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ABSTRACT

Wave Chaos in Elastodynami
 S
attering

Niels S�ndergaard

The exa
t s
attering resonan
es are 
al
ulated for a system of several 
ylindri
al


avities in plane strain elastodynami
s. A basis of s
attering states is 
onstru
ted

and the s
attering determinant is found. The high frequen
y limit is investigated

by studying the Green's fun
tion for one 
avity. In the high frequen
y limit the

spe
trum is dominated by in�nitely many periodi
 orbits, ea
h orbit 
onsisting of


lassi
al parti
le traje
tory segments with varying polarizations, and surfa
e wave

segments, with 
ontributions of longer orbits de
reasing in importan
e with the orbit

length.

ii



A
knowledgements

The author is grateful to the Danish Resear
h A
ademy for the Ph.D. fellowship

and to the Northwestern University for hospitality and partial support; to the Niels

Bohr Institute for 
omputational resour
es, to the administrative sta� at the physi
s

oÆ
e, to his thesis advisor Predrag Cvitanovi�
, to Andreas Wirzba for invaluable

theoreti
al and 
omputational insights, to Gergely Palla and Gabor Vattay for a ni
e

stay in Budapest, to Clive Ellegaard, Mark Oxborrow and Kristian S
haadt for their

beautiful experimental measurements, to Christel Chandre for patient 
riti
al reading

of the text, to Priya, Erhai, Yueheng , Anton, Atakan, Juana and Fernando for good

times and �nally to my dear family.

iii



Contents

1 Introdu
tion 1

1.1 Deterministi
 
haos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Quantum 
haos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Symboli
 dynami
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Experimental elastodynami
s . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Wave 
haos in elastodynami
s . . . . . . . . . . . . . . . . . . . . . . 10

2 Elastodynami
s 14

2.1 Displa
ement and stress . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Navier-Cau
hy equation . . . . . . . . . . . . . . . . . . . . . . . . . 16

Resum�e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Multi-
avity s
attering problem 20

3.1 Elastodynami
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Boundary integral equations . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Formal tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Cal
ulation of boundary integrals . . . . . . . . . . . . . . . . . . . . 25

3.5 S
attering from one 
avity . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Fa
torization of the spe
tral determinant . . . . . . . . . . . . . . . . 32

3.7 Fredholm theory and shadowing . . . . . . . . . . . . . . . . . . . . . 35

Resum�e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 High frequen
y limit 37

4.1 One 
avity resonan
es . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Green's fun
tion in the presen
e of a single 
avity . . . . . . . . . . . 43

Resum�e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Numeri
s 64

5.1 One-
avity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Multi-
avity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

iv



Resum�e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Summary and outlook 72

6.1 What is new in this thesis . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A Counting elasti
ity tensor parameters 75

B Green's fun
tion using s
attering states 77

B.1 Asymptoti
 behavior at in�nity . . . . . . . . . . . . . . . . . . . . . 77

B.2 Derivation using transverse gradient . . . . . . . . . . . . . . . . . . . 78

C Translation matri
es and their 
omposition 81

D Cal
ulation of boundary integrals 83

E Tra
tion matri
es 87

F Symmetry fa
torization 89

G Wigner's time delay 92

G.1 Delay of plane wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

G.2 Ex
ess level density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

G.3 Cluster delay and symmetries . . . . . . . . . . . . . . . . . . . . . . 95

H Ray matri
es 96

H.1 Refra
tion and re
e
tion . . . . . . . . . . . . . . . . . . . . . . . . . 96

H.2 Flight di�erential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Bibliography 101

Index 105

v



List of Figures

1.1 Sensitivity to initial 
onditions. . . . . . . . . . . . . . . . . . . . . . 3

2.1 Continuous medium; notation. . . . . . . . . . . . . . . . . . . . . . 15

2.2 Refra
tion of S, P waves. . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Two 
avities geometry. . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Three 
avities geometry. . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 S
attering zone; de�nitions of boundaries. . . . . . . . . . . . . . . . 26

4.1 Rayleigh s
attering resonan
es. . . . . . . . . . . . . . . . . . . . . . 39

4.2 T-R-T ray 
ontribution to the Green's fun
tion. . . . . . . . . . . . 62

5.1 A

1

s
attering resonan
es. . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Time delays for the two 
avity; frequen
y domain. . . . . . . . . . . 68

5.3 Time spe
trum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Two-
avity fundamental domain . . . . . . . . . . . . . . . . . . . . . 70

H.1 Di�erential shadow of a beam . . . . . . . . . . . . . . . . . . . . . . 97

H.2 Curvature for a 
onvex s
atter . . . . . . . . . . . . . . . . . . . . . . 98

vi



Chapter 1

Introdu
tion

The goal of the resear
h des
ribed in this thesis is to formulate an approximate short-

wavelength theory of wave 
haos in elastodynami
s, paralleling the Gutzwiller semi-


lassi
al periodi
 orbit theory of quantal spe
tra of systems whose 
lassi
al dynami
s

is 
haoti
.

We start by providing the ba
kground needed to understand the terms used in

the above senten
e: 
haos, wave 
haos, Gutzwiller semi
lassi
al periodi
 orbit theory.

In this we follow the exposition of ref. [1℄. The stage set, in se
t. 1.5 we turn to the

work to be undertaken here.

1.1 Deterministi
 
haos

A deterministi
 system is a system whose present state is fully determined by its

initial 
onditions, in 
ontradistin
tion to a sto
hasti
 system, for whi
h the initial


onditions determine the present state only partially, due to noise, or other external


ir
umstan
es beyond our 
ontrol. A deterministi
 system with suÆ
iently 
ompli-


ated dynami
s 
an fool us into regarding it as a sto
hasti
 one; disentangling the

deterministi
 from the sto
hasti
 is the main 
hallenge in many experimental situa-

tions. So, what is \
haos"?

In a game of pinball two traje
tories that start out very 
lose to ea
h other separate

exponentially with time, and in a �nite (and in pra
ti
e, a very small) number of

1
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boun
es their separation Æx(t) attains the magnitude of L, the 
hara
teristi
 linear

extent of the whole system, �g. 1.1. This property of sensitivity to initial 
onditions


an be quanti�ed as

jÆx(t)j � e

�t

jÆx(0)j

where �, the mean rate of separation of traje
tories of the system, is 
alled the

Lyapunov exponent. For any �nite a

ura
y Æx of the initial data, the dynami
s is

predi
table only up to a �nite Lyapunov time

T

Lyap

� �

1

�

ln jÆx=Lj ; (1.1)

despite the deterministi
 laws that rule the pinball motion.

A positive Lyapunov exponent does not in itself lead to 
haos. One 
ould try to

play 1- or 2-disk pinball game, but it would not be mu
h of a game; traje
tories would

only separate, never to meet again. What is also needed ismixing, the 
oming together

again and again of traje
tories. While lo
ally the nearby traje
tories separate, the

interesting dynami
s is 
on�ned to a globally �nite region of the phase spa
e and thus

of ne
essity the separated traje
tories are folded ba
k and 
an re-approa
h ea
h other

arbitrarily 
losely, in�nitely many times. The number of distin
t traje
tories with n

boun
es 
an be quanti�ed as

N(n) � e

hn

where the topologi
al entropy h is the growth rate of the number of topologi
ally

distin
t traje
tories.

When a physi
ist says that a 
ertain system exhibits \
haos", he means that the

system obeys deterministi
 laws of evolution, but that the out
ome is highly sensitive

to small un
ertainties in the spe
i�
ation of the initial state. The word \
haos" has in

this 
ontext taken on a narrow te
hni
al meaning. If a deterministi
 system is lo
ally

unstable (positive Lyapunov exponent) and globally mixing (positive entropy), it is

said to be 
haoti
.

In a 
haoti
 system any open ball of initial 
onditions, no matter how small, will in

�nite time overlap with any other �nite region and in this sense spread over the extent
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Figure 1.1: Sensitivity to initial 
onditions:

two pinballs that start out very 
lose to ea
h

other separate exponentially with time.

1


2


3
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of the entire asymptoti
ally a

essible phase spa
e. On
e this is grasped, the fo
us

of theory shifts from attempting pre
ise predi
tion of individual traje
tories (whi
h

is impossible) to des
ription of the geometry of the spa
e of possible out
omes, and

evaluation of averages over this spa
e.

Confronted with a potentially 
haoti
 dynami
al system, we analyze it through

a sequen
e of three distin
t stages; diagnose, 
ount, measure. I. First we determine

the intrinsi
 dimension of the system { the minimum number of degrees of freedom

ne
essary to 
apture its essential dynami
s. Step II; we 
ount and 
lassify all possible

topologi
ally distin
t traje
tories of the system into a hierar
hy whose su

essive lay-

ers require in
reased pre
ision and patien
e on the part of the observer. If su

essful,

we 
an pro
eed with step III: investigate the weights of the di�erent pie
es of the

system.

When should we be mindful of 
haos? The solar system is \
haoti
", yet we have

no trouble keeping tra
k of the annual motions of planets. The rule of thumb is this;

if the Lyapunov time (1.1), the time in whi
h phase spa
e regions 
omparable in

size to the observational a

ura
y extend a
ross the entire a

essible phase spa
e, is

signi�
antly shorter than the observational time, we need methods that will be devel-

oped here. That is why the main su

esses of the theory are in statisti
al me
hani
s,

quantum me
hani
s, and questions of long term stability in 
elestial me
hani
s. At

this time the theory is in pra
ti
e appli
able only to systems with a low intrinsi


dimension of the system { the minimum number of degrees of freedom ne
essary to


apture its essential dynami
s.
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1.2 Quantum 
haos

What happens quantum me
hani
ally, that is, if we s
atter waves rather than point-

like pinballs? Were the game of pinball a 
losed system, quantum me
hani
ally one

would determine its stationary eigenfun
tions and eigenenergies. For open systems

one seeks instead for 
omplex resonan
es or s
attering phase shifts. The imaginary

part of the eigenenergy des
ribes the rate at whi
h the quantum wave fun
tion leaks

out of the 
entral multiple s
attering region whereas the phase shift measures whether

the wave fun
tion gets drawn into or expelled from the s
attering zone.

A fundamental 
on
ept in physi
s is the spe
trum. The spe
trum, for instan
e an

energy- or frequen
y spe
trum, 
an be seen, 
an be measured, and that information

gives dire
t knowledge of the obje
t upon whi
h we perform a measurement. We may

say that the spe
trum is a �ngerprint of the obje
t. A large part of physi
s 
onsists

in developing theories that 
an explain or even predi
t new spe
tra. Even though few

have seen a hydrogen atom, its spe
tros
opy gives us a very detailed understanding

of its stru
ture.

In the beginning of quantum me
hani
s de Broglie explained the spe
trum of

the hydrogen atom in a very elegant way by 
onsidering standing ele
tron waves

on a 
ir
ular orbit around the nu
leus. However, this naive pi
ture of quantizing

integrable systems 
ould not explain the spe
tra of many-ele
tron atoms even as

simple as the helium atom. On formalizing this theory one 
ould in prin
iple (and

also in pra
ti
e with the advent of 
omputers) 
al
ulate many energy spe
tra. Some of

the formalization with S
hr�odinger's wave me
hani
s and Heisenberg's matrix theory

was at the expense of understanding, and an explanation of the a
tual form of the

spe
tra was not given. During the last quarter of the 
entury, however, a new theory,

quantum 
haos, has emerged whi
h is mu
h more des
riptive sin
e it in
ludes 
lassi
al

dynami
s in a very dire
t way.

Quantum 
haos is mainly 
on
erned with the wave nature of the quantum parti-


les. In this proje
t we will work on a generalization of the traditional free quantum

parti
le in a box by studying a similar obje
t in elastodynami
s. Generalizations to

di�erent wave types like ele
tromagneti
 �elds in opti
s are possible as well. Exper-

imental studies of these systems in terms of 
on
epts of quantum 
haos are already

in progress, whereas a further development is needed with regard to theory.

As an example of experimental results we mention the eigenfrequen
ies of opti
al


avity resonators (laser) and the transport properties related to 
ertain integrated

opti
al 
omponents (photoni
s). These devi
es are inspired by the developments in
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mesos
opi
 physi
s, where the transport and 
ondu
tivity in ele
tron \billiards" are

investigated. New insights about these systems are gained in terms of quantum 
haos


on
epts.

What do we a
tually mean by the Bohr 
orresponden
e prin
iple if 
lassi
ally the

dynami
s is 
haoti
? Can su
h systems be quantized? During the last two de
ades

signi�
ant progress has been made in answering this question quantatively. The two

main approa
hes are the random matrix theory and the periodi
 orbit theory.

1.2.1 Random matrix theory

The random matrix theory was originally invented by Wigner [4℄ to treat 
ompli
ated

spe
tra of nu
lear physi
s. The theory is based on the realist assumption that for

a many-body system with 
ompli
ated intera
tions the 
omplete Hamiltonian is not

known. Therefore one studies statisti
al properties of measured spe
tra, 
omparing

the results to what would be expe
ted were the Hamiltonian a random operator.

Empiri
ally it appears that the dimensionality of the problem does not have to be

very high for a reasonable agreement with the predi
tions of the random matrix

theory. In fa
t, the quantum spe
trum of just one parti
le in a box of generi
 shape

seems to already agree with the random matrix predi
tions.

Up to this day, the random matrix hypothesis remains just that - a hypothesis -

and no proof that it follows from 
haoti
 dynami
s has been devised as yet. We shall

not pursue the random matrix approa
h in this thesis.

1.2.2 Periodi
 orbit theory

The random matrix theory is a mathemati
al statement of what a spe
trum would

look like were it 
ompletely random - it uses almost no information about any par-

ti
ular given physi
al system.

In 
ontrast, the periodi
 orbit theory aims to 
ompute the spe
trum for the physi
al

system studied. The 
lassi
al periodi
 orbit theory is an exa
t theory that yields

all averages and 
orrelations that 
an be extra
ted from a given 
lassi
al 
haoti


dynami
al system [1℄. The semi-
lassi
al periodi
 orbit theory of quantum systems

derived by Gutzwiller [31℄ in 1970 expresses quantum quantities su
h as the spe
tral

density in terms of sums over 
lassi
al unstable periodi
 orbits [34℄. In quantum
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me
hani
s the periodi
 orbit theory arose from studies of (eminently appli
able) semi-


ondu
tors, and the unstable periodi
 orbits have been measured in experiments on

the very paradigm of Bohr's atom, the hydrogen atom, in strong external �elds.

Rederiving this theory here would take us too far a�eld - we refer the reader to

[1℄, and limit ourselves to stating the relevant key formulas. Te
hni
ally, the theory

is formulated in terms of the Gutzwiller tra
e formula

TrG

s


(E) =

1

i�h

X

p

T

p

1

X

r=1

1

jdet(1� J

r

p

)j

1=2

e

r(

i

�h

S

p

�

i�

2

m

p

)

: (1.2)

Here S

p

= S

p

(E) is the a
tion evaluated along the prime 
y
le p, the single, shortest

traversal of a periodi
 orbit. J is the monodromy matrix 
omputed on a surfa
e of

se
tion transverse to the orbit within the 
onstant energy shell E = H(q; p). The

Maslov index m

p

= m

p

(E) 
ounts the number of 
hanges of sign of the matrix of

se
ond derivatives evaluated along the prime periodi
 orbit p. The sum is over all

prime 
y
les p and their rth repeats, as any repeat of a periodi
 orbit is also a periodi


orbit. The a
tion and the Maslov index are additive along the traje
tory, so for rth

repeat they simply get multiplied by r. The monodromy matrix of the rth repeat of

a prime 
y
le p is (by the 
hain rule for derivatives) J

r

p

, where J

p

is the prime 
y
le

monodromy matrix. In deriving the formula one assumes that J

p

has no marginal

eigenvalues, that the the periodi
 orbits are isolated and do not form families, unlike

the 
ase of integrable systems or in the KAM tori of systems with mixed phase spa
e,

so the formula is valid only for the hyperboli
 and ellipti
 periodi
 orbits.

In pra
ti
e, all quantum 
haos 
al
ulations take the stationary phase approxi-

mation to quantum me
hani
s (the Gutzwiller tra
e formula, possibly improved by

in
luding tunneling periodi
 traje
tories, di�ra
tion 
orre
tions, et
) as the point of

departure. On
e the stationary phase approximation is made, what follows is 
lassi
al

in the sense that all quantities used in periodi
 orbit 
al
ulations - a
tions, stabilities,

geometri
al phases - are 
lassi
al quantities. While various periodi
 orbit formulas

are formally equivalent, pra
ti
e shows that some are preferable to others. Three


lasses of periodi
 orbit formulas are frequently used:

1. Tra
e formulas. Easy to derive, in a
tual 
al
ulations the Gutzwiller tra
e

formulas (1.2) are hard to use for anything other than the leading eigenvalue estimates,

as they tend to be divergent in the region of physi
al interest.
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2. Ruelle or dynami
al zeta fun
tions

1=�(s) =

Y

p

(1� t

p

); t

p

=

1

q

j�

p

j

e

i

�h

S

p

�i�m

p

=2

: (1.3)

Here t

p

is the quantum amplitude asso
iated with a given prime 
y
le, �

p

is the

produ
t over expanding stability eigenvalues of J

p

, and the produ
t is over all prime


y
les p.

3. Selberg-type zeta fun
tions, Fredholm determinants, spe
tral determinants,

fun
tional determinants are the natural obje
ts for spe
tral 
al
ulations. The semi-


lassi
al zeta fun
tion

�(E) = exp

 

�

X

p

1

X

r=1

1

r

e

ir(S

p

=�h�m

p

�=2)

jdet(1� J

r

p

)j

1=2

!

(1.4)

is formally equivalent to the tra
e formula (1.2) and follows from it by simple manipu-

lations. Its Selberg-type zeta fun
tion in�nite produ
t representation for Hamiltonian

systems with 2 degrees of freedom is

�(E) =

Y

p

1

Y

k=0

 

1�

e

iS

p

=�h�i�m

p

=2

j�

p

j

1=2

�

k

p

!

:

The billiards that we shall study here belong to this 
lass of quantum systems. For

hyperboli
 systems both the dynami
al zeta fun
tions and the spe
tral determinants

have good 
onvergen
e and are powerful tools for determination of quantum me
han-

i
al resonan
es. Most periodi
 orbit 
al
ulations are based on 
y
le expansions of

su
h determinants.

Similar zeta fun
tions have already been derived mu
h earlier [26℄ for the spe
ial


ase of spe
tral determinants of Lapla
e operators on spa
es of 
onstant negative


urvature, with the spe
tral determinants expressed in terms of the 
losed, periodi


geodesi
s. For the deterministi
 dynami
al 
ows and number theory, zeta fun
tions

are exa
t. The quantum-me
hani
al ones, derived by the Gutzwiller approa
h, are at

best only the stationary phase approximations to the exa
t quantum spe
tral deter-

minants, and for quantum me
hani
s an important 
on
eptual problem arises already

at the level of derivation of zeta fun
tions; how a

urate are they, and 
an the periodi


orbit theory be systemati
ally improved?
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1.3 Symboli
 dynami
s

At �rst using orbits in 
al
ulations may seem like a hopeless task sin
e in general there

are in�nitely many unstable periodi
 orbits. The key tool in dealing with this in�nity

of orbits is the 
on
ept of symboli
 dynami
s borrowed from the theory of dynami
al

systems and ergodi
 theory [34, 1℄. The idea is to asso
iate to ea
h traje
tory a

unique bi-in�nite symboli
 sequen
e :::a

�2

a

�1

a

0

:a

1

a

2

:::, and vi
e versa, establish

that there is one and only one traje
tory for a given bi-in�nite symboli
 sequen
e.

