
Chapter �

Di�raction

��� The Geometrical theory of di�raction

The geometrical theory of optics has eversince its emergence been a very useful
tool in describing the evolution of waves in terms of rays� Starting in ���� Keller
strongly improved this theory by extending it to include di�raction e�ects� In
a series of papers ��	
 he introduced and developed the geometrical theory of
di�raction describing the well known wave phenomena ranging from di�raction
around smooth objects to di�raction on vertices and edges� He tested the theory
on several examples and observed an excelent agreement with experiments and
theoretical results obtained by direct wave mechanics�

In this section we �rst start by a brief review of the ordinary theory of ge�
ometrical optics whereafter we describe Kellers construction of the geometrical
theory of di�raction�

In geometrical optics the aim is to describe the electromagnetic �eld under
the assumption that the �eld propagates along rays� The rays are determined
by the principle of least action or the Fermat principle which states that among
all trajectories between two points A and B only the paths of least travel time
should give a contribution to the resulting �eld�

In the ordinary theory of geometrical optics a �eld value is associated with
each ray� The �eld is composed of a phase function ��s� and an amplitude A�s�
which are both functions of the distance s along the ray� The phase is just a
linear function of the distance� ��s� � �� � s which follows from the optical
law d��ds � �� The initial phase �� is the phase at the point from which the
distance s is measured� The amplitude is determined by conservation of energy
along the ray� For a tube of rays the energy �ux is the same through every
cross section of the tube� If the amplitude and cross section area at some point
in the tube is given by A� and d�� and by A and d� at some later point then
the principle of conservation of energy states that A�

�d�� � A�d� and hence the
amplitude is given by A � A�

p
d���d�� To calculate the �eld at some point

P we just follow all the rays that emerge from the source Q �or sources� and

��
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impinges at the �nal point under investigation� The resulting �eld u�P � is then
the sum of the contributions from the di�erent paths p�

u�P � �
X
p

Ape
ik�s���� �����

where k � ��c is the wavenumber � is the angular frequency of the �eld and
c is its propagation speed� At this point we have only described the evolution
of a scalar �eld but for a vector �eld the description is completely analogous�
For simplicity we shall here continue to treat scalar �elds�

The next step is to calculate the area ratio d���d�� To do this consider
�gure ���� Since d�� and d� are just the areas cut out by the tube at the

Q Ps

2

1

Figure ���� A tube of rays emerging from Q and impinging at P � The principal
radii of curvature are indicated as �� and ���

wavefronts � � �� and � � �� � s and since the rays are just straight lines we
obtain by simple geometry

d��
d�

�
����

��� � s���� � s�
�����

and hence the �eld contribution from a single ray at the point P is just

u�P � � A�

�
����

��� � s���� � s�

����

eik����s� �����

In two dimensions the result would be the same except for the �rst factor
in both nominator and denominator� This speci�c result holds only for free
propagation but can easily be generalised to include specular re�ections from
smooth surfaces by introducing an e�ective traveled distance� The above results
contain the essence of the ordinary theory of geometrical optics�

Next we shall use the above ideas to describe di�raction from the exterior of
a smooth convex body� Besides the straight line rays from the usual geometrical
optics theory we then need additional di�raction rays� These are introduced by
an extention of Fermat�s principle stating that the di�racted rays connecting
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two points Q and P are those curves which have stationary length among all the
topologically di�erent curves joining Q and P � From this principle it follows
that in a homogeneous medium the rays will be straight lines for the free �ight
and that they will follow the geodesics on the surface of the obstacles on which
they di�ract� An example of such a ray is shown on �gure ���� From the usual

P

Q

P11
Q

Figure ���� A di�racted ray from a point Q to P � The points Q� and P� are the
points where the straight line ray hits the obstacle tangentially and creates the
di�racted ray and where the di�racted ray leaves the obstacle by acting like
a source for a new straight line trajectory� The ray is seen to be the shortest
among all the continuous curves joining Q and P by passing over the obstacle�

geometrical optics described above we can easily get the �eld value at the point
where the ray impinges� We now assume that the �eld on the di�racted �or
surface� ray at the point Q� is proportional to the incident �eld

Ad�Q�� � D�Q��Ai�Q�� �����

where we have de�ned the di�raction coe�cient D�Q�� which we assume de�
pends only on the nature of the �eld the local properties of the obstacle at
Q� and the wavenumber k� In cases where boundary conditions requires that
the �eld be identically zero at the surface of the obstacle �as for instance hard
wall potentials in quantum mechanics� the result is the same except that the
di�racted �eld ud must be interpreted as a measure of the typical size of the
�eld in the vicinity of the surface� The di�raction constant is determined by
comparison to the exact �eld solution for some simple geometry� We postpone
this calculation till section ����

Next step is to get the variation of the �eld along the surface ray� If we
let t denote the distance traveled along the surface of the obstacle then the
previous considerations yields for the phase� �d�t� � �i�Q�� � t� To determine
the amplitude as function of t we apply the principle of energy conservation
along a narrow strip of geodesics on the surface of the obstacle containing the
surface ray �see �gure �����

We denote the width of the strip d��t� and the energy �ux through a cross
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dt

dt
Q 1

Figure ���� A strip of di�racted rays moving along the geodesics of the surface
of the obstacle�

section of the strip is then proportional to A�
d�t�d��t�� At a slightly later time

the energy �ux through the cross section d��t � dt� will be smaller because
di�racted rays have been shed out in the meantime� We assume that the ra�
diated energy is proportional to dt d��t� and to the square of the amplitude
Ad�t�

