Periodic orbit theory beyond semiclassics: convergence, diffraction and \hbar corrections

P. E. Rosenquist

December 4, 1995

download from ChaosBook.org/projects/Rosenqvist

Acknowledgements

The present work has been supported by Statens Naturvidenskabelige Forskningsråd (SNF). First of all I would like to thank my supervisor Predrag Cvitanović who has been a major support throughout the work on the present thesis. Through fruitful discussions he has provided a lot of information and suggestions to my work. The work on including diffraction effects in the Gutzwiller trace formula was done together with G. Vattay and A. Wirzba to whom I owe a major thank for their collaboration. Also a special thank to A. Wirzba is appropriate for lending me the data from a lot of his own calculations which are used in large extent throughout the thesis. I would also like to thank especially G. Vattay with whom I made the work on the \hbar expansion on two-dimensional billard systems during my stay on the Eötvös University in Budapest. The stay in Budapest became a very nice and useful digression from the usual life in Copenhagen due to him and his wife A. Vattay, to whom I also owe a large thank.

In general I would also like to thank all the members of the chaos group (CATS) on the Niels Bohr Institute, for always providing a nice and cosy environment without which it would have been much less interesting to work on the thesis. Especially I would like to thank: B. Bergeot, D. Biswas, F. Christiansen, C. Conrado, S. Creagh, K. T. Hansen, A. Johansen, M. Oxborrow, V. Putkaradze, H. H. Rugh, T. Schreiber, G. Tanner and N. Whelan who also provided a large help through a lot of discussions on the topics of our interest. For interesting discussions, while transporting ourselves to the institute, I would like to thank T. Døssing. Also a lot of my friends outside the Institute should be mentioned in this respect since people like: K. Madsen, P. Larsen, B. Rønn and G. Nebel always turned out to be patient listeners when I would like to explain someone about technical problems during the work.

Last but most important I would like to thank my fiancé Ane Jørgensen and our cat miss Gurli for always providing the necessary comfort and love when things seemed dark or even impossible.

Contents

1	\mathbf{Intr}	oduction 1
	1.1	Introduction
2	The	laboratory 4
	2.1	Classical Pinball
	2.2	Symmetries of the model
	2.3	Symbolic coding
	2.4	Counting prime cycles
	2.5	Periodic orbits
	2.6	Cycle stability for billiards
	2.7	Orbit length minimization method
3	Clas	sical periodic orbit theory 15
	3.1	Flows, evolution operators and their spectra
		3.1.1 Trace formula for maps
		3.1.2 Trace formula for flows
		3.1.3 Fredholm determinants
	3.2	Cycle expansions
		3.2.1 Curvature expansions
		3.2.2 Fredholm determinant cycle expansions
		3.2.3 Numerical calculations with cycle expansions
		3.2.4 Convergence of cycle expansions
		3.2.5 Symmetry factorizations
4	\mathbf{Sem}	iclassical periodic orbit quantization 25
	4.1	The Van Vleck propagator
	4.2	The Gutzwiller-Voros zeta function
5	Con	vergence 32
	5.1	Entire spectral determinants in semiclassics
		5.1.1 The quantum Fredholm determinant
		5.1.2 Abscissa of absolute convergence
		5.1.3 Numerical results
	5.2	The quasi-classical approximation
		$5.2.1$ Time evolution $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 43$
	5.3	Derivation of the trace integral
		5.3.1 Finding periodic M solutions

		5.3.2 Symplectic matrices
		5.3.3 The general \mathbf{M} solution
		5.3.4 Stabilities of the periodic curvature solutions
	5.4	Validity of the entire determinant
	5.5	Conclusion
6	Dif	fraction 60
	6.1	The Geometrical theory of diffraction
	6.2	The 1-disk Keller propagator
	6.3	The exact 1-disk propagator
		6.3.1 The geometrical contribution
		6.3.2 The diffraction case
		6.3.3 Fields diffracted by edges
	6.4	The general Keller propagator
		6.4.1 Connection to the trace formula
		6.4.2 The exact poles of the scattering matrix
		6.4.3 Cycle expansion of the diffraction spectral determinant . 81
	6.5	Numerical results
		6.5.1 Results for the two-disk system
		6.5.2 Results for the 3-disk scattering system
		6.5.3 Corrections to the Airy approximation
	6.6	Discussion
7	ħ co	orrections 93
	7.1	\hbar corrections to the Gutzwiller trace formula $\ldots \ldots \ldots 93$
	7.2	Path integrals and partial differential equations
	7.3	Analytic eigenbasis
	7.4	Stationary solutions
	7.5	\hbar expansion in the analytic base $\ldots \ldots 104$
	7.6	The \hbar correction equations $\dots \dots \dots$
	7.7	Billards
		7.7.1 A numerical algorithm to calculate the first \hbar correction . 121
	7.8	Application to the 3-disk system
	7.9	Conclusions
8	\mathbf{Per}	rspectives 132
9	An	pendices 139
0	9.1	Derivations and examples of chapter 5
	5.1	9.1.1 Alternative derivation of the curvature trace 141
	9.2	Derivations and examples of chapter 6
	9.3	A program that calculates $C_i^{p(1)}$ 161
	0.0	