This is espe
ially valuable when the symbols 
an be 
hosen from a �nite alphabet

subje
ted to a �nite number of rules (grammar). Here periodi
 orbits have periodi


symboli
 sequen
es (e.g. a period three orbit is denoted a

1

a

2

a

3

). Cal
ulations of

zeta fun
tions are organized in terms of in
reasing word lengths of su
h orbits. As

the length of the words in
luded in a 
y
le expansion of (1.4) is in
reased, an in
rease

in the 
onvergen
e of the quantum resonan
e estimates is observed. This 
onvergen
e


an be 
hara
terized as super-exponential in the most optimal 
ases, meaning that

the number of signi�
ant digits one gains is not �xed at say two but grows at ea
h

step. Thus symboli
 dynami
s is not only useful for 
lassifying and �nding the orbits,

it 
an also be numeri
ally e�e
tive.

In quantum me
hani
al appli
ations this rather brave semi-
lassi
al periodi
 or-

bit quantization a

omplishes something altogether remarkable; putting together all

ingredients that make the pinball game unpredi
table, it yields surprisingly a

urate

helium quantum spe
trum [5℄. Even though the 
y
le expansion was based on the

semi
lassi
al approximation whi
h is expe
ted to be good only in the 
lassi
al large

energy limit, the eigenenergies are good to 1% all the way down to the ground state.

Gutzwiller's semi
lassi
al quantization has been applied to the helium atom, the

anisotropi
 Kepler problem, the hydrogen atom in a magneti
 �eld and to the wave

s
attering for the s
alar Helmholtz equation from several dis
s. However, the method

does not appear to be generally valid. The 
onvergen
e is severely degraded for generi


dynami
al systems whose phase spa
e is mixed between 
haoti
 and integrable. It

has been seen that for intermittent systems the zeta fun
tions may develop bran
h

points [42℄.

1.4 Experimental elastodynami
s

Having sket
hed the broad histori
al ba
kdrop, we are ready to turn to the beautiful

experimental work that motivates our undertaking.
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Why elastodynami
s? Besides the experimental a

essibility and the high quality

experimental spe
tra new and interesting features show up: The ray splitting and

surfa
e waves. The elastodynami
 wave equation des
ribes the propagation of waves

with two di�erent wave speeds. When a plane wave hits a boundary, two or more

plane waves are emitted at di�erent angles. In the high-frequen
y limit this leads

to a so-
alled bran
hing Hamiltonian system. The surfa
e waves are important as

they 
an propagate without attenuation along the boundaries. Thus, 
ompared to

ele
trodynami
s and quantum me
hani
s of s
alar �elds we have to take into a

ount

radi
ally di�erent periodi
 orbits.

While the surfa
e waves 
an already be seen in the simpler 
ase of the s
alar

Helmholtz equation with impedan
e 
onditions

�u

�n

= �ikZu [15℄, our goal in the

following is to address the problem of physi
al elastodynami
s with free boundary


onditions, the 
onditions experimentally realized in the highest Q-value (5 � 10

6

for

a quartz sphere) measurements up to date. Here there are some 
lear advantages

in studying elastodynami
s in for example experiments with quartz 
ompared to the

more 
onventional systems in atomi
 physi
s, mi
ro-wave 
avities and ele
troni
al

nanostru
tures. In spite that elastodynami
 experiments are usually performed on

ma
ros
opi
 systems the spe
tra are remarkably good with sharp and well-de�ned

resonan
e lines. The quality fa
tor, the Q-value is introdu
ed as a measure of the

\goodness" of a resonan
e. The Q-value is de�ned as the ratio between the line with

and the resonan
e frequen
y. Thus the Q-value of quartz is about 10

6

whereas for

a typi
al mesos
opi
 experiment its approximately 20. This means roughly that a

sound beam is re
e
ted inside quartz resonator millions of times before it fades away,

whereas the ele
tron wave dies out after only 20 re
e
tions. Another advantage is

the low dimensional phase spa
e whi
h greatly redu
es the number of orbits and

the numeri
al work in �nding them. A third advantage is the low degree of non-

linearity in the elastodynami
 wave equation. Hen
e, the eigenmodes are almost

un-
oupled, and the theoreti
al 
ompli
ations found in strongly 
orrelated ele
troni


systems are avoided. Nor should it be underestimated from a pra
ti
al point of

view that elastodynami
 experiments tend to be mu
h simpler and 
heaper than

their 
ounterparts in atomi
 physi
s, helium-
ooled mi
rowave 
avities and ele
troni


nano-devi
es.

1.4.1 Tests of the random matrix theory

So far the predi
tions of the random matrix theory have been tested on the resonan
e

spe
tra for a large number of di�erent 
lassi
ally 
haoti
 systems, with good quali-

tative agreement. The 
ommon belief is that the 
lassi
ally 
haoti
 billiards should
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have spe
tral statisti
s di�erent from the 
lassi
ally integrable billiards, and that is

borne out by experiments. Hen
e from the spe
trum alone it appears that one 
an

determine whether or not a system is 
haoti
 or integrable.

A parti
ularly strong test of these predi
tions 
omes from the experiments of

Oxborrow et al. [23℄ on quartz resonators. These experiments are remarkable for the

high Q-value of the resonan
es, of order 10

5

� 10

6

. This stands in sharp 
ontrast

with the nu
lear physi
s and the room temperature mi
rowave experiments for whi
h

the Q-values are orders of magnitude lower, typi
ally � 100. Thus in elastodynami
s

highly a

urate spe
tra 
an be measured, with the attendant spe
tral statisti
s of

unparalleled quality.

1.4.2 Tests of the periodi
 orbit theory

In quantum me
hani
s the atomi
 physi
s measurements of Welge et al. [32℄ and the

theoreti
al investigations of Wintgen et al. [33℄ gave a dramati
 demonstration of the

underlying periodi
 orbit stru
ture of spe
tra of hydrogen in strong external �elds. Up

to this day there has been no experimental veri�
ation of the 
orresponding periodi


orbit theory in elastodynami
s. This unsatisfa
tory state of a�airs is, of 
ourse, the

raison d'etre for the entire theoreti
al e�ort des
ribed in this thesis.

1.5 Wave 
haos in elastodynami
s

Elastodynami
s in 
rystals is des
ribed by linear partial di�erential equations [17, 21℄.

For bulk vibrations these equations are ve
torial, and in general three di�erent modes

of polarization are found. When a wave of a given polarization hits a boundary this re-

sults for free boundary 
onditions in normally three new outgoing waves, the so-
alled

wave split phenomenon. Another property of a
ousti
 waves is the extraordinary re-

fra
tion, i.e. the fa
t that the phase velo
ity is in general not parallel to the group

velo
ity. Finally there is also the possibility of surfa
e waves. Thus 
ompared to the

S
hr�odinger equation in quantum me
hani
s the a
ousti
 wave equation exhibits new

features.
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1.5.1 What is known so far?

Exa
t results

At �rst we should have the 
orresponding exa
t s
attering spe
trum. This work has

already been done in the 
ase of one 
avity [12, 13℄. However, for multiple 
avities the

exa
t S-matrix 
annot be written down in 
losed form. We will use the of S-matrix

formalism and follow the strategy of Wirzba's [2℄ derivation for the s
alar Helmholtz

equation with Diri
hlet 
onditions. For the experimental elastodynami
s (resonator

in va
uum) purposes, the boundary should be taken as free. Next we shall derive a

fa
torization of the spe
tral determinant in a 
oherent part among di�erent s
atters

and in
oherent parts for individual s
atters.

Wirzba's approa
h [2℄ is based on the partial wave expansions and the Sommerfeld-

Watson transformation. In the multi-s
attering 
ase it has been shown that also


reeping along di�erent s
atters matters. Thus for low frequen
ies these orbits have

to be in
luded also. We expe
t similar e�e
ts in elastodynami
s. This we shall study

for the two 
avity system. The surprise is that while the 
lassi
al two dis
 system has

only one unstable orbit, the semi
lassi
al 
ase has in�nitely many orbits of Rayleigh

type and is in this sense 
haoti
. This will go beyond the usual 
lassi
al notions

of symboli
 dynami
s sin
e the Rayleigh and 
reeping orbits are essentially 
omplex

orbits. They reside in the 
omplexi�ed phase spa
e and do not sit on the 
lassi
al

obje
t, the 
haoti
 repeller. One may spe
ulate that 
omplex orbits are exa
tly what

is needed in a more general theory. How 
omplex orbits enter, however, is not 
lear

at all for general systems.

Geometri
al theory of wave elastodynami
s

Keller and 
ollaborators have treated surfa
e waves and di�ra
tion in a more general

setting [15, 16℄. From only a few assumptions di�ra
tion 
onstants and propagation

segments are derived. By studying a limited number of examples, wedges, points,


reeping around dis
s ... enough knowledge about general di�ra
tion is gathered. This

theory is often 
alled the geometri
al theory of di�ra
tion. In parti
ular 
on
erning

surfa
e waves using a WKB expansion the 
urvature 
orre
tion to the Rayleigh wave

speed has been found [25, 20℄. Therefore surfa
es with varying 
urvature 
an be

treated.

Con
erning the spe
ial 
ase of one dis
 respe
tive 
avity, the individual s
atter,

there is already a sophisti
ated theory in terms of orbits. The main tool is the
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Sommerfeld-Watson transformation whi
h transforms slowly 
onverging sums of par-

tial waves to a fast 
onverging sum over 
omplex 
reeping orbits [22℄. Creeping here

refers to 
ir
umferential orbits. This transformation is used in the high frequen
y

limit. For instan
e 
onsider the s
attering of visible light from an a = 1 mm diameter

drop of water. Here one �nds that one has to use approximately � = ka � 5000 par-

tial waves. Now similar results are obtained using just a few 
reeping orbits (� � 1

requires only four). Nussenzweig [22℄ reports, for example, that for � = ka > 100 the

error is better than 1 ppm. This te
hnique was �rst used by Watson in the study of

the transmission of radio waves around the earth. Later it was applied in high energy

physi
s, where it goes under the name of the method of Regge poles [6℄. Similar


al
ulations have been done in elastodynami
s [19℄. Here pra
ti
al appli
ations are in

the study of 
avities and other defe
ts in materials and in seismography. The di�er-

ent polarizations and Rayleigh waves render the 
al
ulations more 
ompli
ated than

the s
alar 
ase. We shall derive a spe
tral determinant for one 
avity as a produ
t

over 
reeping orbits and Rayleigh orbits. The quantization is parti
ularly simple with

phase mat
hing on just one periodi
 orbit. Here 
reeping orbits 
onstantly leaks out

rays leading to a loss of amplitude. This is then in
orporated by using a 
omplex

wave number leading to s
attering resonan
es with �nite lifetime. This e�e
t is also

seen for the Rayleigh wave be
ause of the 
urvature.

Periodi
 orbit theory

There is already a 
andidate for quantization in elastodynami
s based on the work by

Cou
hmann and Ott [10℄ whi
h studied a 
losed system, the stadium billiard. Their

arti
le is mainly devoted to the \
lassi
al" behavior asso
iated to elastodynami
s in

the high frequen
y limit fo
using on wave splitting. Apparently not mu
h work has

been done on these bran
hing Hamiltonian systems. In parti
ular whether suitable

Fredholm determinants are entire and similar questions. The thesis of Cou
hmann

des
ribes the random matrix properties of these systems and 
ontains a derivation of

a Gutzwiller tra
e formula for the spe
tral density.

1.5.2 What is new in this thesis?

We shall present a derivation of the exa
t s
attering determinant for a system of

several 
ylindri
al 
avities. From this obje
t we shall extra
t spe
tral quantities

fo
using on mainly the phase shift and the asso
iated Wigner time delay. Our analysis

will show that the results for this wave problem are strongly in
uen
ed by its 
lassi
al
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ray dynami
s. Here the new feature are periodi
 orbits with surfa
e segments on the

boundaries of the 
avities. These surfa
e pie
es are of Rayleigh type and are only

slightly attenuated for high frequen
ies. In parti
ular already a system of two 
avities

will have in�nitely many orbits leading not only to 
haoti
 
lassi
al behavior but also

to very 
omplex wave behavior.

1.5.3 Organization of the thesis

We review the requisite theory of elasti
ity and derive the linearized elasti
ity wave

equation in 
hapter 2. In 
hapter 3 we formulate the s
attering problem for a set

of 
ylindri
al 
avities in an in�nite elastodynami
 medium. In 
hapter 4 we study

the s
attering resonan
es in the high frequen
y limit for the 
ases of a single 
avity.

We extra
t from the Green's fun
tion in the presen
e of a 
avity the di�ra
tion


onstants 
orresponding to geometri
al re
e
tion, refra
tion and Rayleigh 
reeping

waves. Numeri
al investigations of the Wigner time delay are 
arried out in 
hapter 5.

A summary and outlook for future work is given in 
hapter 6.

While elastodynami
s is a well founded, well studied 
lassi
al theory, and the re-

quired derivations are te
hni
ally straightforward, due to the tensorial stru
ture of

elastodynami
s the intermediate steps are frequently rather heavy going for a 
asual

reader. Whenever permissible I have relegated su
h details to appendi
es. The inde-

pendent 
omponents of the isotropi
 elasti
ity tensor are 
ounted in appendix A. The

de
omposition of the Green's fun
tion in s
attering states is des
ribed in appendix B,

and appendi
es C{E 
ontain 
omputational details of the s
attering problem. Ap-

pendix G is on the Wigner time delay and �nally appendix H is on ray matri
es for

a system with wave splitting.



Chapter 2

Elastodynami
s

In this 
hapter we will state a few basi
 results from linear elastodynami
s [17, 27, 19℄.

A reader familiar with the subje
t 
an pro�tably skip this 
hapter. We 
onsider an

elastodynami
 body with 
onstant mass density �. The Einstein repeated index

summation 
onvention is assumed throughout.

2.1 Displa
ement and stress

Consider a deformation of an elastodynami
 body, Fig. 2.1(a): The lo
al 
hange of

position of a parti
le is given by the displa
ement ve
tor �eld, u.

x

0

i

= u

i

(x) + x

i

: (2.1)

Some deformations have no e�e
t on the lo
al energy density at the point x. For

instan
e, a global parallel translation or a rotation does not matter, only lo
al varia-

tions 
orresponding to u

j;i

�

i

u

j

matter, sin
e the former displa
ements do not deform

the body. Furthermore, as a lo
al rotation around a given point preserves distan
es

in a neighborhood of this point, the medium in this neighborhood is not stret
hed.

A lo
al rotation is measured by the (
urlu)

i

= �

ijk

�

j

u

k

=

1

2

�

ijk

(�

j

u

k

� �

k

u

j

). Thus

we do not attribute any signi�
an
e to the antisymmetri
 part of �

i

u

j

. To show this


onsider the line element (squared distan
e) between two in�nitesimally 
lose points

after a deformation sket
hed in Fig. 2.1(b):

dx

02

= d(x+ u)

2

= dx

2

+ 2 dx � du+ du

2
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(a)

n

u

r
r’

Ω

(b)

r

1

1’

dx 2

2’
u1 u2

r
r

r
dx’

Figure 2.1: The 
ontinuous medium; de�nition of (a) the displa
ement ve
tor,

outward normal to the boundary; (b) deformation in the neighborhood of two points.

= dx

2

+ 2

�u

i

�x

k

dx

i

dx

k

+O(du

2

)

= dx

2

+ 2u

ik

dx

i

dx

k

; (2.2)

where we have de�ned the strain �eld:

u

ij

=

1

2

(u

i;j

+ u

j;i

) ; u

j;i

=

�u

j

�x

i

: (2.3)

We see that the distan
e depends solely on the symmetri
 part of ru.

To the kinemati
 strain �eld 
orresponds a dynami
 �eld, the stress �eld. This may

be introdu
ed in the following way: Taylor expanding the potential energy density to

leading order in the strain �eld we �nd:

U =

1

2




ijkl

u

ij

u

kl

: (2.4)

There is no linear term sin
e that would des
ribe an unstable medium and we 
an

always assume a vanishing 
onstant term. This expansion is the generalization of

the energy of a spring as a fun
tion of the displa
ement. The displa
ement is now

repla
ed by the strain �eld. In a general medium the spring 
onstant 
orresponds
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to a suitable four-tensor,the elasti
ity tensor. A generalized for
e, the stress �eld, is

given by Hooke's law:

�

ij

=

�

�u

ij

U = 


ijkl

u

kl

: (2.5)

Thus the pressure in the dire
tion \i" 
oming from the element of area with normal

along \j" is given by �

ij

: The pressure at the boundary is referred to as the tra
tion

t(u):

t

i

= �

ij

n

j

: (2.6)

Here n refers to the normal ve
tor. The symmetries of elasti
ity tensor follow from

(2.3{2.4):




ijkl

= 


jikl

= 


ijlk

= 


klij

: (2.7)

A most general tensor in three dimensions with these symmetries has 21 independent


omponents. However, if further symmetry is present the elasti
ity tensor will have

fewer independent 
omponents. In the isotropi
 
ase the elasti
ity tensor redu
es to




ijkl

= �Æ

ij

Æ

kl

+ �(Æ

ik

Æ

jl

+ Æ

il

Æ

jk

) ; (2.8)

where � and � are the Lam�e 
onstants. For a more detailed dis
ussion see Appendix A.

2.2 Navier-Cau
hy equation

We shall now derive the wave equation for elastodynami
s, restri
ting ourselves to

the linearized elasti
ity.

Consider Newton's se
ond law on an in�nitesimal volume element. The total for
e

will 
ome from the boundaries. Thus per unit volume, the for
e in the dire
tion \i"
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Figure 2.2: Refra
tion of S, P waves.

S

n

_
+

φ φ

S
P

is �

ij;j

: The mass times the a

eleration of a volume element is �

�

2

u

i

�t

2

with � the lo
al

mass density. Hen
e the Newton equation of motion for elastodynami
s is

�

�

2

u

i

�t

2

= �

ij;j

= 


ijkl

u

l;jk

: (2.9)

In the isotropi
 
ase (2.8) this redu
es to:

�

�

2

u

�t

2

= ��(u) + (�+ �)r(r � u)

�

�

2

u

i

�t

2

= �u

i;kk

+ (�+ �)u

k;ki

: (2.10)

In the frequen
y domain, with u = u(r)e

i!t

this is 
alled the Navier-Cau
hy

equation:

��(u) + (�+ �)r(r � u) + �!

