of two points.

= dx

2

+ 2

�u

i

�x

k

dx

i

dx

k

+O(du

2

)

= dx

2

+ 2u

ik

dx

i

dx

k

; (2.2)

where we have de�ned the strain �eld:

u

ij

=

1

2

(u

i;j

+ u

j;i

) ; u

j;i

=

�u

j

�x

i

: (2.3)

We see that the distane depends solely on the symmetri part of ru.

To the kinemati strain �eld orresponds a dynami �eld, the stress �eld. This may

be introdued in the following way: Taylor expanding the potential energy density to

leading order in the strain �eld we �nd:

U =

1

2



ijkl

u

ij

u

kl

: (2.4)

There is no linear term sine that would desribe an unstable medium and we an

always assume a vanishing onstant term. This expansion is the generalization of

the energy of a spring as a funtion of the displaement. The displaement is now

replaed by the strain �eld. In a general medium the spring onstant orresponds
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to a suitable four-tensor,the elastiity tensor. A generalized fore, the stress �eld, is

given by Hooke's law:

�

ij

=

�

�u

ij

U = 

ijkl

u

kl

: (2.5)

Thus the pressure in the diretion \i" oming from the element of area with normal

along \j" is given by �

ij

: The pressure at the boundary is referred to as the tration

t(u):

t

i

= �

ij

n

j

: (2.6)

Here n refers to the normal vetor. The symmetries of elastiity tensor follow from

(2.3{2.4):



ijkl

= 

jikl

= 

ijlk

= 

klij

: (2.7)

A most general tensor in three dimensions with these symmetries has 21 independent

omponents. However, if further symmetry is present the elastiity tensor will have

fewer independent omponents. In the isotropi ase the elastiity tensor redues to



ijkl

= �Æ

ij

Æ

kl

+ �(Æ

ik

Æ

jl

+ Æ

il

Æ

jk

) ; (2.8)

where � and � are the Lam�e onstants. For a more detailed disussion see Appendix A.

2.2 Navier-Cauhy equation

We shall now derive the wave equation for elastodynamis, restriting ourselves to

the linearized elastiity.

Consider Newton's seond law on an in�nitesimal volume element. The total fore

will ome from the boundaries. Thus per unit volume, the fore in the diretion \i"
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Figure 2.2: Refration of S, P waves.
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φ φ
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P

is �

ij;j

: The mass times the aeleration of a volume element is �

�

2

u

i

�t

2

with � the loal

mass density. Hene the Newton equation of motion for elastodynamis is

�

�

2

u

i

�t

2

= �

ij;j

= 

ijkl

u

l;jk

: (2.9)

In the isotropi ase (2.8) this redues to:

�

�

2

u

�t

2

= ��(u) + (�+ �)r(r � u)

�

�

2

u

i

�t

2

= �u

i;kk

+ (�+ �)u

k;ki

: (2.10)

In the frequeny domain, with u = u(r)e

i!t

this is alled the Navier-Cauhy

equation:

��(u) + (�+ �)r(r � u) + �!

2

u = 0 : (2.11)

Inserting plane waves one derives the existene of transversal and longitudinal polar-

ized waves with wave speeds



T

=

s

�

�

; 

L

=

s

�+ 2�

�

: (2.12)

In what follows these waves will be referred to as shear and pressure waves, S and P.

This nomenlature is motivated by their representation in terms of potentials. (As we
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shall see in what follows, P and S ould also stand for primary and seondary waves,

referring to the di�erene in their arrival times.) Write

u

L

= r�

u

T

= r�

~

 : (2.13)

A fundamental theorem in vetor analysis [9℄ states that any three-dimensional vetor

�eld an be uniquely deomposed in terms of suh �elds:

u = u

L

+ u

T

: (2.14)

Inserting into the Navier-Cauhy equation we see that the potentials satisfy a salar

and a vetorial Helmholtz equation:

��+ k

2

L

� = 0; k

L

= !=

L

�

~

 + k

2

T

~

 = 0; k

T

= !=

T

(2.15)

The longitudinal waves orrespond to irrotational waves and transverse waves to

inompressible waves (\url" respetive \div" vanishes). Hene the longitudinal

waves are often referred to as pressure waves and the transverse as shear waves. It

follows from (2.12) that the pressure waves propagate faster than the shear waves.

The two kinds of waves are the full solution to the wave mehanis in an in�nite

isotropi medium of onstant density.

In the presene of an in�nite half spae boundary there is also a third kind of wave,

the surfae Rayleigh wave propagating with a omplex wave vetor with no energy loss.

An ansatz that leads to the Rayleigh wave solution assumes that the displaement

�eld deays exponentially into the medium. Choosing z as the oordinate normal

to the boundary, going into the medium for positive z, we write down a plane wave

solution:

u(x; y; z) = a e

i(k

x

x+k

y

y)�k

z

z

; (2.16)

with a is a onstant polarization vetor.
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The physially relevant boundary ondition is the free boundary ondition with

vanishing tration (2.6)

0 = t = � � n = (�r � u1+ �(ru+ (ru)

t

)) � n : (2.17)

Inserting the wave vetor (2.16) into the boundary ondition and the wave equation

one veri�es that suh a wave indeed exists with the polarization entirely in the plane

of the boundary. The wave propagates with a veloity 

R

, slightly slower than the

shear wave and muh slower than the pressure wave. 

2

R

is the real root of

�



L



T

�

2

 

2

�



T



R

�

2

� 1

!

2

� 4

 



T



L



2

R

!

v

u

u

t

 

�



L



R

�

2

� 1

! 

�



T



R

�

2

� 1

!

= 0 : (2.18)

In a semi-in�nite medium with a free plane boundary Rayleigh waves propagate

without energy loss. The geometrial theory to be developed below will piee together

ray trajetories from shear, pressure and Rayleigh wave segments. The Rayleigh

waves along urved boundaries will su�er some radiation loss. In ontradistintion

to the relatively unimportant reeping waves of quantum mehanis with Dirihlet

boundary onditions, the elastodynami surfae Rayleigh waves will turn out to be

the dominant e�et in the elastodynami sattering.

R�esum�e

After an introdution to ontinuum mehanis the elastodynami wave equation was

derived. It supports two di�erent waves P; S in the bulk eah propagating with its

own veloity. In ase of a semi-in�ne medium, the Rayleigh surfae waves are an

additional lass of solutions of great physial importane.



Chapter 3

Multi-avity sattering problem

In the following we shall desribe the solution of the sattering problem in an in�nite

domain with several in�nite parallel ylindrial avities. This is referred to as sat-

tering o� avities in elastodynamis and sattering o� diss in the salar ase. We

shall assume the free boundary ondition, with vanishing tration t(u) = 0; The sat-

tering problem will be solved using boundary integral identities derived via Betti's

equivalent of the Green's theorem.

3.1 Elastodynamis

So far we have disussed the general three-dimensional elastiity. Now we will restrit

our study to a family of ases where it is possible to redue the dimensionality to two.

This two-dimensional situation is realized if one onsiders sattering from parallel

R

a
L a

1 2

Figure 3.1: Two avities geometry (A. Wirzba) [3℄.

20
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Figure 3.2: Three avities geometry (modi�ed from Wirzba).

in�nite \bore holes" with eah avity axis normal to a given �xed plane. A wave with

the polarization on�ned to this plane will never ip its polarization and develop

omponents normal to this plane. Furthermore, a polarization parallel to the avity

axes will never mix with the plane strain �elds. This �eld has only one degree of

freedom and its sattering is desribed by a salar �eld. We shall restrit our study

to the normally inident waves (as opposed to the more general oblique ase) and

limit ourselves entirely to the plane strain ase.

3.2 Boundary integral equations

In elastodynamis the following identity replaes Green's theorem. This relation is

often referred to as Betti's third identity [11℄. To make the notation more ompat, in

what follows we shall often drop the oordinate dependene in vetor �elds, u = u(s)

and v = v(s). For elastodynamis the di�erential operator �

�

il

= 

ijkl

�

j

�

k

is the

generalized Laplaian, and the tration boundary operator t replaes the normal

derivative:

Z

(u ��

�

(v)� v ��

�

(u)) dV =

Z

(u � t(v)� t(u) � v) ds (3.1)
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This identity follows by integration by parts. We have suppressed all indies to keep

the notation simple. Remark that the lamped boundary ondition for (3.1) is u = 0,

and the free boundary - relevant to experiments with elastodynami resonators in

vauum - orresponds to t(u) = 0.

We de�ne the frequeny domain Green's funtion as the solution of

(�

�

r

+ �!

2

1) �G(r; r

0

) = Æ(r � r

0

)1: (3.2)

We shall speialize to two spatial dimensions, isotropi medium ase. The Green's

funtion is now a matrix sine the elastodynami wave equation is vetorial. One an

derive the form of the frequeny dependent Green's funtion by standard methods

desribed in [11℄. The result is (in tensor form)

G(r; 0) =

1

4i�

 

H

(1)

0

(k

T

r)1+

1

k

2

T

r
r(H

(1)

0

(k

T

r)�H

(1)

0

(k

L

r))

!

(3.3)

Inserting the Green's funtion v = G(s;X) into the integral relation we �nd in general

Somigliana's identity [11℄:

(X)u(X) =

Z

(u(s) � t(G(s;X))� t(u(s)) �G(X; s)) ds: (3.4)

Here (X) = 0=1 if X is outside/inside the elasti body. This gives us two relations.

Also a third relation may be derived if the point X is preisely at the boundary. Thus

for a smooth boundary one �nds in all dimensions (X) = 1=2: In two dimensions

(X) is a funtion taking the value

��

2�

; (3.5)

where �� is the angle subtended at X. This gives the values also at orners and an

be generalized to higher dimensions. See [11℄ for further disussion.

3.3 Formal tools

Below we shall state some fats that failitate the alulation of the sattering matrix.
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3.3.1 Basis funtions

Our hoie of basis funtions has been inspired by previous work [19, 20℄. In general

we shall denote a basis funtion with the symbol  , distinguishing outgoing waves

 

(+)

, in going  

(�)

and regular waves  

^

: By regular we mean a wave whih is not

singular at the origin. Our satterers will be ylindrial so the appropriate basis

funtions will be generated from Bessel and Hankel funtions. These basis funtions

will be generated from the basis potentials H

(1)=(2)

l

(kr)e

il�

and J

l

(kr)e

il�

solving the

Helmholtz equations (2.15) by ation of r and r� (ẑ �): This gives us a basis sine

eah vetor funtion uniquely deomposes into an inompressible and an irrotational

part and that the potential funtions are hosen from a omplete set, the partial waves.

Further we shall denote by \�" the replaement of e

il�

with e

�il�

. We reserve \�"

to mean omplex onjugation. We remark that the basis funtions are of dimension

length

�1

.

Orthogonality relations

These basis funtions satisfy orthogonality relations on boundaries. In partiular, at

the dis at in�nity we �nd using the asymptoti expansion of Hankel funtions:

Z
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(�)
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� t( 

(�)

m
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) ds = 8i�!
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(3.6)

and
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(t( 
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l

) ds = 0 : (3.7)

Hene:
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� t( 
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) ds = 4i�!

2
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l;�m
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l

(3.8)

3.3.2 Green's funtion expansion in normal modes

We an onstrut an expansion similar to the partial wave expansion for the salar

ase. There one hooses regular funtions at the origin and outgoing funtions at
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in�nity. Here we write a similar expansion of the Green's funtion and insert it in

the boundary integral relations above. Using the orthogonality relation (3.8) on a

solution  

(�)

the overall normalization is �xed.

Thus we may expand the Green's funtion as

G(x;y) =

1

4i�!

