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Abstract

A variational method for periodic orbits searches in a general flow is developed. The method is

based on penalizing the misorientation of the tangent vector of a guess-loop to the velocity field of

the given flow. The loop is continuously evolved into a periodic orbit by a fictitious time flow.
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I. INTRODUCTION

The goal of this project is to improve the variational method for finding periodic orbits

introduced in refs. [1, 2]. The method evolves an initial guess in the form of a closed loop

towards a true periodic orbit of a given flow f t(x) defined by:

dx

dt
= v(x), x ∈ Rd . (1)

Given a loop parameterized by a parameter s, this is achieved by minimizing the misori-

entation of the tangent vector ṽ(x) = dx/ds of the loop to the velocity vector (1). In other

words minimizing the cost functional

F
2

=
1

S

∮
(ṽ(x)− λ(x) v(x))2 ds , (2)

where the integration is performed along the loop, λ(x) an auxiliary undetermined function

which compensates for the fact that not only the direction, but also the magnitude of the

two fields is different at a point, and S is a normalization factor.

The improvement that will be pursued here is to replace the simple Euclidean metric δij

that is used in (2) with a metric gij(x) that would carry information about the flow, that is

minimize the functional

F
2

=
1

S

∮
(ṽ − λv)i gij (ṽ − λv)j ds . (3)

II. VARIATIONAL SEARCHES FOR PERIODIC ORBITS

In this project any smooth, closed curve in a d−dimensional space is referred to as a loop.

In general a loop is not a solution of (1), in contrast to a periodic orbit, which satisfies the

periodic orbit condition fT (x) = x, where T the period. The tangent vector of the loop ṽ

will not in general be parallel to v̂. Thus, if we could continously deform the loop in such

a way that its tangent becomes parallel to the velocity field we would end up with a true

periodic orbit. In ref. [2] it is shown that this corresponds to minimizing (2) and that one
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can write down a partial differential equation (PDE) for the evolution of the loop towards

a periodic orbit[4]. Numerically solving this PDE provides the periodic orbit of the system

“closest”[5] to the initial loop.

The method is conceptually more complicated, harder to program and generally slower

than Newton or multiple-shooting methods for the search of periodic orbits. On the other

hand it has an advantage when one tries to find long or extremely unstable periodic orbits,

or when one deals with hard to visualize high-dimensional systems. For multiple-shooting to

converge one needs a large number of Poincaré sections in order to control local instability.

Thus one needs a great deal of information about the qualitative dynamics of the flow to

make a clever choice of those sections. In high-dimensional flows this information is usually

not available and multiple shooting methods can easily fail to find the longer cycles. In the

variational method described here Poincaré sections play no role and guesses with roughly

the correct topology can lead to long cycles.

The extension of the method that will be attempted here is to use a metric that penalizes

variations from a true periodic orbit in the unstable eigendirections of the flow more than

it does in the stable ones. The hope is that in a high-dimensional flow in which only a few

of the these eigendirections are significant, so one can concentrate only on them, effectively

reducing the dimensionality of the problem and the computational load.

III. CANDIDATES FOR THE ROLE OF METRIC

A. A Jacobian Matrix for a Loop

The Jacobian matrix Jt(xo) describes the deformation of the neighborhood of a point xo

under a flow f t, in the linear approximation. It can be defined by means of the time-ordered

product

Jt(xo) ≡ Te
R t
0 dτA(fτ (xo))

≡ lim
m→∞

1∏
n=m

e∆tA(fn∆t(xo)) , (4)

where ∆t = t/m and A the matrix of variations defined by

Aij(x) =
∂vi

∂xj

. (5)
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Along a periodic orbit

Jp ≡ JTp(xo) = Te
H

dτA(fτ (xo)) . (6)

Jp describes the local deformation of the neighborhood of the periodic orbit under the flow,

for finite times, while its eigenvalues are known to be independent of the initial point xo on

the periodic orbit and provide the local measure of instability of the system.

Thus we would like to use J as our metric tensor. Yet, a loop is not a solution of

the equations of the flow and we cannot calculate the Jacobian along it. Inspired by the

time-ordered product (4) though, we define the matrix

JL(xo) ≡ Te
H

dsA(x(s)))

≡ lim
m→∞

1∏
n=m

e∆sA(x(n ∆s)) , (7)

where s ∈ [si, sf ] parameterizes the loop and ∆s = (sf − si)/m and T now reminds us that

the integration is ordered with respect to s. We call this matrix a Jacobian for the loop and

try to figure out if it could play the role of a metric for the variational method by capturing

the essential information about the flow.