2

u = 0 : (2.11)

Inserting plane waves one derives the existen
e of transversal and longitudinal polar-

ized waves with wave speeds




T

=

s

�

�

; 


L

=

s

�+ 2�

�

: (2.12)

In what follows these waves will be referred to as shear and pressure waves, S and P.

This nomen
lature is motivated by their representation in terms of potentials. (As we
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shall see in what follows, P and S 
ould also stand for primary and se
ondary waves,

referring to the di�eren
e in their arrival times.) Write

u

L

= r�

u

T

= r�

~

 : (2.13)

A fundamental theorem in ve
tor analysis [9℄ states that any three-dimensional ve
tor

�eld 
an be uniquely de
omposed in terms of su
h �elds:

u = u

L

+ u

T

: (2.14)

Inserting into the Navier-Cau
hy equation we see that the potentials satisfy a s
alar

and a ve
torial Helmholtz equation:

��+ k

2

L

� = 0; k

L

= !=


L

�

~

 + k

2

T

~

 = 0; k

T

= !=


T

(2.15)

The longitudinal waves 
orrespond to irrotational waves and transverse waves to

in
ompressible waves (\
url" respe
tive \div" vanishes). Hen
e the longitudinal

waves are often referred to as pressure waves and the transverse as shear waves. It

follows from (2.12) that the pressure waves propagate faster than the shear waves.

The two kinds of waves are the full solution to the wave me
hani
s in an in�nite

isotropi
 medium of 
onstant density.

In the presen
e of an in�nite half spa
e boundary there is also a third kind of wave,

the surfa
e Rayleigh wave propagating with a 
omplex wave ve
tor with no energy loss.

An ansatz that leads to the Rayleigh wave solution assumes that the displa
ement

�eld de
ays exponentially into the medium. Choosing z as the 
oordinate normal

to the boundary, going into the medium for positive z, we write down a plane wave

solution:

u(x; y; z) = a e

i(k

x

x+k

y

y)�k

z

z

; (2.16)

with a is a 
onstant polarization ve
tor.
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The physi
ally relevant boundary 
ondition is the free boundary 
ondition with

vanishing tra
tion (2.6)

0 = t = � � n = (�r � u1+ �(ru+ (ru)

t

)) � n : (2.17)

Inserting the wave ve
tor (2.16) into the boundary 
ondition and the wave equation

one veri�es that su
h a wave indeed exists with the polarization entirely in the plane

of the boundary. The wave propagates with a velo
ity 


R

, slightly slower than the

shear wave and mu
h slower than the pressure wave. 


2

R

is the real root of
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2
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= 0 : (2.18)

In a semi-in�nite medium with a free plane boundary Rayleigh waves propagate

without energy loss. The geometri
al theory to be developed below will pie
e together

ray traje
tories from shear, pressure and Rayleigh wave segments. The Rayleigh

waves along 
urved boundaries will su�er some radiation loss. In 
ontradistin
tion

to the relatively unimportant 
reeping waves of quantum me
hani
s with Diri
hlet

boundary 
onditions, the elastodynami
 surfa
e Rayleigh waves will turn out to be

the dominant e�e
t in the elastodynami
 s
attering.

R�esum�e

After an introdu
tion to 
ontinuum me
hani
s the elastodynami
 wave equation was

derived. It supports two di�erent waves P; S in the bulk ea
h propagating with its

own velo
ity. In 
ase of a semi-in�ne medium, the Rayleigh surfa
e waves are an

additional 
lass of solutions of great physi
al importan
e.



Chapter 3

Multi-
avity s
attering problem

In the following we shall des
ribe the solution of the s
attering problem in an in�nite

domain with several in�nite parallel 
ylindri
al 
avities. This is referred to as s
at-

tering o� 
avities in elastodynami
s and s
attering o� dis
s in the s
alar 
ase. We

shall assume the free boundary 
ondition, with vanishing tra
tion t(u) = 0; The s
at-

tering problem will be solved using boundary integral identities derived via Betti's

equivalent of the Green's theorem.

3.1 Elastodynami
s

So far we have dis
ussed the general three-dimensional elasti
ity. Now we will restri
t

our study to a family of 
ases where it is possible to redu
e the dimensionality to two.

This two-dimensional situation is realized if one 
onsiders s
attering from parallel

R

a
L a

1 2

Figure 3.1: Two 
avities geometry (A. Wirzba) [3℄.

20
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Φ
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a 3

R2
1

R3

1R

Figure 3.2: Three 
avities geometry (modi�ed from Wirzba).

in�nite \bore holes" with ea
h 
avity axis normal to a given �xed plane. A wave with

the polarization 
on�ned to this plane will never 
ip its polarization and develop


omponents normal to this plane. Furthermore, a polarization parallel to the 
avity

axes will never mix with the plane strain �elds. This �eld has only one degree of

freedom and its s
attering is des
ribed by a s
alar �eld. We shall restri
t our study

to the normally in
ident waves (as opposed to the more general oblique 
ase) and

limit ourselves entirely to the plane strain 
ase.

3.2 Boundary integral equations

In elastodynami
s the following identity repla
es Green's theorem. This relation is

often referred to as Betti's third identity [11℄. To make the notation more 
ompa
t, in

what follows we shall often drop the 
oordinate dependen
e in ve
tor �elds, u = u(s)

and v = v(s). For elastodynami
s the di�erential operator �

�

il

= 


ijkl

�

j

�

k

is the

generalized Lapla
ian, and the tra
tion boundary operator t repla
es the normal

derivative:

Z

(u ��

�

(v)� v ��

�

(u)) dV =

Z

(u � t(v)� t(u) � v) ds (3.1)
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This identity follows by integration by parts. We have suppressed all indi
es to keep

the notation simple. Remark that the 
lamped boundary 
ondition for (3.1) is u = 0,

and the free boundary - relevant to experiments with elastodynami
 resonators in

va
uum - 
orresponds to t(u) = 0.

We de�ne the frequen
y domain Green's fun
tion as the solution of

(�

�

r

+ �!

2

1) �G(r; r

0

) = Æ(r � r

0

)1: (3.2)

We shall spe
ialize to two spatial dimensions, isotropi
 medium 
ase. The Green's

fun
tion is now a matrix sin
e the elastodynami
 wave equation is ve
torial. One 
an

derive the form of the frequen
y dependent Green's fun
tion by standard methods

des
ribed in [11℄. The result is (in tensor form)

G(r; 0) =

1

4i�

 

H

(1)

0

(k

T

r)1+

1

k

2

T

r
r(H

(1)

0

(k

T

r)�H

(1)

0

(k

L

r))

!

(3.3)

Inserting the Green's fun
tion v = G(s;X) into the integral relation we �nd in general

Somigliana's identity [11℄:


(X)u(X) =

Z

(u(s) � t(G(s;X))� t(u(s)) �G(X; s)) ds: (3.4)

Here 
(X) = 0=1 if X is outside/inside the elasti
 body. This gives us two relations.

Also a third relation may be derived if the point X is pre
isely at the boundary. Thus

for a smooth boundary one �nds in all dimensions 
(X) = 1=2: In two dimensions


(X) is a fun
tion taking the value

��

2�

; (3.5)

where �� is the angle subtended at X. This gives the values also at 
orners and 
an

be generalized to higher dimensions. See [11℄ for further dis
ussion.

3.3 Formal tools

Below we shall state some fa
ts that fa
ilitate the 
al
ulation of the s
attering matrix.
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3.3.1 Basis fun
tions

Our 
hoi
e of basis fun
tions has been inspired by previous work [19, 20℄. In general

we shall denote a basis fun
tion with the symbol  , distinguishing outgoing waves

 

(+)

, in going  

(�)

and regular waves  

^

: By regular we mean a wave whi
h is not

singular at the origin. Our s
atterers will be 
ylindri
al so the appropriate basis

fun
tions will be generated from Bessel and Hankel fun
tions. These basis fun
tions

will be generated from the basis potentials H

(1)=(2)

l

(kr)e

il�

and J

l

(kr)e

il�

solving the

Helmholtz equations (2.15) by a
tion of r and r� (ẑ �): This gives us a basis sin
e

ea
h ve
tor fun
tion uniquely de
omposes into an in
ompressible and an irrotational

part and that the potential fun
tions are 
hosen from a 
omplete set, the partial waves.

Further we shall denote by \�" the repla
ement of e

il�

with e

�il�

. We reserve \�"

to mean 
omplex 
onjugation. We remark that the basis fun
tions are of dimension

length

�1

.

Orthogonality relations

These basis fun
tions satisfy orthogonality relations on boundaries. In parti
ular, at

the dis
 at in�nity we �nd using the asymptoti
 expansion of Hankel fun
tions:

Z

�

1

(t( 

(+)

l

) 

(�)

m

� t( 

(�)

m

) 

(+)

l

) ds = 8i�!

2

Æ

l;�m

(�1)

l

(3.6)

and

Z

�

1

(t( 

(�)

l

) 

(�)

m

� t( 

(�)

m

) 

(�)

l

) ds = 0 : (3.7)

Hen
e:

Z

�

1

(t( 

(+)

l

) 

^

m

� t( 

^

m

) 

(+)

l

) ds = 4i�!

2

Æ

l;�m

(�1)

l

(3.8)

3.3.2 Green's fun
tion expansion in normal modes

We 
an 
onstru
t an expansion similar to the partial wave expansion for the s
alar


ase. There one 
hooses regular fun
tions at the origin and outgoing fun
tions at
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in�nity. Here we write a similar expansion of the Green's fun
tion and insert it in

the boundary integral relations above. Using the orthogonality relation (3.8) on a

solution  

(�)

the overall normalization is �xed.

Thus we may expand the Green's fun
tion as

G(x;y) =

1

4i�!

2

X

n

 

^�

n

(r

<

)
  

(+)

n

(r

>

)

=

1

4i�!

2

1

X

l=�1

[ 

^�

l

(r

<

)℄ � [ 

(+)

l

(r

>

)℄

t

; (3.9)

where r

<

= min(x; y) and r

>

= max(x; y): Here n in the �rst line is a multi-index


ontaining angular momentum and polarization indi
es. Further the basis fun
tion is

a geometri
 ve
tor. For a derivation see appendix B. The next line is in matrix form

and introdu
es the displa
ement matrix:

[ 

n

℄ =

�

(P

n

)

1

(S

n

)

1

(P

n

)

2

(S

n

)

2

�

; (3.10)

whi
h for angular momentum n 
ontains the ve
torial 
omponents 1; 2 of the pressure

and shear basis fun
tion. Below we shall often suppress geometri
al and polarization

indi
es.

Translations

For di�erent 
ylinders the natural basis fun
tions may be de�ned 
entered at di�erent

positions. To relate su
h basis sets we introdu
e translation operators ( inspired

by [40, 41℄ who introdu
ed su
h operators in three dimensions). These operators

translate the underlying 
oordinate plane but not the basis fun
tions. We shall work

with several 
oordinate systems: a global system and one lo
al for ea
h s
atter. We

write a basis fun
tion at system S

0

in terms of those at system S. Here S; S

0

2

fG; j; j

0

g refer to global respe
tively lo
al 
oordinate systems.

Thus for instan
e to go from a global to a lo
al 
oordinate system for an outgoing

state we have:

 

(+)

n

(X

(G)

) =

1

X

l=�1

T

+Gj

nl

 

^

l

(X

(j)

) (3.11)
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with

T

+Gj

nl

= (�1)

l

H

(1)

n�l

(kR

j

)e

i(n�

(G)

j

�l�

(j)

G

)

: (3.12)

Other 
ombinations are possible. See appendix C for further details. In the above the

wave ve
tor k is 
hosen a

ording to whether a pressure or shear state is 
onsidered.

Composition

Produ
ts of the translation operators will again lead to translation operators. The

tool used is the addition theorem for Bessel fun
tions [35℄. Thus

T

+jG

�T

^Gj

= 1 (3.13)

as parti
ular example.

3.4 Cal
ulation of boundary integrals

We now pro
eed with the 
al
ulation of the S-matrix using the de�nitions above and

(3.4). We assume the s
attering zone surrounded by a large dis
 with a radius going

to in�nity, �g. 3.3.

Consider an in
oming plane wave as potential. This 
an be written as a sum over

the regular Bessel fun
tions,

e

ik�r

=

1

X

l=�1

J

l

(kr)e

il�

=

X

l

1

2

(H

(2)

l

(kr)e

il�

+H

(1)

l

(kr)e

il�

) : (3.14)

On the level of the wave fun
tion the last part 
orresponds to ingoing and outgoing

states. In the presen
e of s
attering we modify the outgoing part with the s
attering

matrix S . Thus at in�nity the wave fun
tion is:

u =

X

i;l

1

2

a

i

�

Æ

il

 

(�)

l

+ S

il

 

(+)

l

�

: (3.15)
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∂1� ∂2�

∂3�

n

∂∞

n

Figure 3.3: We imagine the s
attering zone en
losed in a dis
 with a radius going

to in�nity. The white zones are voids in the medium. Boundaries are denoted with a

�. An in
oming plane wave and its s
attered �eld are sket
hed.

Here a

i

will be referred to as the s
attering data at in�nity. By 
onvention we keep

the fa
tor 1=2 and do not absorb it in a

i

.

At a given 
avity j expand the wave fun
tion in a Fourier series:

u =

X

m

B

(j)

m

e

im�

=

X

m

((B

(j)

r

)

m

r̂+ (B

(j)

�

)

m

^

�)e

im�

(3.16)

Here � = �

(j)

refers to the lo
al 
oordinate system at the 
avity.

In the boundary integrals (3.4) the integration will be over the 
avity boundaries

�

j

and the boundary at in�nity �

1

. Ea
h integral is to be evaluated with respe
t to

a �nal point X whi
h we shall take in the following either as ending on a 
avity or

going to in�nity. For ea
h of the 
avities we shall evaluate the boundary integrals

above at a �nal point in�nitesimally inside the 
avity. For these integrals the fa
tor is

zero. However, in the latter 
ase we 
onstantly stay inside the elasti
 medium. Hen
e

the fa
tor 
 in (3.4) above equals unity. Thus for a point X

(j)

ending on a 
avity we
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de�ne:

I

j

j

0

=

Z

�

j

0

ds u(s) � t(G(s;X

(j)

))

I

j

1

=

Z

�

1

ds(u(s) � t(G(s;X

(j)

))� t(u(s)) �G(s;X

(j)

) (3.17)

with

0 = I

j

1

� (I

j

j

+

X

j

0

6=j

I

j

j

0

) : (3.18)

For a point X = r !1 inside the medium:

I

r

j

=

Z

�

j

ds u(s) � t(G(s;X))

I

r

1

=

Z

�

1

ds(u(s) � t(G(s;X))� t(u(s)) �G(s;X)) (3.19)

similarly

u(r) = I

r

1

�

X

j

I

r

j

: (3.20)

Here the upper index refers to the �nal point X and the lower to the boundary over

whi
h the integration has been performed.

These quantities are stated below. To summarize: I

j

j

0

; I

j

j

; I

r

j

; � � � express the �eld

at a given boundary or point generated from another �eld at the same or a di�erent

boundary. For example the �eld at in�nity generates �elds at the 
avities in the bulk.

Details of the 
al
ulations are given in appendix D.

3.4.1 From boundaries to boundaries

The inter-
avity integrals are I

j

j

; I

j

j

0

and I

j

1

.
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We �nd from 
avity j to 
avity j:

I

j

j

=

Z

�

j

ds u(s) � t(G(s;X

(j)

))

=

�a

j

2i�!

2

X

l

B

(j)

l

� t( 

(+)�

l

(a

j

; � = 0)) 

^

l

(X

(j)

)

=

�a

j

2i�!

2

B

(j)

l

� [t( 

(+)�

l

(a

j

))℄ � [ 

^

l

(X

(j)

)℄

t

(3.21)

from 
avity j

0

to 
avity j:

I

j

j

0

=

Z

�

j

0

ds u(s) � t(G(s;X

(j)

))

=

�a

j

0

2i�!

2

X

l;n

B

(j

0

)

l

� t( 

^�

l

(a

j

0

; �

0

= 0))T

+j

0

j

ln

 

^

n

(X

(j)

)

=

�a

j

0

2i�!

2

B

(j

0

)

l

� [t( 

^�

l

(a

j

0

))℄ � T

+j

0

j

ln

� [ 

^

n

(X

(j)

)℄

t

(3.22)

and from dis
 1 to 
avity j:

I

j

1

=

Z

�

1

ds(u(s) � t(G(s;X

(j)

))� t(u(s)) �G(s;X

(j)

)

=

X

m;l

a

m

T

^Gj

ml

 

^

l

(X

(j)

)

= a

m

� T

^Gj

ml

� [ 

^

l

(X

(j)

)℄

t

: (3.23)

We noti
e that the above terms are all in the basis of regular solutions  

^

. Thus with

respe
t to this basis we 
an reformulate the relationship from (3.4)

I

j

1

= I

j

j

+

X

j

0

6=j

I

j

j

0

(3.24)

as a matrix equation:

a �C

j

=

X

j

0

B

j

0

�M

j

0

j

: (3.25)
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The �rst two integrals give the inter-
avity s
attering matrix M:

M

jj

0

nl

= Æ

jj

0

Æ

ln

1+ (1� Æ

jj

0

)

a

j

a

j

0

[t( 

^�

n

)(a

j

)℄ �T

+jj

0

nl

� [t( 

+�

l

)(a

j

0

)℄

�1

: (3.26)

Here we have normalized the matrix so that it redu
es to unity in the 
ase of one


avity only. The summation on the right hand side above is also over the spatial

indi
es. To keep the notation 
ompa
t the terms in the square bra
kets refer to two-

by-two tra
tion matri
es 
ontaining the 
olumns of the 
oordinates of t(P ) respe
tive.

t(S) (Appendix E):

[t( )℄ =

�

t(P )

1

t(S)

1

t(P )

2

t(S)

2

�

: (3.27)

The 
oordinates are with respe
t to some �xed system whi
h we 
hoose to be the

global system. This matrix is found from a lo
al expression at dis
 j by a rotation:

[t( )℄ := [t( )℄

(G)

= R

Gj

� [t( )℄

(j)

; (3.28)

where say for an outgoing state the latter is

[t( )

+�

m

℄ =

�

t(P

m

)

+�

r

t(S

m

)

+�

r

t(P

m

)

+�

�

t(S

m

)

+�

�

�

=

2�

a

2

(3.29)

�

 

(m

2

+m�

1

2

a

2

�

2

)H

(1)

m

(a�)� a�H

(1)

m�1

(a�) im((m+ 1)H

(1)

m

(a�)� a�H

(1)

m�1

(a�))

im((m+ 1)H

(1)

m

(a�)� a�H

(1)

m�1

(a�)) a�H

(1)

m�1

(a�)� (m

2

+m�

1

2

a

2

�

2

)H

(1)

m

(a�)

!

In the se
ond term the angular dependen
e e

�il�

is omitted by setting � = 0 in

the end. This gives the rather 
ompli
ated third term. Corresponding to in going,

outgoing or regular states the tra
tion matrix will 
ontain H

(1)

; H

(2)

; J . The � and

� refer to longitudinal and transverse wave ve
tors and a the 
avity radius.