2

X

n

 

^�

n

(r

<

)
  

(+)

n

(r

>

)

=
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(+)

l

(r

>

)℄

t

; (3.9)

where r

<

= min(x; y) and r

>

= max(x; y): Here n in the �rst line is a multi-index

ontaining angular momentum and polarization indies. Further the basis funtion is

a geometri vetor. For a derivation see appendix B. The next line is in matrix form

and introdues the displaement matrix:

[ 

n

℄ =

�

(P

n

)

1

(S

n

)

1

(P

n

)

2

(S

n

)

2

�

; (3.10)

whih for angular momentum n ontains the vetorial omponents 1; 2 of the pressure

and shear basis funtion. Below we shall often suppress geometrial and polarization

indies.

Translations

For di�erent ylinders the natural basis funtions may be de�ned entered at di�erent

positions. To relate suh basis sets we introdue translation operators ( inspired

by [40, 41℄ who introdued suh operators in three dimensions). These operators

translate the underlying oordinate plane but not the basis funtions. We shall work

with several oordinate systems: a global system and one loal for eah satter. We

write a basis funtion at system S

0

in terms of those at system S. Here S; S

0

2

fG; j; j

0

g refer to global respetively loal oordinate systems.

Thus for instane to go from a global to a loal oordinate system for an outgoing

state we have:
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n

(X

(G)

) =

1

X
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T

+Gj

nl
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l

(X

(j)

) (3.11)
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with

T

+Gj

nl

= (�1)

l

H

(1)

n�l

(kR

j

)e

i(n�

(G)

j

�l�

(j)

G

)

: (3.12)

Other ombinations are possible. See appendix C for further details. In the above the

wave vetor k is hosen aording to whether a pressure or shear state is onsidered.

Composition

Produts of the translation operators will again lead to translation operators. The

tool used is the addition theorem for Bessel funtions [35℄. Thus

T

+jG

�T

^Gj

= 1 (3.13)

as partiular example.

3.4 Calulation of boundary integrals

We now proeed with the alulation of the S-matrix using the de�nitions above and

(3.4). We assume the sattering zone surrounded by a large dis with a radius going

to in�nity, �g. 3.3.

Consider an inoming plane wave as potential. This an be written as a sum over

the regular Bessel funtions,

e

ik�r

=

1

X

l=�1

J

l

(kr)e

il�

=

X

l

1

2

(H

(2)

l

(kr)e

il�

+H

(1)

l

(kr)e

il�

) : (3.14)

On the level of the wave funtion the last part orresponds to ingoing and outgoing

states. In the presene of sattering we modify the outgoing part with the sattering

matrix S . Thus at in�nity the wave funtion is:

u =

X

i;l

1

2

a

i

�

Æ

il

 

(�)

l

+ S

il

 

(+)

l

�

: (3.15)
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∂1� ∂2�

∂3�

n

∂∞

n

Figure 3.3: We imagine the sattering zone enlosed in a dis with a radius going

to in�nity. The white zones are voids in the medium. Boundaries are denoted with a

�. An inoming plane wave and its sattered �eld are skethed.

Here a

i

will be referred to as the sattering data at in�nity. By onvention we keep

the fator 1=2 and do not absorb it in a

i

.

At a given avity j expand the wave funtion in a Fourier series:

u =

X

m

B

(j)

m

e

im�

=

X

m

((B

(j)

r

)

m

r̂+ (B

(j)

�

)

m

^

�)e

im�

(3.16)

Here � = �

(j)

refers to the loal oordinate system at the avity.

In the boundary integrals (3.4) the integration will be over the avity boundaries

�

j

and the boundary at in�nity �

1

. Eah integral is to be evaluated with respet to

a �nal point X whih we shall take in the following either as ending on a avity or

going to in�nity. For eah of the avities we shall evaluate the boundary integrals

above at a �nal point in�nitesimally inside the avity. For these integrals the fator is

zero. However, in the latter ase we onstantly stay inside the elasti medium. Hene

the fator  in (3.4) above equals unity. Thus for a point X

(j)

ending on a avity we
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de�ne:

I

j

j

0

=

Z

�

j

0

ds u(s) � t(G(s;X

(j)

))

I

j

1

=

Z

�

1

ds(u(s) � t(G(s;X

(j)

))� t(u(s)) �G(s;X

(j)

) (3.17)

with

0 = I

j

1

� (I

j

j

+

X

j

0

6=j

I

j

j

0

) : (3.18)

For a point X = r !1 inside the medium:

I

r

j

=

Z

�

j

ds u(s) � t(G(s;X))

I

r

1

=

Z

�

1

ds(u(s) � t(G(s;X))� t(u(s)) �G(s;X)) (3.19)

similarly

u(r) = I

r

1

�

X

j

I

r

j

: (3.20)

Here the upper index refers to the �nal point X and the lower to the boundary over

whih the integration has been performed.

These quantities are stated below. To summarize: I

j

j

0

; I

j

j

; I

r

j

; � � � express the �eld

at a given boundary or point generated from another �eld at the same or a di�erent

boundary. For example the �eld at in�nity generates �elds at the avities in the bulk.

Details of the alulations are given in appendix D.

3.4.1 From boundaries to boundaries

The inter-avity integrals are I

j

j

; I

j

j

0

and I

j

1

.
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We �nd from avity j to avity j:

I

j

j

=

Z

�

j

ds u(s) � t(G(s;X

(j)

))

=

�a

j

2i�!

2

X

l

B

(j)

l

� t( 

(+)�

l

(a

j

; � = 0)) 

^

l

(X

(j)

)

=

�a

j

2i�!

2

B

(j)

l

� [t( 

(+)�

l

(a

j

))℄ � [ 

^

l

(X

(j)

)℄

t

(3.21)

from avity j

0

to avity j:

I

j

j

0

=

Z

�

j

0

ds u(s) � t(G(s;X

(j)

))

=

�a

j

0

2i�!

2

X

l;n

B

(j

0

)

l

� t( 

^�

l

(a

j

0

; �

0

= 0))T

+j

0

j

ln

 

^

n

(X

(j)

)

=

�a

j

0

2i�!

2

B

(j

0

)

l

� [t( 

^�

l

(a

j

0

))℄ � T

+j

0

j

ln

� [ 

^

n

(X

(j)

)℄

t

(3.22)

and from dis 1 to avity j:

I

j

1

=

Z

�

1

ds(u(s) � t(G(s;X

(j)

))� t(u(s)) �G(s;X

(j)

)

=

X

m;l

a

m

T

^Gj

ml

 

^

l

(X

(j)

)

= a

m

� T

^Gj

ml

� [ 

^

l

(X

(j)

)℄

t

: (3.23)

We notie that the above terms are all in the basis of regular solutions  

^

. Thus with

respet to this basis we an reformulate the relationship from (3.4)

I

j

1

= I

j

j

+

X

j

0

6=j

I

j

j

0

(3.24)

as a matrix equation:

a �C

j

=

X

j

0

B

j

0

�M

j

0

j

: (3.25)
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The �rst two integrals give the inter-avity sattering matrix M:

M

jj

0

nl

= Æ

jj

0

Æ

ln

1+ (1� Æ

jj

0

)

a

j

a

j

0

[t( 

^�

n

)(a

j

)℄ �T

+jj

0

nl

� [t( 

+�

l

)(a

j

0

)℄

�1

: (3.26)

Here we have normalized the matrix so that it redues to unity in the ase of one

avity only. The summation on the right hand side above is also over the spatial

indies. To keep the notation ompat the terms in the square brakets refer to two-

by-two tration matries ontaining the olumns of the oordinates of t(P ) respetive.

t(S) (Appendix E):

[t( )℄ =

�

t(P )

1

t(S)

1

t(P )

2

t(S)

2

�

: (3.27)

The oordinates are with respet to some �xed system whih we hoose to be the

global system. This matrix is found from a loal expression at dis j by a rotation:

[t( )℄ := [t( )℄

(G)

= R

Gj

� [t( )℄

(j)

; (3.28)

where say for an outgoing state the latter is

[t( )

+�

m

℄ =

�

t(P

m

)

+�

r

t(S

m

)

+�

r

t(P

m

)

+�

�

t(S

m

)

+�

�

�

=

2�

a

2

(3.29)

�

 

(m

2

+m�

1

2

a

2

�

2

)H

(1)

m

(a�)� a�H

(1)

m�1

(a�) im((m+ 1)H

(1)

m

(a�)� a�H

(1)

m�1

(a�))

im((m+ 1)H

(1)

m

(a�)� a�H

(1)

m�1

(a�)) a�H

(1)

m�1

(a�)� (m

2

+m�

1

2

a

2

�

2

)H

(1)

m

(a�)

!

In the seond term the angular dependene e

�il�

is omitted by setting � = 0 in

the end. This gives the rather ompliated third term. Corresponding to in going,

outgoing or regular states the tration matrix will ontain H

(1)

; H

(2)

; J . The � and

� refer to longitudinal and transverse wave vetors and a the avity radius.

The rotation matrix is

R

Gj

=

 

os(�

(G)

j

) � sin(�

(G)

j

)

sin(�

(G)

j

) os(�

(G)

j

)

!

: (3.30)
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Furthermore we have a translation matrix

T

+jj

0

nl

=

 

T

+(P )jj

0

nl

0

0 T

+(S)jj

0

nl

!

(3.31)

ating on the various polarizations.

The normalization of M also inuenes the matrix that multiplies the sattering

data a

i

:

C

(j)

ml

=

2i�!

2

�a

j

T

^Gj

ml

� [t( 

+�

l

)(a

j

)℄

�1

: (3.32)

3.4.2 From boundaries to in�nity

Next we shall onsider the integrals from boundaries to a point at in�nity I

r

j

and I

r

1

:

We �nd

I

r

j

=

Z

�

j

ds u(s) � t(G(s;X))

=

�a

j

2i�!

2

X

n;l

B

(j)

n

� t( 

^�

n

(a

j

; � = 0))T

+jG

nl

 

(+)

l

(X

(G)

)

=

�a

j

2i�!

2

B

(j)

n

� [t( 

^�

n

(a

j

))℄ � T

+jG

nl

� [ 

(+)

l

(X

(G)

)℄

t

(3.33)

and by orthogonality (3.8)

I

r

1

=

Z

�

1

ds (u(s) � t(G(s;X

(G)

))� t(u(s)) �G(s;X

(G)

)

=

X

i

a

i

 

^

i

(X

(G)

)

= a

i

� [ 

^

i

(X

(G)

)℄

t

: (3.34)
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From (3.4) we have  (r) = I

r

1

�

P

j

I

r

j

. Inserting the expansion for the �eld at

in�nity and using  

^

=

1

2

( 

+

+  

�

) we see that all terms an be written in terms of

the outgoing basis funtion  

(+)

. Thus

X

n

a

n

S

nl

=

X

n

0

�

a

n

Æ

nl

1�

X

j

�a

j

i�!

2

B

(j)

n

� t( 

^�

n

(a

j

; � = 0))T

+jG

nl

1

A

(3.35)

or in ompat form

a

n

� S

nl

= a

n

Æ

nl

� 1�

X

j

�a

j

i�!

2

B

(j)

n

� [t( 

^�

n

(a

j

))℄ � T

+jG

nl

: (3.36)

De�ning the matrix D:

D

j

nl

= �

�a

j

�!

2

[t( 

^�

n

(a

j

))℄ � T

+jG

nl

(3.37)

we have the matrix equation:

a � S = a � 1� i

X

j

B

j

�D

j

: (3.38)

Eliminating the sattering data B at the avities we �nd the sattering matrix:

S = 1� iC �M

�1

�D: (3.39)

3.5 Sattering from one avity

For sattering from one ylindrial avity the S-matrix is of the form:

S

(1)

= 1� i C �D ; (3.40)

sine the M-matrix redues to unity.
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Here we an position the global oordinate system in the enter of the avity.

Therefore we an ignore the translation matries and �nd in expanded form

S

(1)

lm

= �Æ

lm

[t( 

+�

l

)(a

j

)℄

�1

� [t( 

��

l

)(a

j

)℄

= �Æ

lm

[t(P

+�

l

)jt(S

+�

l

)℄

�1

� [t(P

��

l

)jt(S

��

l

)℄ : (3.41)

This is the sattering matrix for states with angular dependene e

il�

: This result is

very similar to the sattering matrix for the salar Neumann problem. The di�erene

is just that the normal derivative of the basis funtions is replaed by the tration.

