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We consider the dynamics of spiral waves and some of the group theoretical methods that have
been used to study the nonlinear dynamics of such excitations. Namely, we survey the main results of
Barkley [1] and Biktashev et al. [2] which respectively focus on spiral wave meander and group-orbit
symmetry reduction.

1. INTRODUCTION

In the simplest terms, spiral waves are rotating waves
which travel in stationary media. They are ubiquitous
and equally as important as they are picturesque, play-
ing a key part in physical processes such as the onset of
fibrillation in the heart [3, 4]. In such a case, as explained
in Ref. [3], the spontaneous breakup of an isolated spiral
of electrical activity in the heart muscle leads to the cre-
ation of numerous other spirals which settle into a state
known as a ‘spiral glass’. This state, filled with com-
plex pathways, prohibits the rhythmic pumping of the
heart muscle and leads to sudden death. One feature
ever present during spiral wave breakup is the “mean-
der” of the wave’s tip. Meandering is a term used to
describe the complex trajectories followed by the tip, in
contrast to the circles traced out when the wave is rigidly
rotating.

FIG. 1: Spiral wave breakup as a (possible) consequence of a
Hopf bifurcation. Adapted from Ref. [5].

In order to understand these complex meandering dy-
namics, Dwight Barkley [1] performed a detailed bifurca-
tion analysis of spiral waves using the reaction-diffusion
equations and found that the dynamics were centered
around a resonant Hopf bifurcation where eigenmodes of
the bifurcation interacted with those of the system’s Eu-
clidean symmetry. Using symmetry arguments, Barkley
was ultimately able to propose a low-dimensional nonlin-
ear ODE model which efficiently captures the meandering
dynamics. Later, the underlying symmetry of the prob-
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lem was once again exploited by Biktashev et al. [2] in or-
der to expose a general group-theoretic method in which
the notion of group orbits and quotient systems play a
key role. In the latter method, one wishes to obtain a
‘generic’ system (one without symmetry) by separating
orbits in the full state space into a superposition of those
along the relevant symmetry group; in this case E(2).

In this exposition, we will discuss the main results
given by Barkley and Biktashev et al. in their studies
of spiral wave dynamics.

2. REACTION-DIFFUSION EQUATIONS AND
THE EUCLIDEAN GROUP E(2)

Most commonly, the model used to study spiral waves
consists of the semi-linear parabolic reaction-diffusion
equations:

∂tu = D∇2u+ f(u) (1)

where u(r, t) = (u1, u2) and r = (x, y) ∈ R2. The com-
ponents of u may represent the concentration of a sub-
stance (often chemical) and D is a matrix of diffusion co-
efficients. This system of PDEs is invariant under time
shifts and under all isometries of the plane, the latter
forming the non-compact Lie group E(2) (the Euclidean
group in R2) under composition. In general, E(n) is the
group of all isometries in Rn. This group is a semidi-
rect product of the groups O(n) (reflections, rotations)
and T (n) (translations), i.e. E(n) = T (n) o O(n). This
means that for g ∈ E(n) ∃ o ∈ O(n) and t ∈ T (n) such
that gx = ox+ t∀x ∈ Rn.

The system in (1) is equivariant under E(2) which,
following the notation in Ref. [2], means that if u(r, t)
is a solution then given the action T (g) of g ∈ E(2),
ũ(r, t) = T (g)u(r, t) is also a solution. The action of
g on u is formally defined as T (g)u(r, t) = u(g−1r, t).
The isotropy subgroup of the solutions is trivial E(2)x =
{e} with e the identity; that is to say that no solution
is invariant under isometries other than the identity [2].
The spiral waves examined in these two papers are of this
form.

It is the equivariance of spiral waves under this contin-
uous symmetry group that will play a key role in study-
ing complex meander. For a detailed, mathematical, and
more general discussion of E(n)-equivariant PDEs, see
Ref. [6].
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3. BARKLEY

In this section, we will present the results of Ref. [1].

3.1. Bifurcation Analysis

Barkley starts by studying the dynamics of a single
isolated spiral wave through the equations:

∂u

∂t
= ∇2u+ ε−1u(1− u)

[
u− v + b

a

]
, (2)

∂v

∂t
= u− v

with a,b, and ε� 1 bifurcation parameters. The fields u
and v correspond to u1 and u2 from (1) and v is taken
to be diffusionless.

After extensive numerical study of (2), Barkley was
able to construct a phase diagram for the spiral wave
dynamics shown in Figure 2. In this diagram, one is
clearly able to see the different parameter regions where
distinct patterns of meander take place. There are three
main regions qualified by: no spiral waves (N), stable
rotating waves (RW) (rotating at spiral frequency ω1),
and modulated rotating waves (MRW) (rotating at spiral
frequency ω2).