The rotation matrix is

R

Gj

=

 


os(�

(G)

j

) � sin(�

(G)

j

)

sin(�

(G)

j

) 
os(�

(G)

j

)

!

: (3.30)
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Furthermore we have a translation matrix

T

+jj

0

nl

=

 

T

+(P )jj

0

nl

0

0 T

+(S)jj

0

nl

!

(3.31)

a
ting on the various polarizations.

The normalization of M also in
uen
es the matrix that multiplies the s
attering

data a

i

:

C

(j)

ml

=

2i�!

2

�a

j

T

^Gj

ml

� [t( 

+�

l

)(a

j

)℄

�1

: (3.32)

3.4.2 From boundaries to in�nity

Next we shall 
onsider the integrals from boundaries to a point at in�nity I

r

j

and I

r

1

:

We �nd

I

r

j

=

Z

�

j

ds u(s) � t(G(s;X))

=

�a

j

2i�!

2

X

n;l

B

(j)

n

� t( 

^�

n

(a

j

; � = 0))T

+jG

nl

 

(+)

l

(X

(G)

)

=

�a

j

2i�!

2

B

(j)

n

� [t( 

^�

n

(a

j

))℄ � T

+jG

nl

� [ 

(+)

l

(X

(G)

)℄

t

(3.33)

and by orthogonality (3.8)

I

r

1

=

Z

�

1

ds (u(s) � t(G(s;X

(G)

))� t(u(s)) �G(s;X

(G)

)

=

X

i

a

i

 

^

i

(X

(G)

)

= a

i

� [ 

^

i

(X

(G)

)℄

t

: (3.34)
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From (3.4) we have  (r) = I

r

1

�

P

j

I

r

j

. Inserting the expansion for the �eld at

in�nity and using  

^

=

1

2

( 

+

+  

�

) we see that all terms 
an be written in terms of

the outgoing basis fun
tion  

(+)

. Thus

X

n

a

n

S

nl

=

X

n

0

�

a

n

Æ

nl

1�

X

j

�a

j

i�!

2

B

(j)

n

� t( 

^�

n

(a

j

; � = 0))T

+jG

nl

1

A

(3.35)

or in 
ompa
t form

a

n

� S

nl

= a

n

Æ

nl

� 1�

X

j

�a

j

i�!

2

B

(j)

n

� [t( 

^�

n

(a

j

))℄ � T

+jG

nl

: (3.36)

De�ning the matrix D:

D

j

nl

= �

�a

j

�!

2

[t( 

^�

n

(a

j

))℄ � T

+jG

nl

(3.37)

we have the matrix equation:

a � S = a � 1� i

X

j

B

j

�D

j

: (3.38)

Eliminating the s
attering data B at the 
avities we �nd the s
attering matrix:

S = 1� iC �M

�1

�D: (3.39)

3.5 S
attering from one 
avity

For s
attering from one 
ylindri
al 
avity the S-matrix is of the form:

S

(1)

= 1� i C �D ; (3.40)

sin
e the M-matrix redu
es to unity.
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Here we 
an position the global 
oordinate system in the 
enter of the 
avity.

Therefore we 
an ignore the translation matri
es and �nd in expanded form

S

(1)

lm

= �Æ

lm

[t( 

+�

l

)(a

j

)℄

�1

� [t( 

��

l

)(a

j

)℄

= �Æ

lm

[t(P

+�

l

)jt(S

+�

l

)℄

�1

� [t(P

��

l

)jt(S

��

l

)℄ : (3.41)

This is the s
attering matrix for states with angular dependen
e e

il�

: This result is

very similar to the s
attering matrix for the s
alar Neumann problem. The di�eren
e

is just that the normal derivative of the basis fun
tions is repla
ed by the tra
tion.

We 
ould also have 
onsidered s
attering with even and odd states with dependen
e


os(�) and sin(�) as usually done in the literature. Thus in refs. [19, 18℄ the s
attering

problem has been worked out in terms of these states. Our matrix is related to the S-

matrix of refs. [19, 18℄ by a unitary transformation. In the following we shall 
ontinue

working with the states e

il�

.

3.6 Fa
torization of the spe
tral determinant

From (3.39) the spe
tral determinant be
omes formally

Det(S) =

Det(M� i D �C)

Det(M)

: (3.42)

We shall show that the numerator fa
torizes

Det(X) := Det(M� i D �C) = Det(M(!

�

)

y

)

Y

j

det(S

(1)

j

) : (3.43)

Thus

Det(S(!)) =

Det(M(!

�

)

y

)

Det(M(!))

Y

j

det(S

(1)

j

(!)) : (3.44)
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So there is a fa
torization in a 
oherent part among s
atters and in
oherent parts

due to the individual s
atters. By inspe
tion of (3.26)-(3.47) one �nds that the poles

of the one-
avity determinants 
an
el exa
tly the poles of the denominator matrix

M of the 
oherent part. Similarly the poles of M

y

are 
an
elled by the zeroes of

the one-
avity determinant. Hen
e the genuine s
attering resonan
es are given by the

zeroes of the M-matrix.

To prove the above statements we 
al
ulate D �C:

When j = j

0

:

D

j

n

�C

j

l

= �2i[t( 

^�

n

)(a

j

)℄ � [t( 

+�

l

)(a

j

)℄

�1

Æ

nl

(3.45)

and for j 6= j

0

:
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=
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)(a

j

)℄ �T
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= �2i

a

j

a

j

0

[t( 

^�

n

)(a

j

)℄ �T
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)(a
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:

This gives X:
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0

Æ

ln

[t( 

��

l

)(a

j

)℄ � [t( 

+�

l

)(a

j

)℄

�1

�(1� Æ

jj

0

)

a

j

a

j

0

[t( 

^�

l

)(a

j

)℄ �T

�jj

0

ln

� [t( 

+�

n

)(a

j

0

)℄

�1

: (3.46)

On the other hand 
onsidering 
omplex 
onjugate frequen
ies (
orresponding to 
on-

jugate k

L

and k

T

) we get

(M

jj

0

�l;�n

(!

�

))

�

= Æ

jj

0

Æ

ln

1+(1�Æ

jj

0

)

a

j

a

j

0

[t( 

^�

l

)(a

j

)℄�T

�jj

0

ln

�[t( 

��

n

)(a

j

0

)℄

�1

:(3.47)

These two results di�er by the matrix S

�

S

�(1)

ln

= �Æ

ln

[t( 

��

l

)(a

j

)℄ � [t( 

+�

l

)(a

j

)℄

�1

; (3.48)
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whi
h 
learly has the same determinant as the the one-
avity s
attering matrix. How-

ever, it does not have the same form as the latter. Why? This 
omes from our 
hoi
e

of spe
ifying the data on the 
avities as ve
torial. This gives an M-matrix whi
h

maps from physi
al spa
e to physi
al spa
e. The s
attering matrix, however, maps

from the state of basis fun
tions into basis fun
tions. Thus with the de�nitions 
hosen

we do not expe
t a dire
t matrix fa
torization of X into M(!

�

)

y

;S

(1)

as opposed to

the s
alar 
ase.

3.6.1 Symmetry fa
torization

We shall 
onsider 
avities arranged in a symmetri
 fashion (�g. 3.1). For the 
ase of

two 
ylindri
al 
avities of equal radius the symmetry group is C

2v

, with the 
hara
ter

table 3.1, and for three 
ylindri
al 
avities with 
enters at the verti
es of an equilateral

triangle the symmetry group is C

3v

[44℄.

C

2v

E C

2

�

x

�

y

A

1

1 1 1 1

A

2

1 1 -1 -1

B

1

1 -1 1 -1

B

2

1 -1 -1 1

Table 3.1: Chara
ter table of C

2v

.

This symmetry 
an be exploited to blo
k-diagonalize the s
attering matrix and

hen
e fa
torize the s
attering determinant. This will redu
e the numeri
al workload,

sin
e the subspa
e s
attering matri
es will be of mu
h smaller size. Furthermore

the symmetry will manifest itself at a 
lassi
al level by redu
ing the number of pe-

riodi
 orbits in the 
umulant expansion of the determinant. Below we just state the

pro
edure (for a derivation see Appendix F ):

We de�ne for m � 0:

d(m) =

p

2 form > 0 and d(0) = 1 : (3.49)

For the two-
avity system where all radii are equal (= a) and the angles to the

respe
tive 
enters are �

(2)

1

= �

(1)

2

= � we get in terms of two by two matrix entries

for m;n � 0

M

mn

(�

1

; �

2

) = Æ

mn

1+

�

1

2

d(m) d(n) [t( 

^�

m

)(a)℄ �T

+

mn

(�

2

) � [t( 

+�

n

)(a)℄

�1

;(3.50)
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where the modi�ed translation matrix is

T

+

mn

(�

2

) = (�1)

m

" 

H

(1)

m�n

(�R) 0

0 H

(1)

m�n

(�R)

!

(3.51)

+�

2

(�1)

n

 

H

(1)

m+n

(�R) 0

0 �H

(1)

m+n

(�R)

!#

and �

1

; �

2

= �1 indexing the irredu
ible representations (table 3.2). We have

C

2v

A

1

A

2

B

1

B

2

�

1

+ + - -

�

2

+ - + -

Table 3.2: Sign 
onvention in the redu
ed inter-
avity matrix.

The matri
es are redu
ed sin
e they no longer 
arry 
avity indi
es and only non-

negative indi
es of angular momentum are present.

The fa
torization is quite similar to the s
alar 
ases, just with a minus sign in the

lower right 
orner of the se
ond matrix in the translation part (3.51).

3.7 Fredholm theory and shadowing

In the 
ase of the s
alar dis
 problem the results derived above 
an be justi�ed

rigorously by proving that M = 1+A is an operator of the Fredholm type with A

a tra
e-
lass operator. This means that all tra
es of powers of A exist and therefore

the determinant of M exists, as de�ned by its expansion in terms of tra
es

DetM = exp

 

�

1

X

n=1

(�1)

n

Tr (A

n

)

n

!

= 1 + TrA�

1

2

(Tr (A

2

)� (TrA)

2

) + � � � : (3.52)
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The Fredholm determinant F (z) = Det (1+ zA) is analyti
 in z. Thus the 
oeÆ
ients

of z

n

, 
umulants, in the above expansion of F (z) de
ay faster than exponentially.

For high frequen
ies these tra
es 
an be approximated by sums over 
lassi
al prime


y
les and their repeats, as we shall see below. The fast de
ay of the Fredholm series

means that the 
umulant sums must involve large 
an
ellations among the individual


y
les, and that the 
ontributions of long orbits are in part 
an
elled by produ
ts of

shorter ones. In the theory of dynami
al systems this phenomenon is 
alled shadowing.

There similar 
an
ellations are seen for spe
tral determinants of evolution operators in

strongly 
haoti
 systems. The 
an
ellations determine the 
onvergen
e of the spe
tral

determinant and hen
e the pre
ision at whi
h spe
tral resonan
es 
an be found. At

its best the 
onvergen
e is super-exponential [36℄. The above shadowing arguments

should be taken with the following 
onsideration in mind: In the high-frequen
y limit

the tra
es in the Gutzwiller-Voros and the analogous elastodynami
 determinants are

approximated by sums over periodi
 orbits. This approximation introdu
es errors in

the Fredholm determinant, so the de
ay of 
umulants is degraded and the region of


onvergen
e de
reased. However, for the leading quantum resonan
es the numeri
al

agreement is remarkably good [2℄. At this time it is not known to what extent the

a

ura
y of the saddle point approximations 
an be in
reased by in
luding all 
reeping

orbits and by taking higher �h-
orre
tions in the saddle point expansions.

From our preliminary investigations we have reason to believe that also in the

elastodynami
 setting the M-matrix is a Fredholm operator. We will at this stage

not attempt to prove this, but just mention that numeri
ally we see de
ay of the


umulants and that the expression for the elastodynami
 M-matrix is very similar

in form to the quantum me
hani
al result, giving us 
on�den
e in our numeri
al


al
ulations of detM:

R�esum�e

In this 
hapter we have formulated the s
attering problem for a system of 
ylindri
al


avities in plane strain elasti
ity. A basis of s
attering states makes it possible to

expli
itly 
al
ulate the elements of the full s
attering matrix in analyti
 form, in

terms of Bessel fun
tions. The s
attering determinant was shown to fa
torize into an

in
oherent and 
oherent part. We now turn to a study of ea
h of these pie
es.



Chapter 4

High frequen
y limit

In this 
hapter our goal is to introdu
e a ray dynami
s relevant to our elastodynami


system of 
avities. This ray dynami
s is derived from the underlying wave equation

and its boundary 
ondition by studying a single 
avity. We shall follow the re
ent work

by Wirzba [3℄. Interestingly, we have to in
lude surfa
e rays of very low attenuation.

For wave systems whose underlying 
lassi
al dynami
s is integrable the high fre-

quen
y or semi-
lassi
al resonan
es are given by the Bohr-Sommerfeld quantization.

For systems with a more 
ompli
ated 
lassi
al dynami
s, often refered to as 
haoti
,

the quantization is likewise more 
ompli
ated. Those systems have been investigated

using several methods. Originally Gutzwiller [34℄ found his 
elebrated tra
e formula

using path-integrals. This approa
h is a very general one and it might not be im-

possible to de�ne path integrals also in elastodynami
s. Investigations on quantum

billiards are mostly based on the saddle point method applied to integral kernels. Typ-

i
ally one derives a boundary integral equation whi
h is then studied near a saddle


orresponding to a periodi
 orbit. Perhaps the fastest way [1℄ of deriving Gutzwiller's

formula is the method of WKB. The path-integral and the WKB are general meth-

ods allowing for varying potential, whereas the boundary integral method requires


onstant potential in the inside of the billiard. Complex orbits seem always to be in-

trodu
ed in a rather ad ho
 fashion with ex
eption of the very spe
ialized method of

[2℄ using the Sommerfeld-Watson transformation. As mentioned in the introdu
tion,

many problems in s
attering theory involve sums over the Bessel fun
tions, spe
ial

fun
tions whi
h often appear if a rotational symmetry is present. These sums over

angular momentum l 
onverge for low frequen
ies but fail at high frequen
ies. The

Sommerfeld-Watson idea is to 
omplexify the angular momentum and 
onvert the

sum into a 
ontour integral. This integral will typi
ally pi
k up 
ontributions from

37



38

saddle points and poles. We shall see below that the saddles 
orrespond to free ge-

ometri
 rays and the poles to surfa
e rays. Further 
ompli
ations will arise if the

integrand 
ontains other singularities su
h as bran
h points. In our 
ase we shall

fo
us only on the so-
alled Rayleigh poles.

In elastodynami
s 
ontour integral methods have been used in e.g. [19℄:

1. An expansion for the dynami
 hoop stress: �

��

. For the free boundary all

stresses vanish ex
ept for the hoop stress. This stress depends on the total �eld

whi
h we 
an write as a sum over angular momenta. This is then transformed

into a sum over 
reeping waves and a Rayleigh wave.

2. The transient response from 
avities: one en
ounters 
ontributions from P,S

and Rayleigh waves.

Here we shall work out the high frequen
y limit of the Green's fun
tion in the fre-

quen
y domain for one 
avity following Wirzba. As an introdu
tion to the problem

we familiarize ourselves with the known exa
t results on 
avity resonan
es and their

attenuation.

4.1 One 
avity resonan
es

4.1.1 Exa
t results

What is known about the exa
t position of the resonan
es? They have been dis-


ussed in [13℄. We have reprodu
ed their results, see 
hapter 5. For the sake of

presentation we wish to show the data already now. We have 
on�rmed numeri
ally

the resonan
e spe
trum for polyethylene. For polyethylene the relevant parameters

are 


L

= 1950m=s and 


T

= 540m=s. The resonan
es 
orrespond to the poles of the

s
attering determinant at various integer values of the angular momentum.

We plot the �rst 120 Rayleigh poles in the fourth quadrant of k

L

a in �g. 4.1. For

high frequen
ies there is a band of resonan
es 
lose to the real axis. The spa
ing

is regular and quite 
lose (within two signi�
ant digits) to what one would expe
t

for a wave moving with Rayleigh speed (


R

= 513m=s) on an in�nite 
at boundary.
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0 10 20 30

Re(kLa)

-0.25

-0.2

-0.15

-0.1

-0.05

0

Im(kL a)

Rayleigh resonances

Figure 4.1: The �rst 120 Rayleigh s
attering resonan
es for polyethylene with a

single 
avity of radius a. The line of resonan
es goes asymptoti
ally to the real axis,

with high frequen
ies having vanishingly small attenuation.

However, deviations are not only on the real part but also there now is a small

imaginary part. The goal in the following is to des
ribe these deviations.

4.1.2 One 
avity determinant

To �nd the resonan
es we do not have to use the full spe
tral determinant (3.41)

but just its denominator. Thus resonan
es 
an be found numeri
ally using (3.29)

sear
hing for its zeroes. Our theoreti
al investigation will use the expression (E.7),

where the order of the Hankel fun
tions has a �xed angular momentum l.

We shall study this expression perturbatively in the limit of high frequen
ies fo-


using on resonan
es of the Rayleigh type.

First we mention that the Airy expansions of the Hankel fun
tions in the s
attering

determinant may be used, but seem too 
ompli
ated for a theoreti
al des
ription of

the Rayleigh resonan
es. However, for numeri
al purposes they work will: using two
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leading terms in the Airy expansion determine the resonan
es to three signi�
ant

digits.

This last approa
h takes two saddles into a

ount and this 
an also be done using

just the Debye expansion but keeping the expontially small term 
oming from the J

l

part of the Hankel fun
tion. This is the idea of Viktorov [45℄ whi
h we shall des
ribe

below.

The exponential Debye expansion for the Hankel fun
tions:

J

l

(z) �

s

1

2�Q

e

Q�lAr
Cosh(l=z)

(4.1)

Y

l

(z) � �

s

2

2�Q

e

�Q+lAr
Cosh(l=z)

(4.2)

H

(1)

l

(z) = J

l

(z) + iY

l

(z) � �i

s

2

2�Q

e

�Q+lAr
Cosh(l=z)

; (4.3)

with

Q = Q(l; z) =

p

l

2

� z

2

: (4.4)

Here the order l is assumed larger than the argument z. Other 
ases would lead to

other resonan
es, e.g. resonan
es of Franz type [14℄ when l ' z. (4.3) is essentially

just the saddle point approximation. We see that J

l

(z) is exponentially small and


an be omitted from the asymptoti
 expansion of H

(1)

l

(z).

For 
onvenien
e we put

q = Q(l; k

L

a) and s = Q(l; k

T

a) : (4.5)

Also we shall write the angular momentum in terms of an azimuthal and transverse

wave number

l = ak

R

� �ak

T

: (4.6)
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Inserting this expansion into (E.7) and de�ning the determinant D we �nd to leading

order after some manipulation

D � det

�

(l

2

� (a�)

2

=2) + q il(1 + s)

il(1 + q) �(l

2

� (a�)

2

=2)� s

�

: (4.7)

The 
ondition for resonan
e D = 0 gives

l

2

qs = ((a�)

2

=2� l

2

)

2

: (4.8)

Hen
e we get an equation for the ratio � ' 


T

=


R

�

2

q

�

2

� 1

q

�

2

� (


T

=


L

)

2

= (1=2� �

2

)

2

: (4.9)

This is pre
isely Rayleigh's equation for surfa
e waves on the in�nite half plane, as in

the high frequen
y limit we 
annot distinguish between a 
urved surfa
e or a plane.