We ould also have onsidered sattering with even and odd states with dependene

os(�) and sin(�) as usually done in the literature. Thus in refs. [19, 18℄ the sattering

problem has been worked out in terms of these states. Our matrix is related to the S-

matrix of refs. [19, 18℄ by a unitary transformation. In the following we shall ontinue

working with the states e

il�

.

3.6 Fatorization of the spetral determinant

From (3.39) the spetral determinant beomes formally

Det(S) =

Det(M� i D �C)

Det(M)

: (3.42)

We shall show that the numerator fatorizes

Det(X) := Det(M� i D �C) = Det(M(!

�

)

y

)

Y

j

det(S

(1)

j

) : (3.43)

Thus

Det(S(!)) =

Det(M(!

�

)

y

)

Det(M(!))

Y

j

det(S

(1)

j

(!)) : (3.44)
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So there is a fatorization in a oherent part among satters and inoherent parts

due to the individual satters. By inspetion of (3.26)-(3.47) one �nds that the poles

of the one-avity determinants anel exatly the poles of the denominator matrix

M of the oherent part. Similarly the poles of M

y

are anelled by the zeroes of

the one-avity determinant. Hene the genuine sattering resonanes are given by the

zeroes of the M-matrix.

To prove the above statements we alulate D �C:

When j = j

0

:

D

j

n

�C

j

l

= �2i[t( 

^�

n

)(a

j

)℄ � [t( 

+�

l

)(a

j

)℄

�1

Æ

nl

(3.45)

and for j 6= j

0

:

D

j

n
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j
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=

1
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j
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)(a
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0
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� [t( 
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l

)(a

j

0

)℄

�1

!

= �2i

a

j

a

j

0
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^�

n

)(a

j

)℄ �T

^jj

0

nl
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l

)(a

j

0

)℄

�1

:

This gives X:
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0
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l

)(a

j

)℄ � [t( 

+�

l

)(a

j

)℄

�1

�(1� Æ

jj
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)

a

j
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0

[t( 
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l

)(a

j

)℄ �T

�jj

0

ln

� [t( 

+�

n

)(a

j

0

)℄

�1

: (3.46)

On the other hand onsidering omplex onjugate frequenies (orresponding to on-

jugate k

L

and k

T

) we get

(M

jj

0

�l;�n

(!

�

))

�

= Æ

jj

0

Æ

ln

1+(1�Æ

jj

0

)

a

j

a

j

0

[t( 

^�

l

)(a

j

)℄�T

�jj

0

ln

�[t( 

��

n

)(a

j

0

)℄

�1

:(3.47)

These two results di�er by the matrix S

�

S

�(1)

ln

= �Æ

ln

[t( 

��

l

)(a

j

)℄ � [t( 

+�

l

)(a

j

)℄

�1

; (3.48)
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whih learly has the same determinant as the the one-avity sattering matrix. How-

ever, it does not have the same form as the latter. Why? This omes from our hoie

of speifying the data on the avities as vetorial. This gives an M-matrix whih

maps from physial spae to physial spae. The sattering matrix, however, maps

from the state of basis funtions into basis funtions. Thus with the de�nitions hosen

we do not expet a diret matrix fatorization of X into M(!

�

)

y

;S

(1)

as opposed to

the salar ase.

3.6.1 Symmetry fatorization

We shall onsider avities arranged in a symmetri fashion (�g. 3.1). For the ase of

two ylindrial avities of equal radius the symmetry group is C

2v

, with the harater

table 3.1, and for three ylindrial avities with enters at the verties of an equilateral

triangle the symmetry group is C

3v

[44℄.

C

2v

E C

2

�

x

�

y

A

1

1 1 1 1

A

2

1 1 -1 -1

B

1

1 -1 1 -1

B

2

1 -1 -1 1

Table 3.1: Charater table of C

2v

.

This symmetry an be exploited to blok-diagonalize the sattering matrix and

hene fatorize the sattering determinant. This will redue the numerial workload,

sine the subspae sattering matries will be of muh smaller size. Furthermore

the symmetry will manifest itself at a lassial level by reduing the number of pe-

riodi orbits in the umulant expansion of the determinant. Below we just state the

proedure (for a derivation see Appendix F ):

We de�ne for m � 0:

d(m) =

p

2 form > 0 and d(0) = 1 : (3.49)

For the two-avity system where all radii are equal (= a) and the angles to the

respetive enters are �

(2)

1

= �

(1)

2

= � we get in terms of two by two matrix entries

for m;n � 0

M

mn

(�

1

; �

2

) = Æ

mn

1+

�

1

2

d(m) d(n) [t( 

^�

m

)(a)℄ �T

+

mn

(�

2

) � [t( 

+�

n

)(a)℄

�1

;(3.50)
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where the modi�ed translation matrix is

T

+

mn

(�

2

) = (�1)

m

" 

H

(1)

m�n

(�R) 0

0 H

(1)

m�n

(�R)

!

(3.51)

+�

2

(�1)

n

 

H

(1)

m+n

(�R) 0

0 �H

(1)

m+n

(�R)

!#

and �

1

; �

2

= �1 indexing the irreduible representations (table 3.2). We have

C

2v

A

1

A

2

B

1

B

2

�

1

+ + - -

�

2

+ - + -

Table 3.2: Sign onvention in the redued inter-avity matrix.

The matries are redued sine they no longer arry avity indies and only non-

negative indies of angular momentum are present.

The fatorization is quite similar to the salar ases, just with a minus sign in the

lower right orner of the seond matrix in the translation part (3.51).

3.7 Fredholm theory and shadowing

In the ase of the salar dis problem the results derived above an be justi�ed

rigorously by proving that M = 1+A is an operator of the Fredholm type with A

a trae-lass operator. This means that all traes of powers of A exist and therefore

the determinant of M exists, as de�ned by its expansion in terms of traes

DetM = exp

 

�

1

X

n=1

(�1)

n

Tr (A

n

)

n

!

= 1 + TrA�

1

2

(Tr (A

2

)� (TrA)

2

) + � � � : (3.52)
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The Fredholm determinant F (z) = Det (1+ zA) is analyti in z. Thus the oeÆients

of z

n

, umulants, in the above expansion of F (z) deay faster than exponentially.

For high frequenies these traes an be approximated by sums over lassial prime

yles and their repeats, as we shall see below. The fast deay of the Fredholm series

means that the umulant sums must involve large anellations among the individual

yles, and that the ontributions of long orbits are in part anelled by produts of

shorter ones. In the theory of dynamial systems this phenomenon is alled shadowing.

There similar anellations are seen for spetral determinants of evolution operators in

strongly haoti systems. The anellations determine the onvergene of the spetral

determinant and hene the preision at whih spetral resonanes an be found. At

its best the onvergene is super-exponential [36℄. The above shadowing arguments

should be taken with the following onsideration in mind: In the high-frequeny limit

the traes in the Gutzwiller-Voros and the analogous elastodynami determinants are

approximated by sums over periodi orbits. This approximation introdues errors in

the Fredholm determinant, so the deay of umulants is degraded and the region of

onvergene dereased. However, for the leading quantum resonanes the numerial

agreement is remarkably good [2℄. At this time it is not known to what extent the

auray of the saddle point approximations an be inreased by inluding all reeping

orbits and by taking higher �h-orretions in the saddle point expansions.

From our preliminary investigations we have reason to believe that also in the

elastodynami setting the M-matrix is a Fredholm operator. We will at this stage

not attempt to prove this, but just mention that numerially we see deay of the

umulants and that the expression for the elastodynami M-matrix is very similar

in form to the quantum mehanial result, giving us on�dene in our numerial

alulations of detM:

R�esum�e

In this hapter we have formulated the sattering problem for a system of ylindrial

avities in plane strain elastiity. A basis of sattering states makes it possible to

expliitly alulate the elements of the full sattering matrix in analyti form, in

terms of Bessel funtions. The sattering determinant was shown to fatorize into an

inoherent and oherent part. We now turn to a study of eah of these piees.



Chapter 4

High frequeny limit

In this hapter our goal is to introdue a ray dynamis relevant to our elastodynami

system of avities. This ray dynamis is derived from the underlying wave equation

and its boundary ondition by studying a single avity. We shall follow the reent work

by Wirzba [3℄. Interestingly, we have to inlude surfae rays of very low attenuation.

For wave systems whose underlying lassial dynamis is integrable the high fre-

queny or semi-lassial resonanes are given by the Bohr-Sommerfeld quantization.

For systems with a more ompliated lassial dynamis, often refered to as haoti,

the quantization is likewise more ompliated. Those systems have been investigated

using several methods. Originally Gutzwiller [34℄ found his elebrated trae formula

using path-integrals. This approah is a very general one and it might not be im-

possible to de�ne path integrals also in elastodynamis. Investigations on quantum

billiards are mostly based on the saddle point method applied to integral kernels. Typ-

ially one derives a boundary integral equation whih is then studied near a saddle

orresponding to a periodi orbit. Perhaps the fastest way [1℄ of deriving Gutzwiller's

formula is the method of WKB. The path-integral and the WKB are general meth-

ods allowing for varying potential, whereas the boundary integral method requires

onstant potential in the inside of the billiard. Complex orbits seem always to be in-

trodued in a rather ad ho fashion with exeption of the very speialized method of

[2℄ using the Sommerfeld-Watson transformation. As mentioned in the introdution,

many problems in sattering theory involve sums over the Bessel funtions, speial

funtions whih often appear if a rotational symmetry is present. These sums over

angular momentum l onverge for low frequenies but fail at high frequenies. The

Sommerfeld-Watson idea is to omplexify the angular momentum and onvert the

sum into a ontour integral. This integral will typially pik up ontributions from

37
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saddle points and poles. We shall see below that the saddles orrespond to free ge-

ometri rays and the poles to surfae rays. Further ompliations will arise if the

integrand ontains other singularities suh as branh points. In our ase we shall

fous only on the so-alled Rayleigh poles.

In elastodynamis ontour integral methods have been used in e.g. [19℄:

1. An expansion for the dynami hoop stress: �

��

. For the free boundary all

stresses vanish exept for the hoop stress. This stress depends on the total �eld

whih we an write as a sum over angular momenta. This is then transformed

into a sum over reeping waves and a Rayleigh wave.

2. The transient response from avities: one enounters ontributions from P,S

and Rayleigh waves.

Here we shall work out the high frequeny limit of the Green's funtion in the fre-

queny domain for one avity following Wirzba. As an introdution to the problem

we familiarize ourselves with the known exat results on avity resonanes and their

attenuation.

4.1 One avity resonanes

4.1.1 Exat results

What is known about the exat position of the resonanes? They have been dis-

ussed in [13℄. We have reprodued their results, see hapter 5. For the sake of

presentation we wish to show the data already now. We have on�rmed numerially

the resonane spetrum for polyethylene. For polyethylene the relevant parameters

are 

L

= 1950m=s and 

T

= 540m=s. The resonanes orrespond to the poles of the

sattering determinant at various integer values of the angular momentum.

We plot the �rst 120 Rayleigh poles in the fourth quadrant of k

L

a in �g. 4.1. For

high frequenies there is a band of resonanes lose to the real axis. The spaing

is regular and quite lose (within two signi�ant digits) to what one would expet

for a wave moving with Rayleigh speed (

R

= 513m=s) on an in�nite at boundary.
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0

Im(kL a)

Rayleigh resonances

Figure 4.1: The �rst 120 Rayleigh sattering resonanes for polyethylene with a

single avity of radius a. The line of resonanes goes asymptotially to the real axis,

with high frequenies having vanishingly small attenuation.

However, deviations are not only on the real part but also there now is a small

imaginary part. The goal in the following is to desribe these deviations.