The RW states are the solutions of the eigenvalue prob-
lem for u and v, their tip paths form closed circles. These
states become unstable under a supercritical Hopf bifur-
cation whose smooth curve, separating the MRW and
RW regions, is shown in Figure 2. This curve is every-
where supercritical and introduces a new spiral frequency
ω2 which produces modulated waves.

As a reminder, in a Hopf bifurcation a fixed point of
the system loses its local stability when a pair of com-
plex conjugate eigenvalues from the Jacobian cross the
imaginary axis as the bifurcation parameter varies. A
supercritical Hopf bifurcation can be thought of as a case
where the decay of a disturbance has turned to growth
under the change of bifurcation parameter. This will ul-
timately change a stable spiral into an unstable one with
a small surrounding limit cycle.

Once a RW state crosses the supercritical curve, it be-
comes quasiperiodic and its tip forms “flowers” which
do not close; these are the MRW. There is also a point
of resonance where ω1 = ω2, denoted as the modulated
traveling wave (MTW) region (dashed curve). The MTW
increase their translational speed with distance from the
point of resonance. It is this MTW region that sepa-
rates the MRW region into two: one with inward petals
(ω1 > ω2) and one with outer petals (ω1 < ω2).

Since the supercritical curve is clearly the center for dy-
namics, it pays to look closer at the bifurcation in order to
explore meander. For a RW u, Barkley examines its five
leading eigenvalues λ = 0,±iω1, and ±iω2. The eigenval-
ues associated with the Hopf bifurcation are λH = ±iω2

whose Re(λ) > 0 as one varies a and b causing the mod-
ulation of the wave with what he terms a meandering

FIG. 2: Phase diagram with ε = 2× 10−2. The figures below
and to the side display the diffrent trajectories of the spiral
wave tip. The locus separating the RW and MRW regions
is where the supercritical Hopf bifurcation occurs. Adapted
from Ref. [1].

instability. The eigenvalue at the origin is a result of ro-
tational symmetry with eigenmode ũR = ∂θu, θ the az-
imuthal angle. The eigenvalues±iω1 are a result of trans-
lational symmetry with eigenmodes ũT = ∂xu ± i∂yu.
The latter three eigenvalues are always on the imaginary
axis. All eigenmodes interact around the codimension-
two point resulting in the complex dynamics we see in
meandering spiral waves.

In order to model and further understand the mean-
dering dynamics, Barkley proposes a weakly, low dimen-
sional, nonlinear model which satisfies two conditions:
(1) The system is equivariant under E(2), and (2) it ex-
hibits a Hopf bifurcation for RW solutions. Barkley’s
model is:

ṗ = v,

v̇ = v · [f(|v|2, w2) + iw · h(|v|2, w2)], (3)

ẇ = w · g(|v|2, w2),

with p = x + iy a “position”(complex), v = seiφ, s ≥ 0
velocity (complex), and w real and proportional to spi-
ral frequency. This system is invariant under the actions
of E(2): translations Tαβ(p, v, w) = (p + α + iβ, v, w),
rotations Rγ(p, v, w) = (eiγp, eiγv, w), and reflections
κ(p, v, w) = (p∗, v∗,−w). The expansions for the func-
tions f , g, and h considered by Barkley are:

f(s2, w2) = α0 + α1s
2 + α2w

2 − s4,

g(s2, w2) = −1 + β1s
2 − w2, (4)

h(s2, w2) = γ0,

both α2 and γ0 will become bifurcation parameters and
the others will be kept constant.



3

Further analysis by Barkley in the (s, w) subsystem
reveals the full spectrum of RW, MRW, and MTW as
previously observed through numerical solutions of (1).
The resonance bifurcation is found to occur at values
α2 = −5 and γ0 =

√
28 with the full eigenspectrum as

before. After normalizing these bifurcation parameters,
µ = −(α2 + 5)/5 and ν = γ0/

√
28, a new phase diagram

develops which captures the complex dynamics:

FIG. 3: Phase diagram for the Barkley model. Adapted from
Ref. [1].

3.2. Conclusion

The key point in this analysis was the interaction of
the Euclidean symmetry eigenmodes with the Hopf bi-
furcation eigenmodes as the cause of the meandering dy-
namics. The Barkley model given in (3) was derived on
the principle of Euclidean equivariance and admittance
of a Hopf bifurcation alone. According to Ref. [2], fur-
ther study of this sytem shows that there is no locking
between the two frequencies as a result of the E(2) sym-
metry of the system. Studying the meander of spiral
waves then becomes a problem of studying the system’s
Euclidean symmetry.

4. BIKTASHEV, HOLDEN, AND NIKOLAEV

In this section, we will present the results of Ref. [2].