Interestingly there are also other resonan
es whi
h we asso
iate with the 
omplex

solutions of Rayleigh's equation whi
h 
an be rewritten as a 
ubi
 equation for �

2

[13℄. These resonan
es are, however, strongly damped and will be omitted in the

following.

We �nd 
orre
tions to the ratio � from the 
urvature of the boundary by inserting

the Debye series instead:

H

(1)

l

(z) = J

l

(z) + iY

l

(z) � �i

s

2

2�Q

e

�Q+lAr
Cosh(l=z)

(4.10)

�(1�

1

8

l

Q

+

5

24

(

l

Q

)

3

: : :)

H

(1) 0

l

(z) � (�Q=z)(�i

s

2

2�Q

e

�Q+lAr
Cosh(l=z)

(4.11)

�(1 +

3

8

l

Q

�

7

24

(

l

Q

)

3

: : :)) :

Here we expand

� = �

0

+

�

1

�a

+

�

2

(�a)

2

+ : : : (4.12)
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and solve systemati
ally for the unknowns �

1

; �

2

; : : :. Analyti
al expressions soon

be
ome 
umbersome for the higher 
orre
tions and we just state that for our material

in 
onsideration we �nd

�

0

= 1:0525597 (4.13)

�

1

= 2:1436297

�

2

= 26:845142

.

.

.

All further 
orre
tions 
an be seen to be real whi
h would seem to imply no attenu-

ation. This, however, as we know from �g. 4.1 
annot be.

To pro
eed one has to in
lude the Debye series for also J

l

(z) at some point of

approximation near �

0

+

�

1

�a

, as in [45℄. It has been remarked by Wirzba that for even

higher frequen
ies one should perturb around say �

0

+

�

1

�a

+

�

2

(�a)

2

instead, and so on for

yet higher frequen
ies. The reason is that one trun
ates the Debye series to its smallest

term and this trun
ation happens at higher orders for higher frequen
ies. On the other

hand it appears to be diÆ
ult to �nd a good approximation for intermediate regimes,

i.e. up to size parameter k

L

a < 25. This is in 
ontrast to the good 
onvergen
e in

s
alar wave me
hani
s for the Franz resonan
es.

One 
an write the resonan
e 
ondition as

0 � f(�) + e

��

1

(�)

h

1

(�) + e

��

2

(�)

h

2

(�);

where f; �

i

and h

i

are the fun
tions:

� h = i(

1

2

� 2�

2

0

+ 2qs�

2

0

+ 2�

4

0

) =

i

2

((1� 2�

2

)

2

+ 4qs�

2

0

) = i4qs�

2

0

� f

0

= �8�

0

(1 + qs+

1

2

(q=s+ s=q � 4)�

2

0

� � = �2 s � + 2 � � Ar
Cosh(�) (transverse part).

In our 
ase the last terms are exponentially small and imaginary. The �rst term

already 
orresponds to the perturbative solution. Expanding around � gives a purely

imaginary 
orre
tion.
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Viktorov's 
orre
tion be
omes

Im(�) = (e

2(s�lAr
Cosh(

l

�a

))

+ (


L

=


T

)

2

e

2(q�lAr
Cosh(

l

�a

)

) (4.14)

�

4�

2

0

q

�

2

0

� 1

q

�

2

0

� (


T

=


L

)

2

8�

0

(1 +

q

�

2

0

� 1

q

�

2

0

� (


T

=


L

)

2

+

1

2

�

2

0

(

p

�

2

0

�1

p

�

2

0

�(


T

=


L

)

2

+

p

�

2

0

�(


T

=


L

)

2

p

�

2

0

�1

� 4))

;

where l = �(�

0

+

�

1

�a

+ : : :) is the 
urrent best real approximation. We remark that this

result is essentially non-perturbative and for high frequen
ies exponentially small.

4.2 Green's fun
tion in the presen
e of a single


avity

The motivation for studying a single 
avity Green's fun
tion is that from this el-

ementary 
ase one 
an get many insights about the high frequen
y behaviour in

elastodynami
s. We shall extra
t from this 
ase the ray dynami
s, in
luding detailed

evolution of phases and amplitudes.

4.2.1 Sommerfeld-Watson transformation

In analogy with the s
alar treatment for a dis
 we de�ne the Green's fun
tion for a


avity in elastodynami
s as

G(r

>

; r

<

) =

1

8i�!

2

X

l

�

 

+

l

(r

>

)
 ( 

��

l

(r

<

) + S

(1)

l

 

+�

l

(r

<

))

�

= [G(r

>

; r

<

)

ab

℄

=

1

8i�!

2

X

l;�

"

 

+

la�

(r

>

)( 

��

lb�

(r

<

) +

X

�

S

(1)

l��

 

+�

lb�

(r

<

))

#

=

1

8i�!

2

X

l

[ 

+

l

(r

>

)℄ � ([ 

��

l

(r

<

)℄

t

+ [S

(1)

l

℄ � [ 

+�

l

(r

<

)℄

t

) (4.15)

Here the terms [ ℄ refer to the ve
tor 
omponents of the displa
ement �eld in global


oordinates, and greek indi
es �; � 2 fP; Sg refer to the pressure, shear 
omponents.
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The displa
ement matri
es 
an be found from a lo
al expression:

[ ℄ = R

G lo


� [ ℄

(lo
)

(4.16)

with

R

Glo


=

�


os(�) � sin(�)

sin(�) 
os(�)

�

=: R

�

(4.17)

and for resp. e

�il�

-dependen
e

[ ℄

(lo
)+( )=�

l

= e

�il�

 

�

a

H

(1)

l

(a�) �

il

a

H

(1)

l

(a�)

�

il

a

H

(1)

l

(a�) ��

a

H

(1)

l

(a�)

!

(4.18)

Remark: Above the one-
avity S-matrix is unspe
i�ed. We shall 
on
entrate on the

tra
tion free 
avity with the S-matrix given by (3.41). (4.15) 
an be obtained from

the free Green's fun
tion (3.9) by modifying the regular part

 

^�

l

=

1

2

( 

��

l

+  

+�

l

) =:

1

2

( 

��

l

+ S

(1)

l

�  

+�

l

): (4.19)

The motivation is here that only the outgoing wave fun
tions are a�e
ted by the


avity. The s
attering matrix is 
hosen with respe
t to the given boundary 
onditions

su
h that (4.15) itself satis�es the boundary 
onditions. Sin
e the s
attering matrix

is diagonal in angular momentum it only depends on one index.

To simplify the notation we shall put 	 := [ 

(lo
)�

℄j

�=0

in the following. We shall

sometimes refer to the s
attering matrix as

S

(1)

�

= �

�

~

A

~

B

~

C

~

D

�

Det[H

(1)

�

℄

�

N

Det[H

(1)

�

℄

: (4.20)

Here the matrix N is minus the transpose of the 
ofa
tor of the outgoing tra
tion

matrix times the in
oming tra
tion matrix whereas the denominator Det[H

(1)

�

℄ is the

determinant of the outgoing tra
tion matrix.
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We put �� = �

0

� � and rewrite (4.15) as a 
ontour integral

G(r

>

; r

<

) =

1

8i�!

2

I

C

d�

e

i���

e

2�i�

� 1

R

�

0

	

+

�

(r

0

)(	

�

�

(r) + S

(1)

�

	

+

�

(r))R

�1

�

= R

�

0

f

1

8i�!

2

I

C

d�

e

i�(����)

2i sin ��

	

+

�

(r

0

)(	

�

�

(r) + S

(1)

�

	

+

�

(r))

t

gR

�1

�

:(4.21)

Here the 
ontour C runs 
ounter-
lo
kwise slightly above and below the real axis.

Cau
hy's theorem ensures that we pi
k up the 
orre
t 
ontribution from every integer.

By transforming to another 
ontour whi
h goes slightly above the real axis we get for

a general fun
tion f

I

C

d� f(�) =

Z

1+i�

�1+i�

d� (f(��)� f(�)): (4.22)

Now the e�e
t of reversing the (
omplex) order � of our basis fun
tions will besides

phase fa
tors also involve a linear transformation � that 
ips o�-diagonal elements in

	

	

�

��

= e

� i��

�(	

�

�

): (4.23)

Hen
e the s
attering matrix will transform as

S

(1)

��

= e

�2�i�

�(S

(1)

�

): (4.24)

The integrand as a fun
tion of the 
omplexi�ed angular momentum � will be split in

a regular part and a part that has poles on the real axis. The former 
an be evaluated

on the real axis by the stationary phase method. The latter, however, is 
al
ulated

in the upper �-plane at the poles of the s
attering determinant. Here we fo
us on the

leading poles 
orresponding to the Rayleigh surfa
e waves, whereas the stationary

phase integral will lead to geometri
al, \body", rays. In this 
ase (\insoni�ed" or

\light" 
ase) we shall 
hoose to write the fun
tional dependen
e (\Watson fa
tors")

as

e

i���

+

e

i�(2�+��)

1� e

2�i�

+ �

e

i�(2����)

1� e

2�i�

; (4.25)
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where by abuse of notation � is 1 for diagonal elements and �1 for o�-diagonal.

There are 
ases where the Green's fun
tion does not have a geometri
al 
ontri-

bution (the \shadow" 
ase) or where the distin
tion between surfa
e and geometri



ontributions breaks down (\penumbra"). The penumbra 
ase will not be 
onsidered

here. The shadow 
ase, however, is written without a regular part

e

i�(��)

1� e

2�i�

+ �

e

i�(2����)

1� e

2�i�

: (4.26)

We shall only 
onsider the light 
ase whi
h is the most general. Thus splitting the

Green's fun
tion into a geometri
 and di�ra
tive part

G(r

0

= r

>

; r = r

<

) = G(r

0

; r)

geo

+G

diff

(r

0

; r) (4.27)

is a

omplished by

G

geo

(r

0

; r) = R

�

0

f

1

8i�!

2

Z

1+i�

�1+i�

d� e

i���

	

+

�

(r

0

)(	

�

�

(r)+S

(1)

�

	

+

�

(r))

t

gR

�1

�

(4.28)

and

G

diff

(r

0

; r) = R

�

0

f

1

8i�!

2

Z

1+i�

�1+i�

d�

e

i�(2�+��)

+ �e

i�(2����)

1� e

2�i�

	

+

�

(r

0

)

�(	

�

�

(r) + S

(1)

�

	

+

�

(r))

t

gR

�1

�

: (4.29)

4.2.2 Geometri
al 
ontributions to the Green's fun
tion

As mentioned above we 
onsider the light 
ase where the positions r; r

0

are 
onne
ted

with a geometri
al straight line not passing through the 
avity. We thus look for the

following 
ontributions:

1. A straight path from r to r

0

.
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2. A re
e
ted path for ea
h polarization, here longitudinal to longitudinal and

transverse to transverse.

3. A refra
ted or wave splitting path: longitudinal to transverse and vi
e versa.

We shall here treat only the straight path and the wave splitting, sin
e the re
e
ted


ase is quite similar to the latter.

Free path

For the straight path we shall distinguish between two 
ases: De�ne the point of


losest en
ounter on the straight line 
onne
ting r; r

0

with the 
avity. It is from here

the impa
t parameter is measured. The points r; r

0

are either on the same side with

respe
t to this point or on the opposite sides. We shall show that the �rst 
ase is

obtained from the term without the s
attering matrix in (4.28), whereas latter 
ase

follows from the term with the s
attering matrix in
luded. In the following we shall

denote these saddles by �

L1

; �

T1

and �

L2

; �

T2

.

The asymptoti
 expansion of H

l

(z) when z > l is given by the os
illatory Debye's

expansion

H

(1)

�

(z) �

s

2

�Q

exp(iQ� i� ar

os

�

z

� i

�

4

)

H

(2)

�

(z) �

s

2

�Q

exp(�iQ + i� ar

os

�

z

+ i

�

4

)

H

(1)

0

�

(z) � i QH

(1)

�

(z) ; (4.30)

using the same symbols as in (4.4)

Q(�; z) =

p

z

2

� l

2

q = Q

L

= Q(�; k

L

r)

s = Q

T

= Q(�; k

T

r)

(4.31)
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and similarly for the arguments r

0

and a (q

0

; q

a

; : : :).

In the �rst 
ase we get

G

geo

(r

0

; r) � R
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�
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; (4.32)

where the saddle point 
onditions for ea
h polarization are

0 = �� � ar

os

�

L1

k

L

r

0

+ ar

os

�

L1

k

L

r

0 = �� � ar

os

�

T1

k

T

r

0

+ ar

os

�

T1

k

T

r

: (4.33)

These equations have real solutions �

i1

and 
an be intepreted if we de�ne �

i

= k

i

b

with b as the impa
t parameter and i 2 fL;Tg.

In the phase fa
tor evaluated at the saddle only the terms of type q; s-survive.

Thus for the lengths L

i1

we have

k

L

L

L1

= q

0

� q k

T

L

T1

= s

0

� s; (4.34)

whi
h 
orresponds to

L

L1

= L

T1

= jr

0

� rj =

p

r

02

� b

2

�

p

r

2

� b

2

; (4.35)
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sin
e Q

i

=k

i

is the proje
tion of the length of the ve
tor ~r onto the tangent plane of

the point of 
losest 
onta
t. We postpone the dis
ussion of the overall amplitude we

postpone to the wave splitting 
ase below.

The �nal step is to intepret the matri
es sandwi
hed between the rotation matri
es

R

�

;R

�

0

. We des
ribe the impa
t ve
tor as r

0

= b r̂(�

0

), where �

0

is the angle in the

global 
oordinate system. Then L

S1

= r

0

sin(�

0

� �

0

) � r sin(� � �

0

). Therefore e.g.

�

�
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) = k

0

sin(�

0

� �
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0
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1
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�

�

�

0

(k

0

L
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) = k

0


os(�
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� �

0

) = k

0

b=r

0

= �=r

0

.

Thus
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z;(4.36)

where

G

s


(kL) =

1

4i

exp

�

ikL� i

�

4

�

p

kL

(4.37)

is the semi
lassi
al free propagator for the two-dimensional s
alar problem.

In the 
ase where the point of impa
t is between the points r; r

0

, both saddles

�

L2

; �

T2

are larger than the arguments k

L

a; k

T

a . The s
attering matrix be
omes

S

(1)

�

= �[t( 

+�

�

)℄

�1

� [t( 

��

�

)℄

= 1� 2 [t( 

+�

�

)℄

�1

� [t( 

^�

�

)℄

� 1 ; (4.38)

where we used (4.3) in the end to eliminate the regular fun
tions. Thus this 
ase is

similar to the �rst.
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The saddle point 
ondition is

0 = �� � ar

os(

�

i2

k

i

r

0

)� ar

os(

�
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k

i
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) (4.39)

and leads similarly to
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z:(4.40)

For a given pair of points r; r

0

typi
ally only one saddle will be dominant and

therefore there will only be one free path 
ontribution.

Re
e
tion and refra
tion

The wave splitting 
ase is by far the most interesting geometri
al 
ontribution. We

shall fo
us on an in
oming transverse ray and 
al
ulate the outgoing longitudinal ray.

The re
e
tion/refra
tion part of the Green's fun
tion is

G
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: (4.41)

The s
attering matrix will be 
al
ulated in the os
illating Debye approximation

(4.30):
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There will be a saddle for ea
h 
omponent in the matrix. Their equations are:
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Thus e.g. �

B

=: �

LT


orresponds to the transverse k := k

T

to longitudinal 
onversion

k

0

:= k

L

. The relevant impa
t parameters are

b = b
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= �

LT

=k

T

and b
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: (4.54)

The 
ight lengths d from a point r or r

0

to point of impa
t
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2
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: (4.55)

At the stationary point the phase will 
ontain

(q

0

� q

a

) + (s� s

a

) = k

0

d

0

+ kd: (4.56)

Ex
ept from the amplitudes 
olle
ted in the S

(1)

�

-matrix we have 
ontributions from

the amplitude of the Hankel fun
tions and the amplitude arising from the se
ond

derivative of the total phase. Ignoring numeri
al fa
tors their produ
t is
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where
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Here the proje
ted rays, �; �

0

, onto the tangent plane are related to

q
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(4.59)

and

s
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= k� : (4.60)

and the velo
ity ratio:

� = 


L

=


T

= k

T

=k

L

(4.61)

In (4.57) we use the geometri
al mean of the wave ve
tors to get a symmetri
 expres-

sion.

This result agrees with what one 
al
ulates from stability matri
es, as we shall

see below. These matri
es 
orrespond to the ray matri
es in geometri
al opti
s.

From these one 
an 
al
ulate the stability of a given (opti
al) ray system. For their

derivation see Appendix H. They are linearized 
ows mapping initial to �nal tangent

ve
tors in phase spa
e:

(dz

�

; d�

�

) 7! (dz

+

; d�

+

);
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where dz is the transverse displa
ement of a ray and d� the shift in its dire
tion.

Stability matri
es for traje
tory segments

Flight

F =

�

1 d

0 1

�

(4.62)

Re
e
tion

R = �

 

1 0

2

�

1

!

(4.63)

Wave splitting from T to L -waves:

R

LT

= �

 

�

0

�

0

�

�

0

+

1

�

�

�

�

0

!

; (4.64)

where � is the velo
ity ratio (4.61). The opposite 
ase from L- to T-waves has

� := 1=�. We note that

� = a 
os�; (4.65)

where � is the angle of in
iden
e. So � =

p

a

2

� b

2

with b the impa
t parameter.

The amplitude for a point sour
e in geometri
al opti
s de
rease radially as

1

p

kR

eff

: (4.66)

This radius of a wave front is 
alled the e�e
tive length. It evolves dis
ontinuously

at re
e
tion/refra
tion and is 
onveniently des
ribed using ray matri
es. Thus the

e�e
tive length w.r.t. the �nal momentum k

0

= k

L


an be read o� in the d� to

dz-position of produ
ts of stability matri
es [2℄. Why is that? Assume an initial
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in�nitesimal volume element initially near the point sour
e in 
on�guration spa
e.

It will have a 
ross se
tion proportional to its angular spread d�. Upon 
ight and

re
e
tion the element will a
quire a new 
ross se
tion. The ratio of these is the

e�e
tive length and given by the element (1; 2) in the stability matrix: in the T to L


ase we have

F

0

�R

LT

� F = �

�

? R

eff

LT

? ?

�

; (4.67)

with

R
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LT

= d

�

0

�

+ d

0

�

�

0

�+ (

�

�

0

+

1

�

) d d

0

(4.68)

Now this latter length gives the attenuation upon multipli
ation with the �nal wave

number:

q

k

L

k

T

R

LT

= k

L

R

eff

LT

; (4.69)

in agreement with the stationary phase 
al
ulation. Similarly for the L to T 
onversion

using the right hand side of (4.58).