4.1.2 One avity determinant

To �nd the resonanes we do not have to use the full spetral determinant (3.41)

but just its denominator. Thus resonanes an be found numerially using (3.29)

searhing for its zeroes. Our theoretial investigation will use the expression (E.7),

where the order of the Hankel funtions has a �xed angular momentum l.

We shall study this expression perturbatively in the limit of high frequenies fo-

using on resonanes of the Rayleigh type.

First we mention that the Airy expansions of the Hankel funtions in the sattering

determinant may be used, but seem too ompliated for a theoretial desription of

the Rayleigh resonanes. However, for numerial purposes they work will: using two
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leading terms in the Airy expansion determine the resonanes to three signi�ant

digits.

This last approah takes two saddles into aount and this an also be done using

just the Debye expansion but keeping the expontially small term oming from the J

l

part of the Hankel funtion. This is the idea of Viktorov [45℄ whih we shall desribe

below.

The exponential Debye expansion for the Hankel funtions:

J

l

(z) �

s

1

2�Q

e

Q�lArCosh(l=z)

(4.1)

Y

l

(z) � �

s

2

2�Q

e

�Q+lArCosh(l=z)

(4.2)

H

(1)

l

(z) = J

l

(z) + iY

l

(z) � �i

s

2

2�Q

e

�Q+lArCosh(l=z)

; (4.3)

with

Q = Q(l; z) =

p

l

2

� z

2

: (4.4)

Here the order l is assumed larger than the argument z. Other ases would lead to

other resonanes, e.g. resonanes of Franz type [14℄ when l ' z. (4.3) is essentially

just the saddle point approximation. We see that J

l

(z) is exponentially small and

an be omitted from the asymptoti expansion of H

(1)

l

(z).

For onveniene we put

q = Q(l; k

L

a) and s = Q(l; k

T

a) : (4.5)

Also we shall write the angular momentum in terms of an azimuthal and transverse

wave number

l = ak

R

� �ak

T

: (4.6)



41

Inserting this expansion into (E.7) and de�ning the determinant D we �nd to leading

order after some manipulation

D � det

�

(l

2

� (a�)

2

=2) + q il(1 + s)

il(1 + q) �(l

2

� (a�)

2

=2)� s

�

: (4.7)

The ondition for resonane D = 0 gives

l

2

qs = ((a�)

2

=2� l

2

)

2

: (4.8)

Hene we get an equation for the ratio � ' 

T

=

R

�

2

q

�

2

� 1

q

�

2

� (

T

=

L

)

2

= (1=2� �

2

)

2

: (4.9)

This is preisely Rayleigh's equation for surfae waves on the in�nite half plane, as in

the high frequeny limit we annot distinguish between a urved surfae or a plane.

Interestingly there are also other resonanes whih we assoiate with the omplex

solutions of Rayleigh's equation whih an be rewritten as a ubi equation for �

2

[13℄. These resonanes are, however, strongly damped and will be omitted in the

following.

We �nd orretions to the ratio � from the urvature of the boundary by inserting

the Debye series instead:

H

(1)

l

(z) = J

l

(z) + iY

l

(z) � �i

s

2

2�Q

e

�Q+lArCosh(l=z)

(4.10)

�(1�

1

8

l

Q

+

5

24

(

l

Q

)

3

: : :)

H

(1) 0

l

(z) � (�Q=z)(�i

s

2

2�Q

e

�Q+lArCosh(l=z)

(4.11)

�(1 +

3

8

l

Q

�

7

24

(

l

Q

)

3

: : :)) :

Here we expand

� = �

0

+

�

1

�a

+

�

2

(�a)

2

+ : : : (4.12)
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and solve systematially for the unknowns �

1

; �

2

; : : :. Analytial expressions soon

beome umbersome for the higher orretions and we just state that for our material

in onsideration we �nd

�

0

= 1:0525597 (4.13)

�

1

= 2:1436297

�

2

= 26:845142

.

.

.

All further orretions an be seen to be real whih would seem to imply no attenu-

ation. This, however, as we know from �g. 4.1 annot be.

To proeed one has to inlude the Debye series for also J

l

(z) at some point of

approximation near �

0

+

�

1

�a

, as in [45℄. It has been remarked by Wirzba that for even

higher frequenies one should perturb around say �

0

+

�

1

�a

+

�

2

(�a)

2

instead, and so on for

yet higher frequenies. The reason is that one trunates the Debye series to its smallest

term and this trunation happens at higher orders for higher frequenies. On the other

hand it appears to be diÆult to �nd a good approximation for intermediate regimes,

i.e. up to size parameter k

L

a < 25. This is in ontrast to the good onvergene in

salar wave mehanis for the Franz resonanes.

One an write the resonane ondition as

0 � f(�) + e

��

1

(�)

h

1

(�) + e

��

2

(�)

h

2

(�);

where f; �

i

and h

i

are the funtions:

� h = i(

1

2

� 2�

2

0

+ 2qs�

2

0

+ 2�

4

0

) =

i

2

((1� 2�

2

)

2

+ 4qs�

2

0

) = i4qs�

2

0

� f

0

= �8�

0

(1 + qs+

1

2

(q=s+ s=q � 4)�

2

0

� � = �2 s � + 2 � � ArCosh(�) (transverse part).

In our ase the last terms are exponentially small and imaginary. The �rst term

already orresponds to the perturbative solution. Expanding around � gives a purely

imaginary orretion.
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Viktorov's orretion beomes

Im(�) = (e

2(s�lArCosh(

l

�a

))

+ (

L

=

T

)

2

e

2(q�lArCosh(

l

�a

)

) (4.14)

�

4�

2
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q

�

2

0

� 1

q

�

2

0

� (

T

=

L

)

2

8�

0

(1 +

q

�

2

0

� 1

q

�

2

0

� (

T

=

L

)

2

+

1

2

�

2

0

(

p

�

2

0

�1

p

�

2

0

�(

T

=

L

)

2

+

p

�

2

0

�(

T

=

L

)

2

p

�

2

0

�1

� 4))

;

where l = �(�

0

+

�

1

�a

+ : : :) is the urrent best real approximation. We remark that this

result is essentially non-perturbative and for high frequenies exponentially small.

4.2 Green's funtion in the presene of a single

avity

The motivation for studying a single avity Green's funtion is that from this el-

ementary ase one an get many insights about the high frequeny behaviour in

elastodynamis. We shall extrat from this ase the ray dynamis, inluding detailed

evolution of phases and amplitudes.

4.2.1 Sommerfeld-Watson transformation

In analogy with the salar treatment for a dis we de�ne the Green's funtion for a

avity in elastodynamis as

G(r

>

; r

<

) =

1

8i�!

2

X

l

�

 

+

l

(r

>

)
 ( 

��

l

(r

<

) + S

(1)

l

 

+�

l

(r

<

))

�

= [G(r

>

; r

<

)
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℄

=

1

8i�!

2

X

l;�

"

 

+

la�

(r

>

)( 

��

lb�

(r

<

) +

X

�
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(1)

l��

 

+�

lb�

(r

<

))

#

=

1

8i�!

2

X

l
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+

l

(r

>

)℄ � ([ 

��

l

(r

<

)℄

t

+ [S

(1)

l

℄ � [ 

+�

l

(r

<

)℄

t

) (4.15)

Here the terms [ ℄ refer to the vetor omponents of the displaement �eld in global

oordinates, and greek indies �; � 2 fP; Sg refer to the pressure, shear omponents.



44

The displaement matries an be found from a loal expression:

[ ℄ = R

G lo

� [ ℄

(lo)

(4.16)

with

R

Glo

=

�

os(�) � sin(�)

sin(�) os(�)

�

=: R

�

(4.17)

and for resp. e

�il�

-dependene

[ ℄

(lo)+( )=�

l

= e

�il�

 

�

a

H

(1)

l

(a�) �

il

a

H

(1)

l

(a�)

�

il

a

H

(1)

l

(a�) ��

a

H

(1)

l

(a�)

!

(4.18)

Remark: Above the one-avity S-matrix is unspei�ed. We shall onentrate on the

tration free avity with the S-matrix given by (3.41). (4.15) an be obtained from

the free Green's funtion (3.9) by modifying the regular part

 

^�

l

=

1

2

( 

��

l

+  

+�

l

) =:

1

2

( 

��

l

+ S

(1)

l

�  

+�

l

): (4.19)

The motivation is here that only the outgoing wave funtions are a�eted by the

avity. The sattering matrix is hosen with respet to the given boundary onditions

suh that (4.15) itself satis�es the boundary onditions. Sine the sattering matrix

is diagonal in angular momentum it only depends on one index.

To simplify the notation we shall put 	 := [ 

(lo)�

℄j

�=0

in the following. We shall

sometimes refer to the sattering matrix as

S

(1)

�

= �

�

~

A

~

B

~

C

~

D

�

Det[H

(1)

�

℄

�

N

Det[H

(1)

�

℄

: (4.20)

Here the matrix N is minus the transpose of the ofator of the outgoing tration

matrix times the inoming tration matrix whereas the denominator Det[H

(1)

�

℄ is the

determinant of the outgoing tration matrix.
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We put �� = �

0

� � and rewrite (4.15) as a ontour integral

G(r

>

; r

<

) =

1

8i�!

2

I

C

d�

e

i���

e

2�i�

� 1

R

�
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+

�

(r
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)(	

�

�

(r) + S

(1)

�

	

+

�

(r))R

�1

�

= R

�

0

f

1

8i�!

2

I

C

d�

e

i�(����)

2i sin ��

	

+
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(r

0

)(	

�

�

(r) + S

(1)

�

	

+

�

(r))

t

gR

�1

�

:(4.21)

Here the ontour C runs ounter-lokwise slightly above and below the real axis.

Cauhy's theorem ensures that we pik up the orret ontribution from every integer.

By transforming to another ontour whih goes slightly above the real axis we get for

a general funtion f

I

C

d� f(�) =

Z

1+i�

�1+i�

d� (f(��)� f(�)): (4.22)

Now the e�et of reversing the (omplex) order � of our basis funtions will besides

phase fators also involve a linear transformation � that ips o�-diagonal elements in

	

	

�

��

= e

� i��

�(	

�

�

): (4.23)

Hene the sattering matrix will transform as

S

(1)

��

= e

�2�i�

�(S

(1)

�

): (4.24)

The integrand as a funtion of the omplexi�ed angular momentum � will be split in

a regular part and a part that has poles on the real axis. The former an be evaluated

on the real axis by the stationary phase method. The latter, however, is alulated

in the upper �-plane at the poles of the sattering determinant. Here we fous on the

leading poles orresponding to the Rayleigh surfae waves, whereas the stationary

phase integral will lead to geometrial, \body", rays. In this ase (\insoni�ed" or

\light" ase) we shall hoose to write the funtional dependene (\Watson fators")

as

e

i���

+

e

i�(2�+��)

1� e

2�i�

+ �

e

i�(2����)

1� e

2�i�

; (4.25)



46

where by abuse of notation � is 1 for diagonal elements and �1 for o�-diagonal.

There are ases where the Green's funtion does not have a geometrial ontri-

bution (the \shadow" ase) or where the distintion between surfae and geometri

ontributions breaks down (\penumbra"). The penumbra ase will not be onsidered

here. The shadow ase, however, is written without a regular part

e

i�(��)

1� e

2�i�

+ �

e

i�(2����)

1� e

2�i�

: (4.26)

We shall only onsider the light ase whih is the most general. Thus splitting the

Green's funtion into a geometri and di�rative part

G(r

0

= r
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; r = r

<

) = G(r

0

; r)

geo

+G
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(r
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; r) (4.27)

is aomplished by
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and

G
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; r) = R
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: (4.29)

4.2.2 Geometrial ontributions to the Green's funtion

As mentioned above we onsider the light ase where the positions r; r

0

are onneted

with a geometrial straight line not passing through the avity. We thus look for the

following ontributions:

1. A straight path from r to r

0

.
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2. A reeted path for eah polarization, here longitudinal to longitudinal and

transverse to transverse.