Obviously JL is a solution of the diferential equation

Js
L

ds
= A(x(s))Js

L. (8)

B. Properties of JL

First we prove that JL has the property of Jp that its eigenvalues do not depend on the

initial point on the loop. Definition (7) establishes the group property

Js+s′

L (xo) = Js′

L(x(s))Js
L(xo) . (9)

This is important since it is all we need to prove that the eigenvalues of JL do not depend

on the initial point xo on the loop, in exactly the same way this is proved for J on a cycle,

cf. Ref. [3], Paragraph 8.2.

We would also like to proove that the eigenvalues of JL are invariant under a change

of variables, y = h(x). For notational simplicity we temporarilly drop the index L in JL.

Let Ks(yo) denote the Jacobian for the loop in the new variables, with yo = h(xo). Then,
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according to the definition of the Jacobian on a loop

Ks

ds
=

∂u

∂y
Ks , (10)

where

ui =
dyi

dt

=
∂hi

∂xj

vj . (11)

For notational compactness we define the matrix

Hij =
∂hi

∂xj

. (12)

Then, for the matrix elements of ∂u/∂y we have

∂ui

∂yj

=
∂ui

∂xk

∂xk

∂yj

=
∂

∂xk

(Himvm)
∂xk

∂yj

=

(
∂Him

∂xk

vm + HimAmk

)
H−1

kj , (13)

where H−1
ij = ∂h−1

i /∂yj.

To relate the eigenvalues of J and K we form the matrix

Ns ≡ Ks(yo)−H(x(s))Js(xo)H
−1(xo) , (14)

Differentiating with respect to s,

dN s
ij

ds
=

dKs
ij

ds
− dHim

ds
Js

mkH
−1
kj −Him

dJs
mk

ds
H−1

kj , (15)

or, using (8) and (10),

dN s
ij

ds
=

∂ui

∂ym

Ks
mj −

∂Him

∂xn

dxn

ds
JmkH

−1
kj −HimAmnJ

s
nkH

−1
kj . (16)

With the use of (13) and renaming of the dummy indices n↔ m in the last term, this reads

dN s
ij

ds
=

(
∂Hin

∂xk

vn + HinAnk

)
H−1

km(x(s))Ks
mj −

(
∂Him

∂xn

dxn

ds
+ HinAnm

)
Js

mkH
−1
kj (xo) . (17)
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Inserting the identity matrix 1 = H−1(x(s))H(x(s)) in the second term and noting that

∂Hin

∂xk

=
∂2hi

∂xk∂xn

=
∂Hik

∂xn

, (18)

we get

dN s
ij

ds
=

(
∂Hik

∂xn

vn + HinAnk

)
H−1

km(x(s))Ks
mj −

(
∂Him

∂xn

dxn

ds
+ HinAnm

)
H−1

mqHqlJ
s
lkH

−1
kj (xo) .

(19)

Were it not dx
ds
6= v this could be factored to get dN s

ij/ds = (. . .)ikN
s
kj. This would allow

us to complete the proof. The proof is valid only if we are computing the Jacobian on a

periodic orbit and its remaining part is given in Appendix A.

The Jacobian is not in general a symmetric matrix and thus it is not diagonalizable by

a unitary similarity transformation, while its eigenvectors do not form an orthonormal set.

Therefore we use the metric

M(x) = JT
L(x)JL(x) , (20)

where the superscript T denotes the transpose of a matrix. M is symmetric and thus diago-

nalizable by a unitary similarity transformation and possesses a complete set of orthogonal

eigenvectors.

C. The variational method

With this choice of metric we consider minimizing the functional

F
2

=
1

S

∮
(JL Pṽ)T (JL Pṽ) ds , (21)

where

Pij = δij −
vivj

v2
(22)

The operator vivj/v
2 acting on a vector projects it to the direction parallel to the velocity

and thus P projects a vector on the plane transverse to v. The motivation to act with P on

ṽ is that we are interested in penalizing components of v transverse to the direction of the

velocity. We observe that (21) will have the minimum value of zero on a periodic orbit.