The amplitudes are given by

Z

LL

�

(

(2b

2

R

�




2

L




2

T

a

2

)

2

�

4b

2

R

k

2

L

� i

2


2

L

a

2




2

T

k

L

"

q

a

2

�b

2

R

�

s




2

L




2

T

a

2

�b

2

R

#

�4(b

2

R

�

1

k

2

L

)

q

a

2

�b

2

R

s




2

L




2

T

a

2

�b

2

R

)

�

(2b

2

R

�




2

L




2

T

a

2

)

2

�

4b

2

R

k

2

L

+ i

2


2

L

a

2




2

T

k

L

"

q

a

2

�b

2

R

+

s




2

L




2

T

a

2

�b

2

R

#

+ 4(b

2

R

�

1

k

2

L

)

q

a

2

�b

2

R

s




2

L




2

T

a

2

�b

2

R

)

�1

�

(

(2b

2

R

�




2

L




2

T

a

2

)

2

� 4b

2

R

q

a

2

�b

2

R

s




2

L




2

T

a

2

�b

2

R

)

�

(

(2b

2

R

�




2

L




2

T

a

2

)

2

+ 4b

2

R

q

a

2

�b

2

R

s




2

L




2

T

a

2

�b

2

R

)

�1

; (4.70)



56

Z

LT

� 4b

LT

f2b

2

LT

� a

2

�

2

k

2

T

g

�

(




2

T




2

L

a

2

�b

2

LT

)(a

2

�b

2

LT

)

�

1

4

�

(2b

2

LT

�a

2

)

2

�

4b

2

LT

k

2

T

+ i

2a

2

k

T

"

s




2

T




2

L

a

2

�b

2

LT

v +

q

a

2

�b

2

LT

#

+ 4(b

2

LT

�

1

k

2

T

)

s




2

T




2

L

a

2

�b

2

LT

q

a

2

�b

2

LT

)

�1

� 4b

LT

f2b

2

LT

� a

2

g

�

(




2

T




2

L

a

2

�b

2

LT

)(a

2

�b

2

LT

)

�

1

4

�

(

(2b

2

LT

�a

2

)

2

+ 4b

2

LT

s




2

T




2

L

a

2

�b

2

LT

q

a

2

�b

2

LT

)

�1

; (4.71)

Z

TL

� �4b

TL

f2b

2

TL

�




2

L




2

T

a

2

�

2

k

2

L

g

�

(a

2

�b

2

TL

)(




2

L




2

T

a

2

�b

2

TL

)

�

1

4

�

(2b

2

TL

�




2

L




2

T

a

2

)

2

�

4b

2

TL

k

2

L

+ i

2


2

L

a

2




2

T

k

L

"

q

a

2

�b

2

TL

+

s




2

L




2

T

a

2

�b

2

TL

#

+ 4(b

2

TL

�

1

k

2

L

)

q

a

2

�b

2

TL

s




2

L




2

T

a

2

�b

2

TL

)

�1

� �4b

TL

f2b

2

TL

�




2

L




2

T

a

2

g

�

(a

2

�b

2

TL

)(




2

L




2

T

a

2

�b

2

TL

)

�

1

4

�

(

(2b

2

TL

�




2

L




2

T

a

2

)

2

+ 4b

2

TL

q

a

2

�b

2

TL

s




2

L




2

T

a

2

�b

2

TL

)

�1

; (4.72)

Z

TT

�

(

(2b

2

R

�a

2

)

2

�

4b

2

R

k

2

T

+ i

2a

2

k

T

"

s




2

T




2

L

a

2

�b

2

R

�

q

a

2

�b

2

R

#

�4(b

2

R

�

1

k

2

T

)

s




2

T




2

L

a

2

�b

2

R

q

a

2

�b

2

R

)

�

(2b

2

R

�a

2

)

2

�

4b

2

R

k

2

T

+ i

2a

2

k

T

"

s




2

T




2

L

a

2

�b

2

R

+

q

a

2

�b

2

R

#

+ 4(b

2

R

�

1

k

2

T

)

s




2

T




2

L

a

2

�b

2

R

q

a

2

�b

2

R

)

�1

(4.73)

�

(

(2b

2

R

�a

2

)

2

� 4b

2

R

s




2

T




2

L

a

2

�b

2

R

q

a

2

�b

2

R

)(

(2b

2

R

�a

2

)

2

+ 4b

2

R

s




2

T




2

L

a

2

�b

2

R

q

a

2

�b

2

R

)

�1

;

where the subs
ript R refers to re
e
tion. Note that the o�-diagonal terms Z

LT

and Z

TL

vanish in the 
ase of vanishing angle of impa
t, i.e., b

LT

= 0 and b

TL

=

0, respe
tively. Thus there is no mode 
onversion for normal in
iden
e as is well

known for the in�nite half plane. We see that the 
onstants Z

ij

full�ll relations like

Z

2

TT

+ Z

2

LT

= 1 expressing the unitarity of the s
attering matrix whi
h again re
e
ts

energy 
onservation.

The semi
lassi
al approximation to the se
ond term of the geometri
al 
ontribu-

tion (4.41) at the lower saddles (i.e. with impa
t parameter smaller than the radius)
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orresponding to re
e
tion and refra
tion is
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4.2.3 Di�ra
tive 
ontributions in the Green's fun
tion

We now pro
eed with the �nal 
ontribution to the Green's fun
tion. In the following

we shall put the 
avity radius a = 1. Evaluating the residue integral (4.29)
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(4.75)

Here the sum over l is a sum over poles. The residue in (4.29) is 
al
ulated from
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: (4.76)

We 
al
ulate this ratio using the exponential Debye expansion. As in (4.4) we use

variables q; s. So
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From this we read o� the di�ra
tion matrix in the Rayleigh 
ase
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Similarly we de�ne a di�ra
tion matrix with 
ipped signs in the o�-diagonal elements


orresponding to negative �:
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The exterior \legs" of the Green's fun
tion will be repla
ed as above by their os
il-

lating Debye expansion (4.30). This is valid when k

L

r

0

> k

L

r � k

R

a = �

R

k

T

a, that

is when r �




L




T

a�

R

. Thus for polyethylene r � 3:611a. For shear legs the situation

is less restri
tive with r � �

R

a.

Thus the Rayleigh 
ontribution of (4.75) reads
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We now think of the Cau
hy denominator as

1

1�e

2�i�

=

P

1

n=0

e

i2�n�

. Here � is

evaluated at a Rayleigh pole and the sum represents revolutions of surfa
e waves.

Further the �rst and last line 
orresponds to the usual fa
tors from the points r; r

0

.

Ignoring those i.e. fo
using on the elasti
 potentials we 
an write the four di�erent

types of Rayleigh paths in terms of a 2� 2 matrix
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by introdu
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T-R-T ray

r’ r

Figure 4.2: A shear ray getting di�ra
ted at a 
avity. The dashed lines indi
ates

the geometri
al 
onstru
tion of a redu
ed length from whi
h tangential 
onta
t is

obtained.
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Note that we have end point fa
tors with res
aled lengths (see �g. 4.2) , for example

r

0

=(�

R




L

=


T

). It is as if we send a Rayleigh wave from the 
orresponding res
aled

point r

0

=(�

R




L

=


T

) to hit the 
avity tangentially. This is also seen in the angular

fa
tors. Here the n 
ounts the number of revolutions and the phase obtained from

the 
avity is the one given by the Rayleigh wave number k

R

= �

R

k

T

times the total

length traversed. The e�e
t of the res
aling is that the physi
al orbits do not hit

tangentially. If the res
aling is 
lose to unity the orbits appear to be almost tangential.

This happens e.g. for shear waves 
oupling to Rayleigh waves in polyethylene. Finally

the 
oupling of longitudinal rays to Rayleigh segments is suppressed exponentially by

the 
orresponding fa
tor e

��(�

Ra

;�)

with � given by (4.88) .

For our material in question we 
an say that the 
onne
tion to the 
avity is

almost tangential (about 0.5 per
ent in radians for the orbits later on in the two


avity system).
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Remark: we have not found the roots of the di�ra
tion matrix (4.85) above. This

would be interesting, however, if one want to know the surfa
e �eld for say subsequent

treatment of 
ra
ks at the 
avity.

R�esum�e

The surfa
e resonan
es of one 
avity were studied following [45℄ with emphasis on the

attenuation. Next the Green's fun
tion was investigated by the Sommerfeld-Watson

transformation following [3℄. This lead to a ray pi
ture 
orresponding to 
lassi
al

dynami
s, albeit with in
lusion of surfa
e rays.



Chapter 5

Numeri
s

In this 
hapter we employ the ma
hinery of 
hapter 3 to 
al
ulate resonan
es and the

Wigner delay time, investigating both the modulus and the phase of the s
attering

determinant.

All numeri
al 
al
ulations have been done for polyethylene for whi
h the longitu-

dinal and transversal velo
ities are




L

= 1950m=s and 


T

= 540m=s

as this is a material for whi
h there exist s
attering results for a single 
avity [13℄.

We will state most results in terms of the dimensionless size parameter k

L

a. We have

used the NAG-library in our 
al
ulations.

5.1 One-
avity

I have found a good numeri
al agreement with the resonan
es �rst 
omputed in [13℄.

As my formula (3.41) di�er slightly from those of refs. [19, 18℄ it is a 
omforting


he
k that we �nd the same resonan
es, �g. 4.1. In addition, these authors 
laim

that a family of poles di�erent from the Franz and the Rayleigh poles is present; we


on�rm their 
laim. These unanti
ipated resonan
es are to be asso
iated with the


omplex roots of the Rayleigh equation. However, the large attenuation renders these

pseudo-Rayleigh resonan
es physi
ally uninteresting, and we have not investigated
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them further. We 
an also lo
ate various 
reeping resonan
es of Franz type (longitu-

dinal and transversal) but again we omit those be
ause of their strong attenuation. I

have not studied the phase and time delay for this simple one-
avity 
ase, and have


on
entrated instead on the multi-
avity 
ase to wh
i
h we turn now.

5.2 Multi-
avity

The 
ase of several 
avities was implemented using the formulas derived in Se
t. 3.

The geometry was �xed to R=a = 6: This is the ratio between 
avity 
enters and

the radius of a single 
avity. When the ratio is R=a = 2, the 
avities tou
h and

for smaller ratios the method breaks down. We remark that the 
al
ulation uses a

trun
ation of the exa
t 
luster matrix whi
h stri
tly speaking is in�nite dimensional.

The size of this matrix has to be suÆ
iently big for higher frequen
ies. Empiri
ally

we have found that one should at least use angular momenta of order N � 5(k

L

a)

max

.

This is worse than in the s
alar 
ase where the order N � 1:5(k

L

a)

max

+ � � �. That,

however, is problemati
 sin
e the matrix then involves Hankel fun
tions of very high

order whi
h are hard to 
ompute.

For general shapes the elastodynami
 litterature typi
ally resorts to methods like

�nite and boundary elements. Su
h 
al
ulations are 
arried out for real frequen
ies

(\harmoni
 for
ing"). An independent numeri
al 
he
k of the s
attering determinant

for 
omplex frequen
ies using a method di�erent than the s
attering states would be

reassuring, but has not been performed here.

The high frequen
y limit of the 
luster determinant is atta
ked by studying its


umulants in terms of tra
es (3.52). Currently we work on the �rst 
umulant. Instead

of 
al
ulating the full determinant the tra
es are 
al
ulated numeri
ally and therefore

(3.52) 
an be 
onstru
ted up to desired order.

5.2.1 S
attering resonan
es

Cal
ulations based on theM-matrix formalism derived in 
hapter 3 have been imple-

mented by Andreas Wirzba [3℄. I have in
luded here a plot �g. 5.1 of the s
attering

resonan
es 
al
ulated by Wirzba. These exa
t results are an essential ben
hmark

for gauging the validity of high-frequen
y approximations, just as Wirzba's exa
t

quantum resonan
es were essential for the development of the theory of 
reeping and

�h-
orre
tions for quantum me
hani
s [2℄.
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Figure 5.1: A

1

s
attering resonan
es (A. Wirzba [3℄).
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The resonan
es are found by sear
hing for the zeroes of the 
luster determinant

in the 
omplex k

L

a-plane. There is a very irregular band of resonan
es 
lose to

the real axis, and further down in the 
omplex plane at Im(k

L

a) � �0:29 we have

a regularly spa
ed band. The latter 
orresponds to the shortest geometri
al orbit

boun
ing ba
k and forth between the two 
avities. These resonan
es are des
ribed

to three signi�
ant digits using a 
lassi
al longitudinally polarized periodi
 orbit. We


all this orbit P in the following. In the quantum me
hani
al, s
alar 
ase surfa
e

resonan
es give a 
ompli
ated stru
ture only deep in the 
omplex k

L

a-plane whereas

the regular stru
ture given by the geometri
al orbit 
lose to the real axis dominates

the spe
trum. Thus in elastodynami
s the situation is qualitatively very di�erent.

5.2.2 Time delay

A more dire
t 
al
ulation is the evaluation of the phase of the s
attering determinant

for real frequen
ies. Physi
ally this 
orresponds to a harmoni
 for
ing of the system.

As explained in se
t. 3.6 the s
attering determinant fa
torizes and it suÆ
es to study

the phase of the individual fa
tors. A priori we understand the single 
avity deter-

minant and we 
an therefore fo
us entirely on the multi-
avity determinant. It turns

out that the phase itself shows little variation 
ompared to its derivative whi
h again

is related to the Wigner time delay. This quantity measures the time delay of a wave

pa
ket sent into the s
attering system, see Appendix G.

We have 
al
ulated the derivative of the multi-
avity determinant as a fun
tion of

the size parameter k

L

a, see �g. 5.2 . The plot shows that the delay from the 
luster

attains both positive and negative values : the delay seems to os
illate but not with

a single frequen
y. The main period of os
illation in the representations A

1

and B

1

is bigger than the period for A

2

; B

2

. To investigate the origin of these os
illations we

perform a Fourier transform, and swit
hing to time variables with the 
avity radius a


hosen as 1 
m we obtain the 
orresponding time spe
trum. This is the equivalent of

a length spe
trum in ordinary quantum billiards. Here, however, we have two kinds

of wave ve
tors: longitudinal and transversal of di�erent geometri
al length and the


orre
t quantity to 
onsider is the angular velo
ity !, dual to time. The same 
an

be done for quantum billiards if one knows the wave velo
ity but for theoreti
ally

purposes one works equally well with the length spe
trum.

The striking and en
ouraging result is the agreement between the prominent peaks

and the periods of the periodi
 orbits in the two 
avity system. The times measured


orrespond to the periodi
 orbits in the symmetry redu
ed domain of �g. 5.4. This

fundamental domain is a quarter of the two 
avity system in the sense that by applying
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Figure 5.2: Delay as a fun
tion of frequen
y (delay in units of 2a=


L

): (a) Repre-

sentation A

1

; (b) Representation A
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;(
) Representation B

1

;(d) Representation B

2
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trum with a few orbits indi
ated for the two 
avity system with

a = 1 
m and 
avity distan
e R = 6 
m. Symbols P; S refer to geometri
al orbits.

Curved segments are of Rayleigh type and 
onne
t to transversal geometri
 rays. The

thi
k line 
orresponds to the A

1

-representation; the thin line B

2

.
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Fundamental Domain

1 2

Figure 5.4: The fundamental domain is the shaded area, one quarter of the full

physi
al domain.

the symmetry group C

2v

one tiles the full physi
al domain, see se
t. 3.6. We have

plotted the time spe
trum for two of the four irredu
ible representations of C

2v

. The

other two representations show similar peaks as those shown.

We �nd the shortest orbits using the ray dynami
s derived in 
hapter 4. First

there are the simple geometri
 orbits 
alled P and S and their iterates P

2

; S

2

; � � � .

The P -orbit has a shorter period than the S-orbit and is seen in the representations

A

1

and B

1

. By the inverse Fourier transform this gives a larger period of os
illation

in �g. 5.2. It is worth noting that both the P -orbit and S-orbit have the same

geometri
al orbit and yet they do not seem to o

ur with the same weight in the

representations. Se
ond are the orbits with surfa
e segments whi
h 
an 
ontribute

with multiple revolutions as well. As one 
an see from the de
rease of peak heights,

in 
ontradistin
tion to the quantum 
ase, repeats of geometri
al orbits are far more

inhibited than taking an extra repeat around a 
avity. In general di�erent orbits

may have nearly the same periods; this 
ompli
ates the interpretation of the time

spe
trum. This 
an be investigated by varying system parameters R=a; 


L

=


T

and

improving the resolution by going to higher size parameters k

L

a. We should mention

that we have only 
onstru
ted a few orbits whi
h do not in
lude the longitudinal
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polarization ex
ept for the purely geometri
 orbit. Thus there are many things to

improve on: �nding more orbits and varying the parameters of the system.

The above 
al
ulation of the time delay spe
trum 
an be helpful in the pro-


ess of sear
hing for orbits. However, the real a
hievement is that they explain the

wave-me
hani
al s
attering determinant in terms of 
lassi
al dynami
s. The analysis

demonstrates that the multi-
avity determinant is dominated by phases asso
iated

with periodi
 orbits. Their a
tual amplitudes and the widths of the peaks in the time

delay spe
trum are still under investigation. We mention that the situation is already

understood in the s
alar 
ase. Thus Wirzba [2℄ �nds dire
tly to leading order in the

saddle point expansion for the geometri
al orbits:

DetM = exp

0

�

�

X

p

1

X

r=1

z

rn

p

r

e

ir(

H

p

k�dx+s

p

)

j1� J

r

p

j

1

2

1

A

(5.1)

with s

p

= �n

p

� or 0 for Diri
hlet, respe
tively Neumann boundary 
onditions.

R�esum�e

The resonan
es and the Wigner time delays were found for the two 
avity system

using the multi-
avity determinant Det (M). The irregular frequen
y behavior was

shown to arise from a multitude of periodi
 orbits of the asso
iated high frequen
y

dynami
s.



Chapter 6

Summary and outlook

The ultimate goal of the resear
h undertaken here was to develop a short-wavelength

approximation theory of wave 
haos in elastodynami
s, paralleling the Gutzwiller

semi
lassi
al periodi
 orbit theory of quantal spe
tra of systems whose 
lassi
al dy-

nami
s is 
haoti
.

Following the strategy of Keller's geometri
al theory of di�ra
tion we have 
on-

sidered a system whi
h is a 
ombination of simpler geometries, a system of 
ylindri
al


avities in plane strain elastodynami
s.

For this I have derived the exa
t s
attering determinant and shown its strong

similarity with the 
ase of the s
alar Helmholtz equation as treated in [2℄.

Using re
ent ideas of Wirzba [3℄ we have dis
ussed the high-frequen
y limit of the

Green's fun
tion in the presen
e of a single 
avity. Wirzba in [3℄ treats s
attering

resonan
es, individual 
umulants and the Wigner delay time. In this thesis, however,

I have fo
used on the Wigner delay and the 
orresponding time spe
trum.