3. A refrated or wave splitting path: longitudinal to transverse and vie versa.

We shall here treat only the straight path and the wave splitting, sine the reeted

ase is quite similar to the latter.

Free path

For the straight path we shall distinguish between two ases: De�ne the point of

losest enounter on the straight line onneting r; r

0

with the avity. It is from here

the impat parameter is measured. The points r; r

0

are either on the same side with

respet to this point or on the opposite sides. We shall show that the �rst ase is

obtained from the term without the sattering matrix in (4.28), whereas latter ase

follows from the term with the sattering matrix inluded. In the following we shall

denote these saddles by �

L1

; �

T1

and �

L2

; �

T2

.

The asymptoti expansion of H

l

(z) when z > l is given by the osillatory Debye's

expansion
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(z) ; (4.30)

using the same symbols as in (4.4)

Q(�; z) =
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z

2

� l

2
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L
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T

= Q(�; k

T

r)

(4.31)
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and similarly for the arguments r

0

and a (q

0

; q

a

; : : :).

In the �rst ase we get
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where the saddle point onditions for eah polarization are
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These equations have real solutions �

i1

and an be intepreted if we de�ne �

i

= k

i

b

with b as the impat parameter and i 2 fL;Tg.

In the phase fator evaluated at the saddle only the terms of type q; s-survive.

Thus for the lengths L

i1

we have

k

L

L

L1

= q

0

� q k

T

L

T1

= s

0

� s; (4.34)

whih orresponds to

L

L1

= L

T1

= jr

0

� rj =

p

r

02

� b

2

�

p

r

2

� b

2

; (4.35)
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sine Q

i

=k

i

is the projetion of the length of the vetor ~r onto the tangent plane of

the point of losest ontat. We postpone the disussion of the overall amplitude we

postpone to the wave splitting ase below.

The �nal step is to intepret the matries sandwihed between the rotation matries

R

�

;R

�

0

. We desribe the impat vetor as r

0

= b r̂(�

0

), where �

0

is the angle in the

global oordinate system. Then L

S1

= r

0

sin(�

0

� �

0

) � r sin(� � �

0

). Therefore e.g.

�
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) = k
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0
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0

os(�
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0

) = k

0

b=r

0

= �=r

0

.

Thus
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where

G

s

(kL) =

1

4i

exp

�

ikL� i

�

4

�

p

kL

(4.37)

is the semilassial free propagator for the two-dimensional salar problem.

In the ase where the point of impat is between the points r; r

0

, both saddles

�

L2

; �

T2

are larger than the arguments k

L

a; k

T

a . The sattering matrix beomes

S

(1)

�

= �[t( 

+�

�

)℄

�1

� [t( 

��

�

)℄

= 1� 2 [t( 

+�

�

)℄

�1

� [t( 

^�

�

)℄

� 1 ; (4.38)

where we used (4.3) in the end to eliminate the regular funtions. Thus this ase is

similar to the �rst.
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The saddle point ondition is

0 = �� � aros(

�

i2

k

i

r

0

)� aros(
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k

i

r

) (4.39)

and leads similarly to

G
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z:(4.40)

For a given pair of points r; r

0

typially only one saddle will be dominant and

therefore there will only be one free path ontribution.

Reetion and refration

The wave splitting ase is by far the most interesting geometrial ontribution. We

shall fous on an inoming transverse ray and alulate the outgoing longitudinal ray.

The reetion/refration part of the Green's funtion is

G
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: (4.41)

The sattering matrix will be alulated in the osillating Debye approximation

(4.30):
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There will be a saddle for eah omponent in the matrix. Their equations are:
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Thus e.g. �

B

=: �

LT

orresponds to the transverse k := k

T

to longitudinal onversion

k

0

:= k

L

. The relevant impat parameters are

b = b

LT

= �

LT

=k

T

and b

0

= b

0
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: (4.54)

The ight lengths d from a point r or r

0

to point of impat
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� b

2
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: (4.55)

At the stationary point the phase will ontain

(q

0

� q

a

) + (s� s

a

) = k

0

d

0

+ kd: (4.56)

Exept from the amplitudes olleted in the S

(1)

�

-matrix we have ontributions from

the amplitude of the Hankel funtions and the amplitude arising from the seond

derivative of the total phase. Ignoring numerial fators their produt is
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where
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Here the projeted rays, �; �

0

, onto the tangent plane are related to

q
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(4.59)

and

s

a

=

q

(k
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2

� �

2

= k� : (4.60)

and the veloity ratio:

� = 

L

=

T

= k

T

=k

L

(4.61)

In (4.57) we use the geometrial mean of the wave vetors to get a symmetri expres-

sion.

This result agrees with what one alulates from stability matries, as we shall

see below. These matries orrespond to the ray matries in geometrial optis.

From these one an alulate the stability of a given (optial) ray system. For their

derivation see Appendix H. They are linearized ows mapping initial to �nal tangent

vetors in phase spae:

(dz

�

; d�

�

) 7! (dz

+

; d�

+

);
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where dz is the transverse displaement of a ray and d� the shift in its diretion.

Stability matries for trajetory segments

Flight

F =

�

1 d

0 1

�

(4.62)

Reetion

R = �

 

1 0

2

�

1

!

(4.63)

Wave splitting from T to L -waves:
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0
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1

�

�

�

�

0

!

; (4.64)

where � is the veloity ratio (4.61). The opposite ase from L- to T-waves has

� := 1=�. We note that

� = a os�; (4.65)

where � is the angle of inidene. So � =

p

a

2

� b

2

with b the impat parameter.

The amplitude for a point soure in geometrial optis derease radially as

1

p

kR

eff

: (4.66)

This radius of a wave front is alled the e�etive length. It evolves disontinuously

at reetion/refration and is onveniently desribed using ray matries. Thus the

e�etive length w.r.t. the �nal momentum k

0

= k

L

an be read o� in the d� to

dz-position of produts of stability matries [2℄. Why is that? Assume an initial
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in�nitesimal volume element initially near the point soure in on�guration spae.

It will have a ross setion proportional to its angular spread d�. Upon ight and

reetion the element will aquire a new ross setion. The ratio of these is the

e�etive length and given by the element (1; 2) in the stability matrix: in the T to L

ase we have
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; (4.67)
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(4.68)

Now this latter length gives the attenuation upon multipliation with the �nal wave

number:
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k

T

R

LT

= k

L

R

eff

LT

; (4.69)

in agreement with the stationary phase alulation. Similarly for the L to T onversion

using the right hand side of (4.58).

The amplitudes are given by
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where the subsript R refers to reetion. Note that the o�-diagonal terms Z

LT

and Z

TL

vanish in the ase of vanishing angle of impat, i.e., b

LT

= 0 and b

TL

=

0, respetively. Thus there is no mode onversion for normal inidene as is well

known for the in�nite half plane. We see that the onstants Z

ij

full�ll relations like

Z

2

TT

+ Z

2

LT

= 1 expressing the unitarity of the sattering matrix whih again reets

energy onservation.

The semilassial approximation to the seond term of the geometrial ontribu-

tion (4.41) at the lower saddles (i.e. with impat parameter smaller than the radius)
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orresponding to reetion and refration is
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: (4.74)

4.2.3 Di�rative ontributions in the Green's funtion

We now proeed with the �nal ontribution to the Green's funtion. In the following

we shall put the avity radius a = 1. Evaluating the residue integral (4.29)
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Here the sum over l is a sum over poles. The residue in (4.29) is alulated from

N

�

��

Det[H

(1)

�

℄j

�=�

l

: (4.76)

We alulate this ratio using the exponential Debye expansion. As in (4.4) we use

variables q; s. So
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From this we read o� the di�ration matrix in the Rayleigh ase
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Similarly we de�ne a di�ration matrix with ipped signs in the o�-diagonal elements
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The exterior \legs" of the Green's funtion will be replaed as above by their osil-

lating Debye expansion (4.30). This is valid when k

L

r

0

> k

L

r � k
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k
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a, that

is when r �
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. Thus for polyethylene r � 3:611a. For shear legs the situation

is less restritive with r � �

R

a.

Thus the Rayleigh ontribution of (4.75) reads
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We now think of the Cauhy denominator as

1

1�e

2�i�

=

P

1

n=0

e

i2�n�

. Here � is

evaluated at a Rayleigh pole and the sum represents revolutions of surfae waves.

Further the �rst and last line orresponds to the usual fators from the points r; r

0

.

Ignoring those i.e. fousing on the elasti potentials we an write the four di�erent

types of Rayleigh paths in terms of a 2� 2 matrix
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T-R-T ray

r’ r

Figure 4.2: A shear ray getting di�rated at a avity. The dashed lines indiates

the geometrial onstrution of a redued length from whih tangential ontat is

obtained.
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Note that we have end point fators with resaled lengths (see �g. 4.2) , for example

r

0

=(�

R



L

=

T

). It is as if we send a Rayleigh wave from the orresponding resaled

point r

0

=(�

R



L

=

T

) to hit the avity tangentially. This is also seen in the angular

fators. Here the n ounts the number of revolutions and the phase obtained from

the avity is the one given by the Rayleigh wave number k

R

= �

R

k

T

times the total

length traversed. The e�et of the resaling is that the physial orbits do not hit

tangentially. If the resaling is lose to unity the orbits appear to be almost tangential.

This happens e.g. for shear waves oupling to Rayleigh waves in polyethylene. Finally

the oupling of longitudinal rays to Rayleigh segments is suppressed exponentially by

the orresponding fator e

��(�

Ra

;�)

with � given by (4.88) .

For our material in question we an say that the onnetion to the avity is

almost tangential (about 0.5 perent in radians for the orbits later on in the two

avity system).
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Remark: we have not found the roots of the di�ration matrix (4.85) above. This

would be interesting, however, if one want to know the surfae �eld for say subsequent

treatment of raks at the avity.

R�esum�e

The surfae resonanes of one avity were studied following [45℄ with emphasis on the

attenuation. Next the Green's funtion was investigated by the Sommerfeld-Watson

transformation following [3℄. This lead to a ray piture orresponding to lassial

dynamis, albeit with inlusion of surfae rays.



Chapter 5

Numeris

In this hapter we employ the mahinery of hapter 3 to alulate resonanes and the

Wigner delay time, investigating both the modulus and the phase of the sattering

determinant.

All numerial alulations have been done for polyethylene for whih the longitu-

dinal and transversal veloities are



L

= 1950m=s and 

T

= 540m=s

as this is a material for whih there exist sattering results for a single avity [13℄.

We will state most results in terms of the dimensionless size parameter k

L

a. We have

used the NAG-library in our alulations.

5.1 One-avity

I have found a good numerial agreement with the resonanes �rst omputed in [13℄.

As my formula (3.41) di�er slightly from those of refs. [19, 18℄ it is a omforting

hek that we �nd the same resonanes, �g. 4.1. In addition, these authors laim

that a family of poles di�erent from the Franz and the Rayleigh poles is present; we

on�rm their laim. These unantiipated resonanes are to be assoiated with the

omplex roots of the Rayleigh equation. However, the large attenuation renders these

pseudo-Rayleigh resonanes physially uninteresting, and we have not investigated
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them further. We an also loate various reeping resonanes of Franz type (longitu-

dinal and transversal) but again we omit those beause of their strong attenuation. I

have not studied the phase and time delay for this simple one-avity ase, and have

onentrated instead on the multi-avity ase to whih we turn now.

5.2 Multi-avity

The ase of several avities was implemented using the formulas derived in Set. 3.

The geometry was �xed to R=a = 6: This is the ratio between avity enters and

the radius of a single avity. When the ratio is R=a = 2, the avities touh and

for smaller ratios the method breaks down. We remark that the alulation uses a

trunation of the exat luster matrix whih stritly speaking is in�nite dimensional.

The size of this matrix has to be suÆiently big for higher frequenies. Empirially

we have found that one should at least use angular momenta of order N � 5(k

L

a)

max

.

This is worse than in the salar ase where the order N � 1:5(k

L

a)

max

+ � � �. That,

however, is problemati sine the matrix then involves Hankel funtions of very high

order whih are hard to ompute.