4.1. Space Reduction Method

When a dynamical system has an underlying symme-
try, we wish to remove the behavior due such structure
and study the dynamics in a quotiented (or reduced)
state space. Biktashev et al. note,

It is well known that the behaviour of dynam-
ical systems with symmetries can be drasti-
cally different from those without symmetry
. . . a standard way to study symmetrical sys-
tems is to reduce them to generic ones and
then apply the results of the generic theory [2]

where by ‘generic’ systems they refer to ones without
symmetry. For dynamical system equivariant under a
continuous group G, the state space is foliated by group
orbits defined as Mx = {gx | g ∈ G, x ∈ B}, following
the notation in Ref. [7]. The goal is to represent whole
equivalence classes of group orbits by a single point in
what Biktashev et al. call the orbit manifold or orbit
space.

For a generic differential equation U̇ = F (U), U ∈ B
(Banach space), we wish to parameterize the state space
by a manifold M ∈ B which is transversal to the group
orbits. A point in the orbit manifold is denoted by V
and its equivalent to a point U in the full state space up
to the group action T (g), that is U = T (g)V for V ∈M
and g ∈ G. There is also a directionality condition which
only permits the group orbit to cross the orbit manifold
once.

The vector field F (V ) for points in M can be decom-
posed in two:

F (V ) = (F (V ))M + (F (V ))G (5)

The former tangent to the orbit manifold and the lat-
ter tangent to the group orbits. The sought-after quo-
tient system is given in general form by V̇ = (F (V ))M.
This system in the manifold lacks the original symmetry
and its equation of motion can later be used to recover
the original space trajectory by solving for the necessary
group action which maps points from the manifold to the
full state space. For a geometric diagram see Figure 4.

FIG. 4: Decomposing the state space B by use of the orbit
manifold M. Adapted from Ref. [2].

For the case of spiral waves G = E(2) and B is no
longer a Banach space but rather consists of bounded
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continuous vector functions, asymptotically “circular” at
infinity [2]. Here, it will be shown, that separating the
dynamics of the system along the orbits of E(2) is visu-
ally the same as riding on the tip of the wave.

In order to chooseM such that it satisfies the transver-
sality condition, Biktashev et al. define a class of func-
tions v(x, y) by conditions which are violated by any mo-
tion in the plane. The transversality conditions chosen
in the paper are: v1(0, 0) = u10, v2(0, 0) = u20, and
∂xv1(0, 0) = 0. Here, the function v(r) is just the func-
tion u(r) moved by the action T (g−1) along the plane.
The first two choices assert an intersection point of two
isolines at the origin while the last condition makes the
isoline of v1 tangent to the x-axis.

After expanding the vector field (F (V ))G in the basis
of the Lie algebra generators (∂x, ∂y, and y∂x−x∂y) and
assuming that the full state space differential equation
takes the form of (1), Biktashev et al. derive an expres-
sion for the vector field on the orbit manifold:

∂tv = D∇2v + f(v)− (c,∇)v − ω∂θv (6)

This PDE, with c(t) a translational velocity and ω(t)
a rotational velocity, is the target symmetry-free sys-
tem. Namely, it is a dynamical system in the state space
spanned by c, ω, and v.

However, an equation to specify g(t) is still needed.
Biktashev et al. derive such an equation by formally
considering the complex plane C and its isomorphism to
R2. In the complex plane, g = {R,Θ} makes a rotation
by Θ and translation by R. The action of g on z ∈ C
is then defined as the mapping TC(g) : z → R + zeiΘ =
X + iY + zeiΘ. The equations for Θ and R are derived
in Ref. [2]:

∂tΘ = ω(t), (7)

∂tR = c(t)eiΘ

4.2. Conclusion

What is the visual interpretation of this machinery?
The transversality conditions set by Biktashev et al.

move us to a frame of reference attached to the tip of
the spiral. Why? Because the intersection of the isolines
at the origin is the defining condition for the tip of the
spiral. The function v, which is u moved by T (g−1), is
a function in this reference frame basing its origin at the
tip. The third condition then makes the y-axis of this ref-
erence frame stay along the gradient of u1 as mentioned
above. This reference frame can be visualized in Figure 5
below where the coordinates (ξ, η) are the tip frame of
reference coordinates. It’s equation of motion is simply
given by (7) while (6) gives the vector field in this frame.

In this case, the reduction to the orbit space naturally
led Biktashev et al. to study the symmetry-reduced sys-
tem as one with the visual interpretation of being at-
tached to a reference frame on the spiral tip. Further nu-
merical work based on simulating solutions to (1) and (6)
is published in Ref. [8]; this publication is also equipped
with the open code entitled EZRide [9] which simulates
spiral wave dynamics and meander.

FIG. 5: The tip of the spiral is shown as the intersection of
the isolines (dashed curves). The frame of reference attached
to the tip has coordinates (ξ, η). Adapted from Ref. [2].
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