The �rst unexpe
ted result is that a system of only two 
avities in elastodynami
s

has a 
haoti
 ray dynami
s 
ontrary to the s
alar 
ase. This fa
t is due to the ap-

parently harmless but experimentally prefered boundary 
ondition whi
h fa
ilitates

an in�nity of unstable periodi
 orbits of 
reeping nature. Remarkably, the 
reeping

of Rayleigh type is only slightly attenuated for high frequen
ies. For the s
alar sys-

tems studied previously the in�nity of orbits have been of bulk nature and all other

orbits of 
reeping type have been strongly suppressed. The se
ond feature has been

the diÆ
ulty to extend the high frequen
y theoreti
al treatment to low frequen
ies


ompared with the su

ess of Franz 
reeping rays in the s
alar 
ase.
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In 
ollaboration with Predrag Cvitanovi�
, Gabor Vattay, Gergely Palla, Carl P.

Dettmann and Andr�e Voros [30, 39℄ part of my Ph.D. work has also been to investigate

high order noise 
orre
tions for sto
hasti
 dynami
al systems. This line of resear
h

aims to improve periodi
 orbit theory in sto
hasti
 and wave systems by in
luding


orre
tions to the 
lassi
al 
ontribution [43, 37, 28, 29℄. Methods to 
al
ulate many


orre
tions and to understand their asymptoti
s using resurgen
e have been a
hieved.

These developments have not been reported in this thesis.

6.1 What is new in this thesis

We have developed a numeri
al method to 
al
ulate the s
attering determinant for

�nitely many 
ylindri
al 
avities in an elasti
 medium. We have applied these meth-

ods spe
i�
ally to plane strain elastodynami
s with free boundary 
onditions. The

multiple s
attering wave problem has a ray approximation whi
h in
ludes surfa
e rays

of Rayleigh type. These are of major importan
e also at high frequen
ies 
ontrary

to previous work in quantum 
haos on the s
alar Helmholtz equation. It appears

diÆ
ult to extend the high-frequen
y approximation to also lower frequen
ies as for

the Franz 
reeping rays. Now already the two 
ylindri
al 
avity system has an in�nite

number of orbits and is in that sense 
haoti
. From the spe
tral fun
tion 
onstru
ted

a few periodi
 orbits have dire
tly been identi�ed.

6.2 Outlook

First we should �nish the high-frequen
y treatment of the two-
avity system. With

this we mean to 
al
ulate all higher tra
es of the 
orresponding Fredholm determinant

and thereby establish as in the s
alar 
ase the spe
i�
 form of a zeta fun
tion. To

prove Fredholm properties would imply the shadowing results previously obtained in

s
alar quantum me
hani
s and 
lassi
al hyperboli
 systems; in parti
ular in elasto-

dynami
s also for the important surfa
e orbits. The next step would be to study the

three 
avity system or higher, sin
e there wave splitting would be more present.The

wave splitting seems to be suppressed for the two 
avity system. The reason is that

most 
onversions happen at normal in
iden
e and hen
e are inhibited. For 
ertain

geometries one should also expe
t interesting 
ontributions from penumbra e�e
ts

and its generalization in the wave splitting 
ase: at 
riti
al in
iden
e angles a longi-

tudinally polarized ray 
onverting to a transversally polarized glan
ing the boundary.
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Further it would be interesting to extend the ray des
ription of Rayleigh waves to

lower frequen
ies in parti
ular with respe
t to their attenuation. The 
ase where the


avities almost tou
h would be interesting too and require full knowledge of all the

various wave types in elastodynami
s. More general methods both theoreti
al and

numeri
al also working for anisotropi
 materials would be of interest. For instan
e

single 
rystal quartz whi
h is anisotropi
 has a higher Q-value than the isotropi
 fused

quartz.

As the reader may have noti
ed there are plenty of possible extensions and ap-

pli
ations of this work just in the �eld of elastodynami
s. Other wave problems in

opti
s, piezo-ele
tri
ity and bandgap stru
tures would similarly bene�t from an un-

derstanding of the underlying 
lassi
al stru
ture. However, one should also 
ontinue

to expand the general framework of periodi
 orbit theory. By using say symboli


dynami
s to deal with the whole 
olle
tion of periodi
 orbits in a system it has been

possible to understand in a very elegant way a host of spe
tral problems: 
lassi
al,

quantum, sto
hasti
 and now also 
oming elastodynami
s. Likewise it will be impor-

tant to understand in parti
ular how to treat systems with mixed phase spa
e, not

just for a pra
titioner in one �eld but also for many other domains.



Appendix A

Counting elasti
ity tensor

parameters

A short dis
ussion 
an be found in [17℄. The 4-tensor 


iklm

is 
alled the elasti
ity

tensor and be
ause of the symmetries of the strain �eld we see that it e�e
tively 
an

be des
ribed by a 4-tensor with the following symmetries:




iklm

= 


kilm

= 


ikml

= 


lmik

: (A.1)

Here the symmetries are with respe
t to ex
hange of the indi
es in one of the pairs

(12) respe
tive. (34), and �nally ex
hange of the pair (12) with the pair (34). By a


ounting argument it is not diÆ
ult to see that this gives in general 21 independent


omponents of the elasti
ity tensor. First be
ause of the ex
hange symmetry in

ea
h pair one labels (Voigt notation) ea
h type of pair with a number from 1 to 6:

xx=1,yy=2,zz=3,yz=4, xz=5, xy=6. There are indeed

3(3+1)

2

= 6 labelings. Se
ond

be
ause of the symmetry of the ex
hange of pair (12) with (34) we will have say




25

= 


52

: So using exa
tly the same argument as the �rst we �nd

6(6+1)

2

= 21 di�erent


omponents. If other symmetries are present the number of 
omponents be
omes

further redu
ed. Let us now 
onsider the important 
ase of an isotropi
 medium.

Suppose we transform to 
oordinates:

x

0

i

= O

j

i

x

j

; (A.2)
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where O

j

i

are the 
omponents of an orthogonal matrix. This 
orresponds to a rotation

plus perhaps a re
e
tion (depending on the sign of Det(O) = �1). The elasti
 tensor




ijkl

transforms as follows:




0

ijkl

= 


ab
d

O

a

i

O

b

j

O




k

O

d

l

: (A.3)

In an isotropi
 body we demand that any tensor should be invariant under or-

thogonal transformations, hen
e a
tually




ijkl

= 


ab
d

O

a

i

O

b

j

O




k

O

d

l

: (A.4)

As an example of su
h a tensor we mention the identity transformation as an invariant

2-tensor:

Æ

0

rs

= Æ

ab

O

a

r

O

b

s

= O

a

r

O

a

s

= Æ

rs

; (A.5)

sin
e the rows are orthonormal in an orthogonal matrix. Using this tensor as a

building blo
k we arrive at the following isotropi
 
andidate :




rsmn

= � Æ

rs

Æ

mn

+ � Æ

rm

Æ

ns

+ � Æ

rn

Æ

sm

: (A.6)

Further all isotropi
 4-tensors have this form [44℄. Then we invoke the symmetries of

the elasti
ity tensor to redu
e the above expression: By the symmetry of the last two

indi
es, 


rsmn

= 


rsnm

:

� Æ

rs

Æ

mn

+ �Æ

rm

Æ

ns

+ � Æ

rn

Æ

sm

= � Æ

rs

Æ

nm

+ � Æ

rn

Æ

ms

+ � Æ

rm

Æ

sn

(A.7)

we 
on
lude that � = �: With this adjustment all the other symmetries a
tu-

ally hold. The elasti
ity tensor in the isotropi
 
ase therefore only depends on 2

parameters:




ijkl

= � Æ

ij

Æ

kl

+ � (Æ

ik

Æ

jl

+ Æ

il

Æjk): (A.8)



Appendix B

Green's fun
tion using s
attering

states

For a derivation of the fundamental solution in both 2 and 3 dimensions see [27℄.

B.1 Asymptoti
 behavior at in�nity

We shall utilize the boundary relations expressing orthogonality of the wave fun
tions:

Z

�

1

( 

+

l

� t( 

��

m

)� t( 

+

l

) �  

��

m

) dS = 8 i � !

2

Æ

lm

and likewise

Z

�

1

( 

�

l

� t( 

^�

m

)� t( 

�

l

) �  

^�

m

) dS = 4 i � !

2

Æ

lm

:

This suggests we put

G

�

=

1

4i�!

2

X

n

 

+

n

(r

>

)
  

^�

n

(r

<

) :

77



78

Thus for a suÆ
iently large dis
 
 of radius R (�
 = �

1

):

Z

�

(�

�

+ �!

2

)(G

�

) �  

�

dV = lim

R!1

Z




�

(�

�

+ �!

2

)(G

�

) �  

�

dV;

where  is any (regular) basis fun
tion.

Betti's third theorem now gives

Z




�

(�

�

+ �!

2

)(G

�

) �  

�

dV =

Z




�

(�

�

+ �!

2

)(G

�

) �  

�G

�

� (�

�

+ �!

2

)( )

�

dV

=

Z




(�

�

(G

�

) �  �G

�

��

�

( )) dV

=

Z

�

1

(t(G

�

) �  �G

�

� t( )) dS

=  :

Here we used that we 
an add

R

((�

�

+ �!

2

)( ) �G

�

) dV sin
e  is regular and

annihilated by �

�

+�!

2

and at the last equality sign orthogonality at in�nity. Hen
e

(�

�

+ �!

2

)G

�

= Æ on regular basis fun
tions, i.e. like a delta fun
tion kernel. Thus

G

�

is a 
andidate for a Green's fun
tion.

B.2 Derivation using transverse gradient

Let us in the following put�r = r

2

� r

1

. Assume r

>

= r

2

and r

<

= r

1

. The gradient

will be r = r

2

= r

>

.

First noti
e that:

G(�r) =

1

4i�!

2

�

(k

2

T

1+r
r)H

(1)

0

(k

T

�r)�r
rH

(1)

0

(k

L

�r)

�

: (B.1)

Se
ond that (A. Wirzba):

(k

2

T

1+r
r)H

(1)

0

(k

T

�r) = �(r� ẑ)
 (r� ẑ)H

(1)

0

(k

T

�r) : (B.2)
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This 
an be seen in Cartesian 
omponents (and hen
e in all other 
oordinate systems)

as follows:

�(r� ẑ)
 (r� ẑ)

af

H

(1)

0

(k

T

�r) = ��

ab


�

b

z




�

fgh

�

g

z

h

H

(1)

0

(k

T

�r)

= ��

ab3

�

b

�

fg3

�

g

H

(1)

0

(k

T

�r) ; (B.3)

whi
h in matrix form is

�

��

2

2

�

1

�

2

�

1

�

2

��

2

1

�

H

(1)

0

(k

T

�r) : (B.4)

Now the statement (B.2) holds i�:

�

��

2

2

�

1

�

2

�

1

�

2

��

2

1

�

H

(1)

0

(k

T

�r) =

�

k

2

T

�

1 0

0 1

�

+

�

�

2

1

�

1

�

2

�

1

�

2

�

2

2

��

H

(1)

0

(k

T

�r):

(B.5)

Here the non-diagonal elements are identi
al and the diagonal elements are the same

i�:

(� + k

2

T

)H

(1)

0

(k

T

�r) = 0 : (B.6)

This, however, is known from s
attering theory.

Summarizing we get:

G(�r) =

1

4i�!

2

�

�

�(r� ẑ)
 (r� ẑ)H

(1)

0

(k

T

�r)� (r
r)H

(1)

0

(k

L

�r)

�

:(B.7)
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Next we de
ompose the Hankel fun
tion using again results from the s
alar 
ase:

G

s
alar

(�r) =

1

4i

H

(1)

0

(k�r)

=

1

4i

1

X

m=�1

J

m

(kr

<

)H

(1)

m

(kr

>

)e

�im��

; (B.8)

with �� = �

2

� �

1

:

Sin
e the gradient a
ts on a fun
tion of �r we 
an trade o� r = r

>

= �r

<

:

Hen
e we 
an also de
ompose the di�erential operator in the ve
tor 
ase su
h that

the part with r

>

a
ts on r

>

et
. :

G(�r) =

1

4i�!

2

1

X

m=�1

r

<

(J

m

(k

L

r

<

)e

�im�

<

)
r

>

(H

(1)

m

(k

L

r

>

)e

im�

>

)

+ (r

<

� ẑJ

m

(k

T

r

<

)e

�im�

<

)
 (r

>

� ẑH

(1)

m

(k

T

r

>

)e

im�

>

)

=

1

4i�!

2

X

n

 

^�

n

(r

<

)
  

(+)

n

(r

>

) : (B.9)

The last equality sign is by de�nition of the basis fun
tions. Here n is a multi index

des
ribing the angular momentum and the polarization.



Appendix C

Translation matri
es and their


omposition

The following 
on
epts are introdu
ed for pra
ti
al 
onvenien
e. Several times we


onsider the normal modes in new 
oordinate systems. Physi
ally this 
orresponds

to a unitary transformation.

To write a normal mode of a given polarization (wave ve
tor k) in system S 2

fj; j

0

; Gg to a dis
 system j we �nd from the addition theorem for Bessel fun
tions:

 

(Z)

n

(X

(S)

) =

X

l

T

(Z)Sj

nl

 

^

l

(X

(j)

) ; (C.1)

where Z 2 f^;+;�g and

T

(Z)Sj

nl

= (�1)

l

Z

n�l

(kR

Sj

) e

i(n�

(S)

j

�l�

(j)

S

)

(C.2)

with

Z

n

=

8

>

<

>

:

J

n

for Z = ^

H

(1)

n

for Z = (+)

H

(2)

n

for Z = (�)

: (C.3)
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Here R

Sj

indi
ates the distan
e between the origins of the two 
oordinate systems.

Typi
ally one 
hooses the angle of the global 
oordinate system in any of the lo
al

systems to be equal �:

�

(j)

G

= �: (C.4)

From any system to the global system G:

 

(Z)

n

(X

(S)

) =

X

l

T

(Z)SG

nl

 

(Z)

l

(X

(G)

) ; (C.5)

where

T

(Z)SG

nl

= (�1)

l

J

n�l

(kR

S

) e

i(n�

(S)

j

�l�

(j)

S

)

: (C.6)

Also 
omposition is possible e.g.:

T

+jG

� T

^Gj

= 1 (C.7)

and

T

+jG

� T

^Gj

0

= T

^jj

0

: (C.8)



Appendix D

Cal
ulation of boundary integrals

Below we shall suppress the polarization indi
es. Thus in some 
ases \ l" may refer

to angular momentum l and either pressure or shear and is thus a multi-index. B

m

does not 
arry a polarization index whereas a

m

;  

l

and T

nl

do. Finally the 
ondensed

matrix representation uses the bra
kets [℄.

I

j

j

:

I

j

j

=

Z

�

j

ds u(s) � t(G(s;X

(j)

))

=

1

4i�!

2

Z

�

j

ds

X

m;l

B

(j)

m

e

im�

� t( 

(+)�

l

(s)) 

^

l

(X

(j)

)

=

�a

j

2i�!

2

X

l

B

(j)

l

� t( 

(+)�

l

(a

j

; � = 0)) 

^

l

(X

(j)

)

=

�a

j

2i�!

2

B

(j)

l

� [t( 

(+)�

l

(a

j

))℄ � [ 

^

l

(X

(j)

)℄

t

: (D.1)

Above the reader may put l = (l �) on the se
ond and third line. Here we used the

dyadi
 form of the Green's fun
tion. We noti
e that we 
an put the \�" on either

the regular or the outgoing part of the Green's tensor. The tra
tion operator must

a
t on the outgoing part (C. Chandre: jXj = r

<

, sin
e X is just inside the 
avity

). Next we 
an integrate over the boundary using the orthonormality of the Fourier

basis giving a fa
tor 2�a

j

Æ

lm

.
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I

j

j

0

:

Now the tra
tion operator, t = t

s

, has to a
t on the regular part. This is be
ause

the point at the dis
 j, X

(j)

, 
an be assumed further away than the initial integration

point s = s

(j

0

)

as seen from the dis
 j

0

. That is r

<

= s in the regular part.

I

j

j

0

=

Z

�

j

0

ds u(s) � t(G(s;X

(j

0

)

))

=

1

4i�!

2

Z

�

j

0

ds

X

m;l

B

(j

0

)

m

e

im�

� t( 

(^)�

l

(s)) 

+

l

(X

(j

0

)

)

=

�a

j

0

2i�!

2

X

l;n

B

(j

0

)

l

� t( 

^�

l

(a

j

0

; �

0

= 0))T

+j

0

j

ln

 

^

n

(X

(j)

)

=

�a

j

0

2i�!

2

B

(j

0

)

l

� [t( 

^�

l

(a

j

0

))℄ � T

+j

0

j

ln

� [ 

^

n

(X

(j)

)℄

t

: (D.2)

Above the reader may put l = (l �) n = (n �) on the se
ond and third line. For

the third equality we applied a translation operator. Thus if the (multi-) index


orresponds to a pressure state:

T

+Pj

0

j

ln

= (�1)

n

H

(1)

l�n

(�R

j

0

j

)e

i(l�

(j

0

)

j

�n�

(j)

j

0

)

: (D.3)

I

j

1

:

Inserting the expansion at in�nity and the Green's fun
tion we get

I

j

1

=

Z

�

1

ds (u(s) � t(G(s;X

(G)

))� t(u(s)) �G(s;X

(G)

))

=

1

8i�!

2

X

i;l

a

i

Z

�

1

ds ((Æ

il

 

(�)
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+ S

il

 

(+)

l

)(s) � t( 

(+)�

l
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�((Æ
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t( 

(�)

l

) + S

il
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(+)

l

))(s) �  

(+)�

l

(s)) 

^

l

(X

(G)

))
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X

i

a
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^

i

(X

(G)

)

=

X

i;l

a

i

T

^Gj
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^

l

(X

(j)

)

= a

i

� T

^Gj

il

� [ 

^

l

(X

(j)

)℄

t

: (D.4)
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For this situation s = r

>

and therefore the tra
tion has to a
t on the outgoing part.

Orthogonality at in�nity was used at the third equality sign.

I

r

j

:

The 
al
ulation is similar to I

j

j

0

. Here the �nal point goes to in�nity so X

(j)

= r = r

>

whereas s = r

<

. However, now we just translate to the global 
oordinate system in

the end.

I

r

j

=

Z

�

j

ds u(s) � t(G(s;X

(j)

= r))

=

1

4i�!

2
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j
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e
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+
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(j)

)

=
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� t( 
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2i�!

2

B

(j)

l

� [t( 

^�

l
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: (D.5)

I

r

1

:

Here the 
al
ulation is just like I

j

1

. The only simpli�
ation is that we do not translate

in the end to the j-system but stay in the global system.

I

r

1

=

Z

�

1

ds (u(s) � t(G(s;X

(G)

))� t(u(s)) �G(s;X
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: (D.6)
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Assembly of the M-matrix :

First we have the relationship

I

j

1

� (I

j

j

+

X

j

0

6=j

I

j

j

0

) = 0 (D.7)

among dis
s. The di�eren
e in signs 
ome from the boundary normal ve
tor being

opposite. In
luding all indi
es we get in the basis of  

^

:

X

l�

a

l�

T

^Gj

l�;n�

=

�a

j

2i�!