For general shapes the elastodynami litterature typially resorts to methods like

�nite and boundary elements. Suh alulations are arried out for real frequenies

(\harmoni foring"). An independent numerial hek of the sattering determinant

for omplex frequenies using a method di�erent than the sattering states would be

reassuring, but has not been performed here.

The high frequeny limit of the luster determinant is attaked by studying its

umulants in terms of traes (3.52). Currently we work on the �rst umulant. Instead

of alulating the full determinant the traes are alulated numerially and therefore

(3.52) an be onstruted up to desired order.

5.2.1 Sattering resonanes

Calulations based on theM-matrix formalism derived in hapter 3 have been imple-

mented by Andreas Wirzba [3℄. I have inluded here a plot �g. 5.1 of the sattering

resonanes alulated by Wirzba. These exat results are an essential benhmark

for gauging the validity of high-frequeny approximations, just as Wirzba's exat

quantum resonanes were essential for the development of the theory of reeping and

�h-orretions for quantum mehanis [2℄.
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The resonanes are found by searhing for the zeroes of the luster determinant

in the omplex k

L

a-plane. There is a very irregular band of resonanes lose to

the real axis, and further down in the omplex plane at Im(k

L

a) � �0:29 we have

a regularly spaed band. The latter orresponds to the shortest geometrial orbit

bouning bak and forth between the two avities. These resonanes are desribed

to three signi�ant digits using a lassial longitudinally polarized periodi orbit. We

all this orbit P in the following. In the quantum mehanial, salar ase surfae

resonanes give a ompliated struture only deep in the omplex k

L

a-plane whereas

the regular struture given by the geometrial orbit lose to the real axis dominates

the spetrum. Thus in elastodynamis the situation is qualitatively very di�erent.

5.2.2 Time delay

A more diret alulation is the evaluation of the phase of the sattering determinant

for real frequenies. Physially this orresponds to a harmoni foring of the system.

As explained in set. 3.6 the sattering determinant fatorizes and it suÆes to study

the phase of the individual fators. A priori we understand the single avity deter-

minant and we an therefore fous entirely on the multi-avity determinant. It turns

out that the phase itself shows little variation ompared to its derivative whih again

is related to the Wigner time delay. This quantity measures the time delay of a wave

paket sent into the sattering system, see Appendix G.

We have alulated the derivative of the multi-avity determinant as a funtion of

the size parameter k

L

a, see �g. 5.2 . The plot shows that the delay from the luster

attains both positive and negative values : the delay seems to osillate but not with

a single frequeny. The main period of osillation in the representations A

1

and B

1

is bigger than the period for A

2

; B

2

. To investigate the origin of these osillations we

perform a Fourier transform, and swithing to time variables with the avity radius a

hosen as 1 m we obtain the orresponding time spetrum. This is the equivalent of

a length spetrum in ordinary quantum billiards. Here, however, we have two kinds

of wave vetors: longitudinal and transversal of di�erent geometrial length and the

orret quantity to onsider is the angular veloity !, dual to time. The same an

be done for quantum billiards if one knows the wave veloity but for theoretially

purposes one works equally well with the length spetrum.

The striking and enouraging result is the agreement between the prominent peaks

and the periods of the periodi orbits in the two avity system. The times measured

orrespond to the periodi orbits in the symmetry redued domain of �g. 5.4. This

fundamental domain is a quarter of the two avity system in the sense that by applying
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.
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Fundamental Domain

1 2

Figure 5.4: The fundamental domain is the shaded area, one quarter of the full

physial domain.

the symmetry group C

2v

one tiles the full physial domain, see set. 3.6. We have

plotted the time spetrum for two of the four irreduible representations of C

2v

. The

other two representations show similar peaks as those shown.

We �nd the shortest orbits using the ray dynamis derived in hapter 4. First

there are the simple geometri orbits alled P and S and their iterates P

2

; S

2

; � � � .

The P -orbit has a shorter period than the S-orbit and is seen in the representations

A

1

and B

1

. By the inverse Fourier transform this gives a larger period of osillation

in �g. 5.2. It is worth noting that both the P -orbit and S-orbit have the same

geometrial orbit and yet they do not seem to our with the same weight in the

representations. Seond are the orbits with surfae segments whih an ontribute

with multiple revolutions as well. As one an see from the derease of peak heights,

in ontradistintion to the quantum ase, repeats of geometrial orbits are far more

inhibited than taking an extra repeat around a avity. In general di�erent orbits

may have nearly the same periods; this ompliates the interpretation of the time

spetrum. This an be investigated by varying system parameters R=a; 

L

=

T

and

improving the resolution by going to higher size parameters k

L

a. We should mention

that we have only onstruted a few orbits whih do not inlude the longitudinal
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polarization exept for the purely geometri orbit. Thus there are many things to

improve on: �nding more orbits and varying the parameters of the system.

The above alulation of the time delay spetrum an be helpful in the pro-

ess of searhing for orbits. However, the real ahievement is that they explain the

wave-mehanial sattering determinant in terms of lassial dynamis. The analysis

demonstrates that the multi-avity determinant is dominated by phases assoiated

with periodi orbits. Their atual amplitudes and the widths of the peaks in the time

delay spetrum are still under investigation. We mention that the situation is already

understood in the salar ase. Thus Wirzba [2℄ �nds diretly to leading order in the

saddle point expansion for the geometrial orbits:

DetM = exp

0

�

�

X

p

1

X

r=1

z

rn

p

r

e

ir(

H

p

k�dx+s

p

)

j1� J

r

p

j

1

2

1

A

(5.1)

with s

p

= �n

p

� or 0 for Dirihlet, respetively Neumann boundary onditions.

R�esum�e

The resonanes and the Wigner time delays were found for the two avity system

using the multi-avity determinant Det (M). The irregular frequeny behavior was

shown to arise from a multitude of periodi orbits of the assoiated high frequeny

dynamis.



Chapter 6

Summary and outlook

The ultimate goal of the researh undertaken here was to develop a short-wavelength

approximation theory of wave haos in elastodynamis, paralleling the Gutzwiller

semilassial periodi orbit theory of quantal spetra of systems whose lassial dy-

namis is haoti.

Following the strategy of Keller's geometrial theory of di�ration we have on-

sidered a system whih is a ombination of simpler geometries, a system of ylindrial

avities in plane strain elastodynamis.

For this I have derived the exat sattering determinant and shown its strong

similarity with the ase of the salar Helmholtz equation as treated in [2℄.

Using reent ideas of Wirzba [3℄ we have disussed the high-frequeny limit of the

Green's funtion in the presene of a single avity. Wirzba in [3℄ treats sattering

resonanes, individual umulants and the Wigner delay time. In this thesis, however,

I have foused on the Wigner delay and the orresponding time spetrum.

The �rst unexpeted result is that a system of only two avities in elastodynamis

has a haoti ray dynamis ontrary to the salar ase. This fat is due to the ap-

parently harmless but experimentally prefered boundary ondition whih failitates

an in�nity of unstable periodi orbits of reeping nature. Remarkably, the reeping

of Rayleigh type is only slightly attenuated for high frequenies. For the salar sys-

tems studied previously the in�nity of orbits have been of bulk nature and all other

orbits of reeping type have been strongly suppressed. The seond feature has been

the diÆulty to extend the high frequeny theoretial treatment to low frequenies

ompared with the suess of Franz reeping rays in the salar ase.
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In ollaboration with Predrag Cvitanovi�, Gabor Vattay, Gergely Palla, Carl P.

Dettmann and Andr�e Voros [30, 39℄ part of my Ph.D. work has also been to investigate

high order noise orretions for stohasti dynamial systems. This line of researh

aims to improve periodi orbit theory in stohasti and wave systems by inluding

orretions to the lassial ontribution [43, 37, 28, 29℄. Methods to alulate many

orretions and to understand their asymptotis using resurgene have been ahieved.

These developments have not been reported in this thesis.

6.1 What is new in this thesis

We have developed a numerial method to alulate the sattering determinant for

�nitely many ylindrial avities in an elasti medium. We have applied these meth-

ods spei�ally to plane strain elastodynamis with free boundary onditions. The

multiple sattering wave problem has a ray approximation whih inludes surfae rays

of Rayleigh type. These are of major importane also at high frequenies ontrary

to previous work in quantum haos on the salar Helmholtz equation. It appears

diÆult to extend the high-frequeny approximation to also lower frequenies as for

the Franz reeping rays. Now already the two ylindrial avity system has an in�nite

number of orbits and is in that sense haoti. From the spetral funtion onstruted

a few periodi orbits have diretly been identi�ed.

6.2 Outlook

First we should �nish the high-frequeny treatment of the two-avity system. With

this we mean to alulate all higher traes of the orresponding Fredholm determinant

and thereby establish as in the salar ase the spei� form of a zeta funtion. To

prove Fredholm properties would imply the shadowing results previously obtained in

salar quantum mehanis and lassial hyperboli systems; in partiular in elasto-

dynamis also for the important surfae orbits. The next step would be to study the

three avity system or higher, sine there wave splitting would be more present.The

wave splitting seems to be suppressed for the two avity system. The reason is that

most onversions happen at normal inidene and hene are inhibited. For ertain

geometries one should also expet interesting ontributions from penumbra e�ets

and its generalization in the wave splitting ase: at ritial inidene angles a longi-

tudinally polarized ray onverting to a transversally polarized glaning the boundary.
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Further it would be interesting to extend the ray desription of Rayleigh waves to

lower frequenies in partiular with respet to their attenuation. The ase where the

avities almost touh would be interesting too and require full knowledge of all the

various wave types in elastodynamis. More general methods both theoretial and

numerial also working for anisotropi materials would be of interest. For instane

single rystal quartz whih is anisotropi has a higher Q-value than the isotropi fused

quartz.

As the reader may have notied there are plenty of possible extensions and ap-

pliations of this work just in the �eld of elastodynamis. Other wave problems in

optis, piezo-eletriity and bandgap strutures would similarly bene�t from an un-

derstanding of the underlying lassial struture. However, one should also ontinue

to expand the general framework of periodi orbit theory. By using say symboli

dynamis to deal with the whole olletion of periodi orbits in a system it has been

possible to understand in a very elegant way a host of spetral problems: lassial,

quantum, stohasti and now also oming elastodynamis. Likewise it will be impor-

tant to understand in partiular how to treat systems with mixed phase spae, not

just for a pratitioner in one �eld but also for many other domains.



Appendix A

Counting elastiity tensor

parameters

A short disussion an be found in [17℄. The 4-tensor 

iklm

is alled the elastiity

tensor and beause of the symmetries of the strain �eld we see that it e�etively an

be desribed by a 4-tensor with the following symmetries:



iklm

= 

kilm

= 

ikml

= 

lmik

: (A.1)

Here the symmetries are with respet to exhange of the indies in one of the pairs

(12) respetive. (34), and �nally exhange of the pair (12) with the pair (34). By a

ounting argument it is not diÆult to see that this gives in general 21 independent

omponents of the elastiity tensor. First beause of the exhange symmetry in

eah pair one labels (Voigt notation) eah type of pair with a number from 1 to 6:

xx=1,yy=2,zz=3,yz=4, xz=5, xy=6. There are indeed

3(3+1)

2

= 6 labelings. Seond

beause of the symmetry of the exhange of pair (12) with (34) we will have say



25

= 

52

: So using exatly the same argument as the �rst we �nd

6(6+1)

2

= 21 di�erent

omponents. If other symmetries are present the number of omponents beomes

further redued. Let us now onsider the important ase of an isotropi medium.