P is obviously symmetric and thus, from (21),

F
2

=
1

S

∮
ṽTPJT

LJL Pṽ ds . (23)
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D. The Euclidean metric case

As a first step we will try to implement the variational principle in this form with an

Euclidean metric and then switch to g = JTJ. Thus, we work with the cost functional

F
2

=
1

S

∮
(Pṽ)2 ds . (24)

For a variational method to work this functional has to be minimized monotonically

towards zero, while the loop evolves towards a periodic orbit. Thus we need to write a

differential equation for the evolution of each point x̃(s) of the loop. We can think of such

an equation as defining a flow in loop space with a parameter τ playing the role of the

time variable and thus refered to as fictitious time. Therefore each point on the loop will

be a function of two variables s and τ . Diferentiating (24) with respect to fictitious time

(remember that P symmetric)

dF
2

dτ
=

2

S

∮
(Pṽ)T ∂

∂τ
(Pṽ) ds . (25)

Since there is no principle associated with the fictitious time flow other than the require-

ment to minimize (24), we are free to define this flow at our convinience. We observe that

the simple choice
∂

∂τ
(Pṽ) = − (Pṽ) , (26)

when substituted in (25) yields

dF
2
(τ)

dτ
= −F

2
(τ) , (27)

and thus

F
2
(τ) = F

2
(0)e−τ . (28)

The functional evolves exponentially to zero, as desired.

To get a differential equation for the evolution of the loop under the fictitious time flow,

we simply perform the differentiations in (26) explicitly. We have (we use the summation

convention of repeated indices)

∂Pij

∂τ
=

∂Pij

∂x̃k

∂x̃k

∂τ

= − ∂

∂x̃k

(vivj

v2

) ∂x̃k

∂τ

= −
(

Aik
vj

v2
+

vi

v2
Ajk −

2 vivjvm

v4
Amk

)
∂x̃k

∂τ
, (29)
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and thus

∂Pij

∂τ
ṽj = −

(
vj ṽj

v2
Aik +

viṽj

v2
Ajk −

2 vivj ṽjvm

v4
Amk

)
∂x̃k

∂τ

= − 1

v2

(
vj ṽj

(
δim −

vivm

v2

)
Amk + viṽj

(
δjm −

vjvm

v2

)
Amk

) ∂x̃k

∂τ
, (30)

or
∂P

∂τ
ṽ = − 1

v2
(v.ṽ 1 + v ⊗ ṽ)PA

∂x̃

∂τ
, (31)

where a⊗ b denotes the tensor product of vectors a and b.

On the other hand

P
∂ṽ

∂τ
= P

∂2x̃

∂τ∂s
. (32)

Gathering everything together in (26) we get(
1

v2
(v.ṽ 1 + v ⊗ ṽ)PA−P

∂

∂s

)
∂x̃

∂τ
= Pṽ . (33)

This is the PDE that governs the evolution of a loop towards a periodic orbit.

APPENDIX A: EIGENVALUES OF Jp UNDER SMOOTH CONJUGACIES

From (19) with s = t, that is when calculating Nt(xo) along a peridic orbit we get

dN t
ij

dt
=

(
∂Him

∂xn

vn + HinAnm

)
H−1

mq(x(t))Kt
qj −

(
∂Him

∂xn

vn + HinAnm

)
H−1

mq(x(t))Hql(x(t))J t
lkH

−1
kj (xo)

=

(
∂Him

∂xn

vn + HinAnm

)
H−1

mq(x(t))
(
Kt

qj −Hql(x(t))J t
lkH

−1
kj (xo)

)
=

(
∂Him

∂xn

vn + HinAnm

)
H−1

mq(x(t))Nqj , (A1)

from the definition (14) of Ns. Thus we have a differential equation of the form dNt/dt =

B(t)Nt where Bij =
(

∂Him

∂xn
vn + HinAnm

)
H−1

mj(x(t)). The initial condition is found from

(14) to be N0 = 0 and thus the solution will be Nt ≡ 0 for all times. Thus

Kt(yo) = H(x(t))JtH−1(xo) . (A2)

On a periodic orbit for t equal to the period Tp we have x(Tp) = xo and thus

Kp(yo) = H(xo)JpH(xo) , (A3)

which means that K and J are related by a similarity transformation and thus have the

same eignevalues.
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APPENDIX B: PROJECT PLAN

Tentative schedule:

1. Tue Apr 19: Implement variational principle for Rössler and/or KS.

2. Tue Apr 26: Fix the last few quirks ...

3. Tue May 2: Project deadline
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