2

X

l�

B

(j)

l

� t( 

(+)�

l�

(a

j

; � = 0))Æ

l�;n�

+

X

j

0

6=j

�a

j

0

2i�!

2

X

l�

B

(j

0

)

l

� t( 

^�

l�

(a

j

0

; �

0

= 0))T

+j

0

j

l�;n�

: (D.8)

That is

a

l

� T

^Gj

ln

=

�a

j

2i�!

2

Æ

ln

B

(j)

l

� [t( 

(+)�

l�

(a

j

))℄

+

X

j

0

6=j

�a

j

0

2i�!

2

X

l�

B

(j

0

)

l

� [t( 

^�

l

(a

j

0

))℄ � T

+j

0

j

ln

: (D.9)

In the above the tra
tion t as the boundary data B refer a
tual physi
al ve
tors

and hen
e are 
oordinate free. We now write everything in say global 
oordinates.

Normalizing gives us a matrix equation:

a �C

j

=

X

j

0

B

j

0

�M

j

0

j

(D.10)

with

M

jj

0

na;lb

= Æ

jj

0

Æ

ln

Æ

ab

+ (1� Æ

jj

0

)

�

a

j

a

j

0

X

�;�2fP;Sg

([t( 

^�

n�

)(a

j

)℄ �T

+jj

0

n�;l�

� [t( 

+�

l�

(a

j

0

)℄

�1

)

ab

: (D.11)

The next 
hapter explains further the [t( )℄-terms.



Appendix E

Tra
tion matri
es

In the a
tual 
al
ulation of the tra
tion of the basis fun
tions we use polar 
oordinates.

Therefore we use the 
ovariant derivative. In these 
oordinates the basis ve
tors no

longer are 
onstants:

rr̂ =

1

r

^

�

^

� (E.1)

r

^

� = �

1

r

r̂

^

� : (E.2)

whereas on fun
tions

rf = �

r

f r̂+

1

r

�

�

f

^

� : (E.3)

For a displa
ement �eld u the tra
tion on a 
ir
ular boundary (r̂ = n) is:

t = � � r̂ = (�r � u1 + �(ru+ ur)) � r̂ ; (E.4)

with 1 = r̂ r̂+

^

�

^

�.
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Assuming the displa
ement �eld given by potentials u = r� + r � (ẑ ) the

tra
tion ve
tor is found after some 
al
ulation to be

t =

�

�

rr

�

r�

�

=

0

�

���+ 2�(

�

2

�

�r

2

+ �

r

(

1

r

�

�

 ))

�(2(

�

r

�

�

�

r

�

�

�

�

r

2

) +

�

2

 

��

2

r

2

� r�

r

(

1

r

�

r

 ))

1

A

: (E.5)

Next we use partial waves as pressure and shear potentials. Cal
ulating for an out-

going state with angular dependen
e e

�im�

using re
urren
e relations for the Bessel

fun
tions [35℄:

[t( )

+�

m

℄ =

�

t(P

m

)

+�

r

t(S

m

)

+�

r

t(P

m

)

+�

�

t(S

m

)

+�

�

�

=

2�

a

2

(E.6)

�

 

(m

2

+m�

1

2

a

2

�

2

)H

(1)

m

(a�)� a�H

(1)

m�1

(a�) im((m+ 1)H

(1)

m

(a�)� a�H

(1)

m�1

(a�))

im((m+ 1)H

(1)

m

(a�) � a�H

(1)

m�1

(a�)) a�H

(1)

m�1

(a�)� (m

2

+m�

1

2

a

2

�

2

)H

(1)

m

(a�)

!

:

Here we have posed � = 0 in the end. In [t( 

m

)℄ = [t( 

m

)

a�

℄

a2fr;�g;�2fP;Sg

has a

spatial index a and a polarization index �.

This 
an also be expressed in terms of the derivative of a Hankel fun
tion as

follows:

[t( )

+�

m

℄ =

2�

a

2

�

 

(m

2

�

1

2

a

2

�

2

)H

(1)

m

(a�)� a�H

(1)

0

m

(a�) im(H

(1)

m

(a�)� a�H

(1)

0

m

(a�))

im(H

(1)

m

(a�)� a�H

(1)

0

m

(a�)) a�H

(1)

0

m

(a�)� (m

2

�

1

2

a

2

�

2

)H

(1)

m

(a�)

!

:

(E.7)

Thus 
hanging m ! �m gives a besides a fa
tor (�1)

m

also a sign 
hange on the

o�-diagonal elements.



Appendix F

Symmetry fa
torization

We shall use the presen
e of a symmetry group to redu
e the 
al
ulation of the spe
tral

determinants into fa
tors ea
h belonging to irredu
ible representations.

Thus for two 
avities of equal size the the symmetry group is that of a re
tangle

C

2v

whereas three-
avities aranged in an equilateral triangle will obey C

3v

-symmetry.

These symmetries will be re
e
ted on the level of the spe
trum for the s
attering

matrix. The former de
omposes into parts belonging to irredu
ible representations

for the group. The 
hara
ter table is given by table 3.1.

We shall assume the 
avities symmetri
ally arranged with respe
t to a given origo.

For the two 
avity system we assume the 
enters on the x-axis. Furthermore the


avity-radii are equal (= a). For the group 
onsidered there is one rotation and two

re
e
tions. The rotation C

2

will be around the global point of 
enter whereas the

re
e
tions �

i

will be along the 
oordinate axes.

The translation matrix from one 
avity to another will have the form:

[T

+12

ml

℄ = (�1)

m

 

H

(1)

m�l

(�R) 0

0 H

(1)

m�l

(�R)

!

� (�1)

m

[T

m�l

℄

The ve
torial boundary data will transform under the symmetry group. With
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respe
t to re
e
tions along the x-axis we �nd

B

m

e

im�

7! B

m

� �

z

e

�im�

:

Here

�

z

=

�

1 0

0 �1

�

is a Pauli-matrix and B the 
oordinates of the ve
tor data.

Symmetrizing the expansion of the wave fun
tion u with respe
t to �

x

:

u =

X

m

1

2

�

B

m

e

im�

� B

m

� �

z

e

�im�

�

�

X

m

b

m

e

im�

; (F.1)

where in general

b

(1)

�m

= �(�

x

) b

(2)

m

� �

z

= � b

(1)

m

� �

z

(F.2)

with e.g. plus for a symmetri
 
on�guration.

Likewise the a
tion of C

2

allows us to relate boundary data on di�erent 
avities:

b

(2)

m

= �(C

2

) b

(1)

m

: (F.3)

To 
al
ulate the inter-
avity matrix we use (3.4) and 
al
ulate the boundary integrals

I

j

j

and I

j

j

0

with j

0

6= j . We remark that we do not have to 
onsider the boundary

at in�nity. The results will be sums over basis fun
tions. Let us assume the �nal


avity, j = 2. We shall 
al
ulate the 
oupling of the boundary data with index m to

the displa
ement �eld basis ve
tor of index l. We 
onsider the main 
ase with l; m

positive using the results of 
hapter D:
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From the opposite 
avity, 
avity 1:

b

1

m

� [t

1^

m

℄ � [T

ml

℄ � [ 

2

l

℄

t

:

From the opposite 
avity with negative angular momentum:

b

1

�m

� [t

1^

�m

℄ � [T

�ml

℄ � [ 

2

l

℄

t

:

From itself

b

2

m

� Æ

lm

[t

2+

l

℄ � [ 

2

l

℄

t

:

Here we have omitted � in the tra
tion matri
es. To reverse the order in the tra
tion

matrix m := �m gives besides (�1)

m

also a minus sign in the o�-diagonal elements.

The a
tion of 
ipping these elements 
an be obtained as follows:

t 7! �

z

� t � �

z

: (F.4)

The 
oeÆ
ient from the 
avities of the basis fun
tion with index l > 0 be
omes:

(�1)

m

[t

1^

m

℄ � T

m�l

+ (�1)

(l+m)

�

z

� (�

z

� [t

1^

m

℄ � �

z

) � T

m+l

+ [t

2+

l

℄Æ

lm

: (F.5)

By dividing and using �

2

z

= 1 we �nd the inter-
avity matrix (3.50):

Æ

lm

+ (�1)

m

�(C

2

) [t

1^

m

℄ �

�

T

m�l

+ �(�

x

) (�1)

l

T

m+l

� �

z

�

� [t

2+

l

℄

�1

; (F.6)

sin
e in 
oordinates [t

2+

l

℄ = [t

1+

l

℄ = [t

+

l

℄ and likewise for [t

1^

l

℄.

We remark that if we had aligned the 
avities along the y-axis we would have

the 
hara
ter of �

y

instead. Therefore there is a 
ertain ambiguity between the B

i

-

representations whi
h are symmetri
 along one axis and anti-symmetri
 along another.

The A

i

-representations, however, are either fully symmetri
 or fully anti-symmetri


and the results for these are independent of the alignment of the 
avities. For (3.50) in

the main text we use �

1

= �(C

2

) and �

2

= �(�

x

) 
orresponding to x-axis alignment.



Appendix G

Wigner's time delay

Below we shall dis
uss the delays of wave pa
kets for the two-
avity s
attering system.

G.1 Delay of plane wave

This so-
alled Wigner delay is de�ned as

d(k) =

d

dk

Arg (Det (S(k)))

= �i

d

dk

log (Det (S(k))

= �iTr

 

S

y

(k)

dS

dk

(k)

!

(G.1)

and 
an be shown to equal the total delay of a wave pa
ket in a s
attering system

[46, 47℄. We shall review this fa
t below.

A related quantity is the total s
attering phase shift �(k) de�ned as

detS(k) = e

+i�(k)

;

so that d(k) =

d

dk

�(k).
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The time delay may be both positive and negative, re
e
ting attra
tive respe
-

tively repulsive features of the s
attering system.

To elu
idate the 
onne
tion between the s
attering determinant and the time delay

we study a plane wave:

The phase of a wave pa
ket will have the form:

� =

~

k � ~x� ! t (+�) :

Here the term in the parenthesis refers to the phase shift that will o

ur if s
attering

is present. The 
enter of the wave pa
ket will be determined by the prin
iple of

stationary phase:

0 = d� = d

~

k � ~x� d! t (+ d�) :

Hen
e the pa
ket is lo
ated at

~x =

�!

�

~

k

t

 

�

��

�

~

k

!

:

The �rst term is just the group velo
ity times the given time t. Thus the the pa
ket

is retarded by a length given by the derivative of the phase shift with respe
t to the

wave ve
tor

~

k. The arrival of the wave pa
ket at the position ~x will therefore be

delayed. This time delay 
an similarly be found as

�(!) =

��(!)

�!

:

To show this we introdu
e the slowness of the phase ~s =

~

k=! for whi
h ~s � ~v

g

= 1,

where ~v

g

is the group velo
ity to get

d

~

k � ~x = ~s � ~x d! =

x

v

g

d! ;
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sin
e we may assume ~x is parallel to the group velo
ity (
onsistent with the above).

Hen
e the arrival time be
omes

t =

x

v

g

 

+

��(!)

�!

!

:

If the s
attering matrix is non-diagonal one next interprets

�t

ij

= Re(�i S

�1

ij

�S

ij

�!

) =: Re(

��

ij

�!

)

as the delay in the j'th s
attering 
hannel after an inje
tion in the i'th. The proba-

bility for appearing in 
hannel j goes as jS

ij

j

2

and therefore the average delay for the

in
oming states in 
hannel i is

< �t

i

> =

X

j

jS

ij

j

2

�t

ij

= Re(�i

X

j

S

�

ij

�S

ij

�!

)

= Re(�iS

y

�

�S

�!

)

ii

= (�iS

y

�

�S

�!

)

ii

;

where we have used the derivative, �=�!, of the unitarity relation S � S

y

= 1 valid for

real frequen
ies. This dis
ussion 
an in parti
ular be made for wave pa
kets related to

partial waves and superpositions of these like an in
oming plane wave 
orresponding

to free motion (3.14). The total Wigner delay therefore 
orresponds to the sum over

all 
hannel delays (G.1).

G.2 Ex
ess level density

For another interpretation of the Wigner Delay [2, 7℄, 
onsider the Krein-Friedel-

Lloyd formula in terms of the wave number:

ImTr (S

y

�

�S

�k

) = 2� (g(k)� g

0

(k)) =: 2��g(k)
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whi
h expresses the 
hange of level density g(k) from a free system to a system with a

potential. In our 
ase the perturbation 
omes from the 
avities. The right hand side

of the above is 
al
ulated in the limit of an en
losing box going to in�nity, followed

by taking the limit k � k + i�! k for � ! 0+. This result is also referred to as the

spe
tral shift theorem.

G.3 Cluster delay and symmetries

As we have shown, the total s
attering determinant fa
torizes into a produ
t of the

individual single 
avity s
attering determinants and an inter-
avity or 
luster deter-

minant. Ea
h of these fun
tions will 
ontribute to the total phase shift additively.

The single 
avity is already understood and its 
ontribution 
an be taken out, both

theoreti
ally and experimentally. The latter is a
hieved by measuring the phase shift

for single 
avities before the multi-
avity 
ase is 
onsidered. We emphasize that in

the following we study the delay from the 
luster and not the total delay. In our res-

onan
e sear
h in the 
omplex k

L

a-plane we fo
used on the modulus of this fun
tion

(poles ). By studying the Wigner time delay, however, the emphasis is on the phase.

The e�e
t of a symmetry group will be the following: The total time delay 
an be

written as a sum over delays for the irredu
ible representations (
ounted with their

multipli
ities). This follows from above sin
e the s
attering determinant will fa
torize

over ea
h irredu
ible representation.

Experimentally one 
an measure the total phase shift and hen
e 
al
ulate the

time delay. Further one 
an measure the phase shift and time delay for ea
h of the

irredu
ible representations by pla
ing dete
tors and/or transmitters symmetri
ally.

For the two 
avity system it suÆ
es to perform the measurements with say one

transmitter and four re
eivers. One measures the response (amplitude and phase) at

the four symmetri
ally positioned re
eivers. Next, one 
onstru
ts the response at a

given dete
tor for a symmetrized in
oming wave pa
ket. Using the already measured

�elds this response 
an be found by applying the 
orresponding symmetry operations

on the �elds. Finally the phase shift at the given point is extra
ted.

Numeri
ally we have a

ess to the symmetry redu
ed phase shift and in our 
al-


ulation we present the asso
iated delay for ea
h irredu
ible representation. Using

the formula above we approximate the derivative with a 
entered di�eren
e. In 
hap-

ter 5 we have shown plots for ea
h irredu
ible representation where the abs
issa is

the longitudinal size parameter k

L

a and the ordinate the delay.



Appendix H

Ray matri
es

H.1 Refra
tion and re
e
tion

We 
onsider a ray in
ident on a surfa
e �g. 2.2. The outgoing ray has in general a

di�erent angle of in
iden
e as des
ribed by Snell' s law. We investigate the result of

a variation of the in going wave in order to �nd the 
orresponding di�erential. For

de�niteness we think of an in
oming S-wave refra
ting to a P-wave.

Some notation: We use the index \�" to des
ribe the in
oming wave and \+" the

outgoing. The dire
tion of the waves are given by a unit ve
tor e and the normal of

the surfa
e is given by a unit ve
tor n: The linear operation of rotating 90

Æ


ounter-


lo
kwise ve
tors is denoted by a \
e
h" , e.g.. �n is now a ve
tor lying in the tangent

plane of the surfa
e. The dire
tion of the wave is now parametrized by some angle,

i.e..

e =

�


os(�)

sin(�)

�

(H.1)

and therefore a variation of the dire
tion is

de =

�

� sin(�)


os(�)

�

d� = �e d� : (H.2)
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^

dx

e

dz
a

a

Figure H.1: The shadow of the transverse displa
ement on the boundary

A variation in the transverse dire
tion of the ray will be des
ribed by the ve
tor

dz = dz �e : (H.3)

By 
onsidering �g. H.1 it is 
lear that this variation is related to a variation of

the point of in
iden
e on the boundary (i.e.. a tangent ve
tor ) dx in the following

way (dyadi
 notation):

�e�e � dx = dz : (H.4)

Thus dz = �e � dx: Sin
e dx is a tangent ve
tor we have

dx = �n(�n � dx) (H.5)

implying

dz = �e � �n(�n � dx) = (e � n)(�n � dx) : (H.6)
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R

n

Figure H.2: Lo
al 
urvature

Thus

dx = �n

dz

(n � e)

: (H.7)

The 
hange in the normal ve
tor is given by

dn =

dx

R

; (H.8)

where R is the lo
al radius of 
urvature :

Therefore

dn = �n

dz

(n � e)R

: (H.9)

This gives

dz

+

=

(n � e

+

)

(n � e

�

)

dz

�

= �


os(�

+

)


os(�

�

)

dz

�

: (H.10)

Furthermore

d�n = �n

dz

(n � e)R

; (H.11)
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sin
e

�

�a = �a for any ve
tor a:

Let us derive Snell's law. The proje
ted slowness on the border has to be 
on-

served, i.e..

�n�n � s

�

= �n�n � s

+

; (H.12)

where the slowness ve
tor is

s = s e : (H.13)

Thus

(�n � e

�

)s

�

= (�n � e

+

)s

+

(H.14)

or when expressed in terms of angles

sin(�

+

)

sin(�

�

)

=

v

+

v

�

; (H.15)

where v

�

is the velo
ity.

Varying the proje
ted slowness and using the expression for d�n we �nd

d((�n � e) s) = (�

dz

R

+ (n � e) d�) s : (H.16)

This di�erential element,1-form, is 
onserved allowing us to solve for the end angular

variation d�

+

: De�ning � =

v

+

v

�

we get

d�

+

= �

 

�


os(�

+

)

+

1


os(�

�

)

!

dz

�

R

� �


os(�

�

)


os(�

+

)

d�

�

: (H.17)

The di�erential ((dz

�

; d�

�

) 7! (dz

+

; d�

+

)) therefore be
omes

�

0

�


os(�

+

)


os(�

�

)

0

1

R

(

�


os(�

+

)

+

1


os(�

�

)

) �


os(�

�

)


os(�

+

)

1

A

: (H.18)
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This di�erential is the familiar re
e
tion di�erential, when � = 1 :

�

 

1 0

2

R 
os(�

�

)

1

!

: (H.19)

To �nd the di�erential when we have the opposite 
onversion, i.e.. from P-wave

to S-wave, we just have to 
hange the velo
ity ratio � to 1=� With wave split the

di�erential has determinant � respe
tively 1=� ([10℄ �nd a similar result but in other


oordinates). In a 
losed orbit however every time we have a 
onversion from S to P

we also has to have the opposite, so the produ
t of the di�erentials for the orbit will

still have a determinant equal to 1:

H.2 Flight di�erential

An initial phase spa
e point (x

�

;v

�

) evolves during the time t to the point

(x

+

;v

+

) = (x

�

+ v

�

t;v

�

): (H.20)

Then it is not hard to �nd the di�erential

�

1 �x

0 1

�

; (H.21)

when we 
onsider transverse displa
ements of the ray and angular variations of the

velo
ity as above. Here �x is the total 
ight length.
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