Suppose we transform to oordinates:

x

0

i

= O

j

i

x

j

; (A.2)
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where O

j

i

are the omponents of an orthogonal matrix. This orresponds to a rotation

plus perhaps a reetion (depending on the sign of Det(O) = �1). The elasti tensor



ijkl

transforms as follows:



0

ijkl

= 

abd

O

a

i

O

b

j

O



k

O

d

l

: (A.3)

In an isotropi body we demand that any tensor should be invariant under or-

thogonal transformations, hene atually



ijkl

= 

abd

O

a

i

O

b

j

O



k

O

d

l

: (A.4)

As an example of suh a tensor we mention the identity transformation as an invariant

2-tensor:

Æ

0

rs

= Æ

ab

O

a

r

O

b

s

= O

a

r

O

a

s

= Æ

rs

; (A.5)

sine the rows are orthonormal in an orthogonal matrix. Using this tensor as a

building blok we arrive at the following isotropi andidate :



rsmn

= � Æ

rs

Æ

mn

+ � Æ

rm

Æ

ns

+ � Æ

rn

Æ

sm

: (A.6)

Further all isotropi 4-tensors have this form [44℄. Then we invoke the symmetries of

the elastiity tensor to redue the above expression: By the symmetry of the last two

indies, 

rsmn

= 

rsnm

:

� Æ

rs

Æ

mn

+ �Æ

rm

Æ

ns

+ � Æ

rn

Æ

sm

= � Æ

rs

Æ

nm

+ � Æ

rn

Æ

ms

+ � Æ

rm

Æ

sn

(A.7)

we onlude that � = �: With this adjustment all the other symmetries atu-

ally hold. The elastiity tensor in the isotropi ase therefore only depends on 2

parameters:



ijkl

= � Æ

ij

Æ

kl

+ � (Æ

ik

Æ

jl

+ Æ

il

Æjk): (A.8)



Appendix B

Green's funtion using sattering

states

For a derivation of the fundamental solution in both 2 and 3 dimensions see [27℄.

B.1 Asymptoti behavior at in�nity

We shall utilize the boundary relations expressing orthogonality of the wave funtions:

Z

�

1

( 

+

l

� t( 

��

m

)� t( 

+

l

) �  

��

m

) dS = 8 i � !

2

Æ

lm

and likewise

Z

�

1

( 

�

l

� t( 

^�

m

)� t( 

�

l

) �  

^�

m

) dS = 4 i � !

2

Æ
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:

This suggests we put

G

�

=

1

4i�!

2

X
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+

n

(r

>
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^�

n

(r

<

) :
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Thus for a suÆiently large dis 
 of radius R (�
 = �

1

):
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�
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2

)(G
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) �  

�

dV = lim
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2

)(G

�

) �  

�

dV;

where  is any (regular) basis funtion.

Betti's third theorem now gives
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� t( )) dS

=  :

Here we used that we an add

R

((�

�

+ �!

2

)( ) �G

�

) dV sine  is regular and

annihilated by �

�

+�!

2

and at the last equality sign orthogonality at in�nity. Hene

(�

�

+ �!

2

)G

�

= Æ on regular basis funtions, i.e. like a delta funtion kernel. Thus

G

�

is a andidate for a Green's funtion.

B.2 Derivation using transverse gradient

Let us in the following put�r = r

2

� r

1

. Assume r

>

= r

2

and r

<

= r

1

. The gradient

will be r = r

2

= r

>

.

First notie that:
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Seond that (A. Wirzba):

(k

2

T

1+r
r)H

(1)

0

(k

T

�r) = �(r� ẑ)
 (r� ẑ)H
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�r) : (B.2)
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This an be seen in Cartesian omponents (and hene in all other oordinate systems)

as follows:

�(r� ẑ)
 (r� ẑ)
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whih in matrix form is

�

��

2

2

�

1

�

2

�

1

�

2

��

2

1

�

H

(1)

0

(k

T

�r) : (B.4)

Now the statement (B.2) holds i�:
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Here the non-diagonal elements are idential and the diagonal elements are the same

i�:

(� + k

2

T

)H

(1)

0

(k

T

�r) = 0 : (B.6)

This, however, is known from sattering theory.

Summarizing we get:
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Next we deompose the Hankel funtion using again results from the salar ase:
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with �� = �
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<

)
  

(+)

n

(r

>

) : (B.9)

The last equality sign is by de�nition of the basis funtions. Here n is a multi index

desribing the angular momentum and the polarization.



Appendix C

Translation matries and their

omposition

The following onepts are introdued for pratial onveniene. Several times we

onsider the normal modes in new oordinate systems. Physially this orresponds

to a unitary transformation.

To write a normal mode of a given polarization (wave vetor k) in system S 2

fj; j

0

; Gg to a dis system j we �nd from the addition theorem for Bessel funtions:

 

(Z)

n

(X

(S)

) =

X

l

T

(Z)Sj

nl

 

^

l

(X

(j)

) ; (C.1)

where Z 2 f^;+;�g and

T

(Z)Sj

nl

= (�1)

l

Z

n�l

(kR

Sj

) e

i(n�

(S)

j

�l�

(j)

S

)

(C.2)

with

Z

n

=

8

>

<

>

:

J

n

for Z = ^

H

(1)

n

for Z = (+)

H

(2)

n

for Z = (�)

: (C.3)
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Here R

Sj

indiates the distane between the origins of the two oordinate systems.

Typially one hooses the angle of the global oordinate system in any of the loal

systems to be equal �:

�

(j)

G

= �: (C.4)

From any system to the global system G:

 

(Z)

n

(X

(S)

) =

X

l

T

(Z)SG

nl

 

(Z)

l

(X

(G)

) ; (C.5)

where

T

(Z)SG

nl

= (�1)

l

J

n�l

(kR

S

) e

i(n�

(S)

j

�l�

(j)

S

)

: (C.6)

Also omposition is possible e.g.:

T

+jG

� T

^Gj

= 1 (C.7)

and

T

+jG

� T

^Gj

0

= T

^jj

0

: (C.8)



Appendix D

Calulation of boundary integrals

Below we shall suppress the polarization indies. Thus in some ases \ l" may refer

to angular momentum l and either pressure or shear and is thus a multi-index. B

m

does not arry a polarization index whereas a

m

;  

l

and T

nl

do. Finally the ondensed

matrix representation uses the brakets [℄.

I

j

j

:

I

j

j

=

Z

�

j

ds u(s) � t(G(s;X

(j)

))

=

1

4i�!

2

Z

�

j

ds

X

m;l

B

(j)

m

e

im�

� t( 

(+)�

l

(s)) 

^

l

(X

(j)

)

=

�a

j

2i�!

2

X

l

B

(j)

l

� t( 

(+)�

l

(a

j

; � = 0)) 

^

l

(X

(j)

)

=

�a

j

2i�!

2

B

(j)

l

� [t( 

(+)�

l

(a

j

))℄ � [ 

^

l

(X

(j)

)℄

t

: (D.1)

Above the reader may put l = (l �) on the seond and third line. Here we used the

dyadi form of the Green's funtion. We notie that we an put the \�" on either

the regular or the outgoing part of the Green's tensor. The tration operator must

at on the outgoing part (C. Chandre: jXj = r

<

, sine X is just inside the avity

). Next we an integrate over the boundary using the orthonormality of the Fourier

basis giving a fator 2�a

j

Æ

lm

.
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I

j

j

0

:

Now the tration operator, t = t

s

, has to at on the regular part. This is beause

the point at the dis j, X

(j)

, an be assumed further away than the initial integration

point s = s

(j

0

)

as seen from the dis j

0

. That is r

<

= s in the regular part.

I

j

j

0

=

Z

�

j

0

ds u(s) � t(G(s;X
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0

)
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+
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=
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: (D.2)

Above the reader may put l = (l �) n = (n �) on the seond and third line. For

the third equality we applied a translation operator. Thus if the (multi-) index

orresponds to a pressure state:

T

+Pj

0

j

ln

= (�1)

n

H

(1)

l�n

(�R

j

0

j

)e

i(l�

(j

0

)

j

�n�

(j)

j

0

)

: (D.3)

I

j

1

:

Inserting the expansion at in�nity and the Green's funtion we get

I

j

1

=

Z

�

1

ds (u(s) � t(G(s;X

(G)

))� t(u(s)) �G(s;X
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t

: (D.4)
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For this situation s = r

>

and therefore the tration has to at on the outgoing part.

Orthogonality at in�nity was used at the third equality sign.

I

r

j

:

The alulation is similar to I

j

j

0

. Here the �nal point goes to in�nity so X

(j)

= r = r

>

whereas s = r

<

. However, now we just translate to the global oordinate system in

the end.

I

r

j
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�

j

ds u(s) � t(G(s;X
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+
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=
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: (D.5)

I

r

1

:

Here the alulation is just like I

j

1

. The only simpli�ation is that we do not translate

in the end to the j-system but stay in the global system.
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: (D.6)
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Assembly of the M-matrix :

First we have the relationship

I

j

1

� (I

j

j

+

X

j

0

6=j

I

j

j

0

) = 0 (D.7)

among diss. The di�erene in signs ome from the boundary normal vetor being

opposite. Inluding all indies we get in the basis of  

^

:
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That is
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: (D.9)

In the above the tration t as the boundary data B refer atual physial vetors

and hene are oordinate free. We now write everything in say global oordinates.

Normalizing gives us a matrix equation:

a �C

j

=

X

j

0

B

j

0

�M

j

0

j

(D.10)

with

M

jj
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0

Æ
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: (D.11)

The next hapter explains further the [t( )℄-terms.



Appendix E

Tration matries

In the atual alulation of the tration of the basis funtions we use polar oordinates.

Therefore we use the ovariant derivative. In these oordinates the basis vetors no

longer are onstants:

rr̂ =

1

r

^

�

^

� (E.1)

r

^

� = �

1

r

r̂

^

� : (E.2)

whereas on funtions

rf = �

r

f r̂+

1

r

�

�

f

^

� : (E.3)

For a displaement �eld u the tration on a irular boundary (r̂ = n) is:

t = � � r̂ = (�r � u1 + �(ru+ ur)) � r̂ ; (E.4)

with 1 = r̂ r̂+

^

�

^

�.
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Assuming the displaement �eld given by potentials u = r� + r � (ẑ ) the

tration vetor is found after some alulation to be

t =

�
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r

 ))

1

A

: (E.5)

Next we use partial waves as pressure and shear potentials. Calulating for an out-

going state with angular dependene e

�im�

using reurrene relations for the Bessel

funtions [35℄:
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(E.6)
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:

Here we have posed � = 0 in the end. In [t( 

m

)℄ = [t( 

m

)

a�

℄

a2fr;�g;�2fP;Sg

has a

spatial index a and a polarization index �.

This an also be expressed in terms of the derivative of a Hankel funtion as

follows:
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(E.7)

Thus hanging m ! �m gives a besides a fator (�1)

m

also a sign hange on the

o�-diagonal elements.



Appendix F

Symmetry fatorization

We shall use the presene of a symmetry group to redue the alulation of the spetral

determinants into fators eah belonging to irreduible representations.

Thus for two avities of equal size the the symmetry group is that of a retangle

C

2v

whereas three-avities aranged in an equilateral triangle will obey C

3v

-symmetry.

These symmetries will be reeted on the level of the spetrum for the sattering

matrix. The former deomposes into parts belonging to irreduible representations

for the group. The harater table is given by table 3.1.

We shall assume the avities symmetrially arranged with respet to a given origo.

For the two avity system we assume the enters on the x-axis. Furthermore the

avity-radii are equal (= a). For the group onsidered there is one rotation and two

reetions. The rotation C

2

will be around the global point of enter whereas the

reetions �

i

will be along the oordinate axes.

The translation matrix from one avity to another will have the form:

[T

+12

ml

℄ = (�1)

m

 

H

(1)

m�l

(�R) 0

0 H

(1)

m�l

(�R)

!

� (�1)

m

[T

m�l

℄

The vetorial boundary data will transform under the symmetry group. With
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respet to reetions along the x-axis we �nd

B

m

e

im�

7! B

m

� �

z

e

�im�

:

Here

�

z

=

�

1 0

0 �1

�

is a Pauli-matrix and B the oordinates of the vetor data.

Symmetrizing the expansion of the wave funtion u with respet to �

x

:

u =

X

m

1

2

�

B

m

e

im�

� B

m

� �

z

e

�im�

�

�

X

m

b

m

e

im�

; (F.1)

where in general

b

(1)

�m

= �(�

x

) b

(2)

m

� �

z

= � b

(1)

m

� �

z

(F.2)

with e.g. plus for a symmetri on�guration.

Likewise the ation of C

2

allows us to relate boundary data on di�erent avities:

b

(2)

m

= �(C

2

) b

(1)

m

: (F.3)

To alulate the inter-avity matrix we use (3.4) and alulate the boundary integrals

I

j

j

and I

j

j

0

with j

0

6= j . We remark that we do not have to onsider the boundary

at in�nity. The results will be sums over basis funtions. Let us assume the �nal

avity, j = 2. We shall alulate the oupling of the boundary data with index m to

the displaement �eld basis vetor of index l. We onsider the main ase with l; m

positive using the results of hapter D:
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From the opposite avity, avity 1:

b

1

m

� [t

1^

m

℄ � [T

ml

℄ � [ 

2

l

℄

t

:

From the opposite avity with negative angular momentum:
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:

From itself

b

2

m

� Æ

lm
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l

℄ � [ 

2

l

℄

t

:

Here we have omitted � in the tration matries. To reverse the order in the tration

matrix m := �m gives besides (�1)

m

also a minus sign in the o�-diagonal elements.

The ation of ipping these elements an be obtained as follows:

t 7! �

z

� t � �

z

: (F.4)

The oeÆient from the avities of the basis funtion with index l > 0 beomes:
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m

[t

1^

m

℄ � T

m�l

+ (�1)

(l+m)

�

z

� (�

z

� [t

1^

m

℄ � �
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) � T
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℄Æ
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: (F.5)

By dividing and using �

2

z

= 1 we �nd the inter-avity matrix (3.50):

Æ

lm

+ (�1)

m

�(C

2

) [t

1^

m

℄ �

�

T

m�l

+ �(�

x

) (�1)

l

T

m+l

� �

z

�

� [t

2+

l

℄

�1

; (F.6)

sine in oordinates [t

2+

l

℄ = [t

1+

l

℄ = [t

+

l

℄ and likewise for [t

1^

l

℄.

We remark that if we had aligned the avities along the y-axis we would have

the harater of �

y

instead. Therefore there is a ertain ambiguity between the B

i

-

representations whih are symmetri along one axis and anti-symmetri along another.

The A

i

-representations, however, are either fully symmetri or fully anti-symmetri

and the results for these are independent of the alignment of the avities. For (3.50) in

the main text we use �

1

= �(C

2

) and �

2

= �(�

x

) orresponding to x-axis alignment.



Appendix G

Wigner's time delay

Below we shall disuss the delays of wave pakets for the two-avity sattering system.

G.1 Delay of plane wave

This so-alled Wigner delay is de�ned as

d(k) =

d

dk

Arg (Det (S(k)))

= �i

d

dk

log (Det (S(k))

= �iTr

 

S

y

(k)

dS

dk

(k)

!

(G.1)

and an be shown to equal the total delay of a wave paket in a sattering system

[46, 47℄. We shall review this fat below.

A related quantity is the total sattering phase shift �(k) de�ned as

detS(k) = e

+i�(k)

;

so that d(k) =

d

dk

�(k).
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The time delay may be both positive and negative, reeting attrative respe-

tively repulsive features of the sattering system.

To eluidate the onnetion between the sattering determinant and the time delay

we study a plane wave:

The phase of a wave paket will have the form:

� =

~

k � ~x� ! t (+�) :

Here the term in the parenthesis refers to the phase shift that will our if sattering

is present. The enter of the wave paket will be determined by the priniple of

stationary phase:

0 = d� = d

~

k � ~x� d! t (+ d�) :

Hene the paket is loated at

~x =

�!

�

~

k

t

 

�

��

�

~

k

!

:

The �rst term is just the group veloity times the given time t. Thus the the paket

is retarded by a length given by the derivative of the phase shift with respet to the

wave vetor

~

k. The arrival of the wave paket at the position ~x will therefore be

delayed. This time delay an similarly be found as

�(!) =

��(!)

�!

:

To show this we introdue the slowness of the phase ~s =

~

k=! for whih ~s � ~v

g

= 1,

where ~v

g

is the group veloity to get

d

~

k � ~x = ~s � ~x d! =

x

v

g

d! ;
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sine we may assume ~x is parallel to the group veloity (onsistent with the above).

Hene the arrival time beomes

t =

x

v

g

 

+

��(!)

�!

!

:

If the sattering matrix is non-diagonal one next interprets

�t

ij

= Re(�i S

�1

ij

�S

ij

�!

) =: Re(

��

ij

�!

)

as the delay in the j'th sattering hannel after an injetion in the i'th. The proba-

bility for appearing in hannel j goes as jS

ij

j

2

and therefore the average delay for the

inoming states in hannel i is

< �t

i

> =

X

j

jS

ij

j

2

�t

ij

= Re(�i

X

j

S

�

ij

�S

ij

�!

)

= Re(�iS

y

�

�S

�!

)

ii

= (�iS

y

�

�S

�!

)

ii

;

where we have used the derivative, �=�!, of the unitarity relation S � S

y

= 1 valid for

real frequenies. This disussion an in partiular be made for wave pakets related to

partial waves and superpositions of these like an inoming plane wave orresponding

to free motion (3.14). The total Wigner delay therefore orresponds to the sum over

all hannel delays (G.1).

G.2 Exess level density

For another interpretation of the Wigner Delay [2, 7℄, onsider the Krein-Friedel-

Lloyd formula in terms of the wave number:

ImTr (S

y

�

�S

�k

) = 2� (g(k)� g

0

(k)) =: 2��g(k)
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whih expresses the hange of level density g(k) from a free system to a system with a

potential. In our ase the perturbation omes from the avities. The right hand side

of the above is alulated in the limit of an enlosing box going to in�nity, followed

by taking the limit k � k + i�! k for � ! 0+. This result is also referred to as the

spetral shift theorem.

G.3 Cluster delay and symmetries

As we have shown, the total sattering determinant fatorizes into a produt of the

individual single avity sattering determinants and an inter-avity or luster deter-

minant. Eah of these funtions will ontribute to the total phase shift additively.

The single avity is already understood and its ontribution an be taken out, both

theoretially and experimentally. The latter is ahieved by measuring the phase shift

for single avities before the multi-avity ase is onsidered. We emphasize that in

the following we study the delay from the luster and not the total delay. In our res-

onane searh in the omplex k

L

a-plane we foused on the modulus of this funtion

(poles ). By studying the Wigner time delay, however, the emphasis is on the phase.

The e�et of a symmetry group will be the following: The total time delay an be

written as a sum over delays for the irreduible representations (ounted with their

multipliities). This follows from above sine the sattering determinant will fatorize

over eah irreduible representation.

Experimentally one an measure the total phase shift and hene alulate the

time delay. Further one an measure the phase shift and time delay for eah of the

irreduible representations by plaing detetors and/or transmitters symmetrially.

For the two avity system it suÆes to perform the measurements with say one

transmitter and four reeivers. One measures the response (amplitude and phase) at

the four symmetrially positioned reeivers. Next, one onstruts the response at a

given detetor for a symmetrized inoming wave paket. Using the already measured

�elds this response an be found by applying the orresponding symmetry operations

on the �elds. Finally the phase shift at the given point is extrated.

Numerially we have aess to the symmetry redued phase shift and in our al-

ulation we present the assoiated delay for eah irreduible representation. Using

the formula above we approximate the derivative with a entered di�erene. In hap-

ter 5 we have shown plots for eah irreduible representation where the absissa is

the longitudinal size parameter k

L

a and the ordinate the delay.



Appendix H

Ray matries

H.1 Refration and reetion

We onsider a ray inident on a surfae �g. 2.2. The outgoing ray has in general a

di�erent angle of inidene as desribed by Snell' s law. We investigate the result of

a variation of the in going wave in order to �nd the orresponding di�erential. For

de�niteness we think of an inoming S-wave refrating to a P-wave.

Some notation: We use the index \�" to desribe the inoming wave and \+" the

outgoing. The diretion of the waves are given by a unit vetor e and the normal of

the surfae is given by a unit vetor n: The linear operation of rotating 90

Æ

ounter-

lokwise vetors is denoted by a \eh" , e.g.. �n is now a vetor lying in the tangent

plane of the surfae. The diretion of the wave is now parametrized by some angle,

i.e..

e =

�

os(�)

sin(�)

�

(H.1)

and therefore a variation of the diretion is

de =

�

� sin(�)

os(�)

�

d� = �e d� : (H.2)
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^

dx

e

dz
a

a

Figure H.1: The shadow of the transverse displaement on the boundary

A variation in the transverse diretion of the ray will be desribed by the vetor

dz = dz �e : (H.3)

By onsidering �g. H.1 it is lear that this variation is related to a variation of

the point of inidene on the boundary (i.e.. a tangent vetor ) dx in the following

way (dyadi notation):

�e�e � dx = dz : (H.4)

Thus dz = �e � dx: Sine dx is a tangent vetor we have

dx = �n(�n � dx) (H.5)

implying

dz = �e � �n(�n � dx) = (e � n)(�n � dx) : (H.6)
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R

n

Figure H.2: Loal urvature

Thus

dx = �n

dz

(n � e)

: (H.7)

The hange in the normal vetor is given by

dn =

dx

R

; (H.8)

where R is the loal radius of urvature :

Therefore

dn = �n

dz

(n � e)R

: (H.9)

This gives

dz

+

=

(n � e

+

)

(n � e

�

)

dz

�

= �

os(�

+

)

os(�

�

)

dz

�

: (H.10)

Furthermore

d�n = �n

dz

(n � e)R

; (H.11)
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sine

�

�a = �a for any vetor a:

Let us derive Snell's law. The projeted slowness on the border has to be on-

served, i.e..

�n�n � s

�

= �n�n � s

+

; (H.12)

where the slowness vetor is

s = s e : (H.13)

Thus

(�n � e

�

)s

�

= (�n � e

+

)s

+

(H.14)

or when expressed in terms of angles

sin(�

+

)

sin(�

�

)

=

v

+

v

�

; (H.15)

where v

�

is the veloity.

Varying the projeted slowness and using the expression for d�n we �nd

d((�n � e) s) = (�

dz

R

+ (n � e) d�) s : (H.16)

This di�erential element,1-form, is onserved allowing us to solve for the end angular

variation d�

+

: De�ning � =

v

+

v

�

we get

d�

+

= �

 

�

os(�

+

)

+

1

os(�

�

)

!

dz

�

R

� �

os(�

�

)

os(�

+

)

d�

�

: (H.17)

The di�erential ((dz

�

; d�

�

) 7! (dz

+

; d�

+

)) therefore beomes

�

0

�

os(�

+

)

os(�

�

)

0

1

R

(

�

os(�

+

)

+

1

os(�

�

)

) �

os(�

�

)

os(�

+

)

1

A

: (H.18)
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This di�erential is the familiar reetion di�erential, when � = 1 :

�

 

1 0

2

R os(�

�

)

1

!

: (H.19)

To �nd the di�erential when we have the opposite onversion, i.e.. from P-wave

to S-wave, we just have to hange the veloity ratio � to 1=� With wave split the

di�erential has determinant � respetively 1=� ([10℄ �nd a similar result but in other

oordinates). In a losed orbit however every time we have a onversion from S to P

we also has to have the opposite, so the produt of the di�erentials for the orbit will

still have a determinant equal to 1:

H.2 Flight di�erential

An initial phase spae point (x

�

;v

�

) evolves during the time t to the point

(x

+

;v

+

) = (x

�

+ v

�

t;v

�

): (H.20)

Then it is not hard to �nd the di�erential

�

1 �x

0 1

�

; (H.21)

when we onsider transverse displaements of the ray and angular variations of the

veloity as above. Here �x is the total ight length.
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