�� The energy conservation requires

A�
d�t� dt�d��t � dt��A�

d�t�d��t� � ����t�A�
d�t�d��t�dt �����

where we have introduced the proportionality constant ���t� relating the energy
�ux to the radiated energy� As in the case of the di�raction coe�cient we expect
that ��t� depends of the local properties of the obstacle and of the nature of
the �eld� The determination of ��t� takes place in the same way as that of D
and will also be postponed untill section ���� ����� yields a di�erential equation
for the time dependance of the amplitude

d

dt
�A�

d�t�d�� � ����t�A�
dd� �����

which immediately yields

Ad�t� � Ad���

�
d��
d�

����

exp

�
�
Z t

�
����d�

�
	 �����

Here d���d� is the ratio with which the geodesics spread out over the surface of
the obstacle� If for instance the geodesics are parallel this ratio would simply
be unity � a case we shall encounter in the ��dimensional description where the
width of the strip is constant equal zero� The di�racted �eld on the surface of
the obstacle at distance t from Q� thus reads

ud�t� � D�Q��Ai�Q��

�
d��
d�

����

exp

�
ik��i�Q�� � t��

Z t

�
����d�

�
���	�

From ���	� we get the �eld at the point P�� To get the �eld at P we should make
use of the usual geometrical optics propagation� However this is not directly
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applicable because at P� the �eld acts like a source implying that one of the
principal radii of curvature is zero� We make use of a limiting procedure where
we determine the �eld at P as function of the �eld at a variable point x on the
line connecting P� with P � Letting x tend to P� we then obtain the �eld at P
by demanding this to be constant during this procedure� As x tends to P� we
have the following scenario� �� tends to zero �� tends to some �nite value ��
tends to �d�P�� and s tends to the distance from P� to P while u�P � remains
constant� It then follows from ����� that A� must tend to in�nity in such a way
that A�

p
�� converges to a �nite limit� Denoting this limit A�d�P�� we can write

the �eld at P

ud�P � � A�d�P��

�
��

s��� � s�

����

exp�ik��d�P�� � s�� �����

We assume now that A�d�P�� is proportional to the di�racted �eld at P� so that
A�d�P�� � D�P��ud�P�� and that the di�raction constant D�P�� is the same

function of the local properties of the obstacle and of the �eld as the di�raction
constant at Q� This assumption is based on the reciprocity principle which
states that a source at Q produces the same �eld at P as a source located at P
would produce in Q� We can now write the �eld at P as

ud�P � � Ai�Q��D�P��D�Q��

�
d��Q��

d��P��

���� � ��
s��� � s�

����

� exp

�
ik��i�Q�� � t� s��

Z t

�
����d�

�
������

In the derivation we have excluded �elds which are required by boundary con�
ditions to vanish on the surface of the obstacle� This is due to the fact that
we have considered the amplitude function on the surface Ad� However since
the surface of the obstacle is a caustic for the di�racted �eld it follows that the
�eld is much stronger in a surface layer some few wavelengths thick than it is at
points further away from the surface� Therefore the discussion still holds if we
interpret Ad as a measure of the �eld amplitude in this layer� The �eld within
the caustic layer will have a certain pro�le variation with the distance along
the direction of a surface normal� The amplitude at any point of the pro�le
�except where this has a zero� can serve as a measure of the �eld amplitude in
the caustic layer� In general it turns out to be practical at this point to expand
the �eld in a basis of modes each with its own pro�le� Each mode will also
be characterized by its own amplitude Adm and its own di�raction constant
Dm�Q��� According to the principle of superposition the total �eld must be the
sum over contributions from each mode

ud�P � � Ai�Q��

�
d��Q��

d��P��

���� � ��
s��� � s�

����

������

�
X
m

Dm�P��Dm�Q�� exp

�
ik��i�Q�� � t� s��

Z t

�
�m���d�

�

Equation ������ yields the �nal expression for the �eld contribution associated
with a single di�racted ray� The total �eld at P will then be the sum over all
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rays both usual geometric and di�racted passing through P

u�P � � ug�P � � ud�P �	 ������

Expression ������ is the general result of the geometrical theory of di�raction
with the di�raction coe�cients Dm and the decay constants �m to be deter�
mined for the explicit problem under investigation� In the next section we shall
see how this can be done for the ��dimensional ��disk problem�

��� The ��disk Keller propagator

In this section we will construct a semiclassical expression for the energy domain
quantum propagator in the simple ��dimensional ��disk scattering system using
Keller�s geometrical theory of di�raction together with the usual geometrical
optics� Having done this the next step will be to determine the di�raction
coe�cients D�Q�� and the proportionality constant �� This we will do by
comparing the semiclassical expression to the semiclassical expansion of the
quantum mechanical exact ��disk propagator�

We consider a disk of radius a centered at the origin of a polar coordinate
system �r
 ��� Assuming that the disk represents an in�nite potential implies
that the wave function should vanish at the surface of the disk� The Greens
function or propagator of the system therefore ful�lls

�� � k��G��r
 �r�� k� � ��r � �r�� ������

with Dirichlet boundary conditions on the surface of the disk� At �r we place a
wave or ray source and then try to determine the �eld at the receiver located
at �r�� The geometry of the system is shown in �gure ���� Since the operator in
equation ������ is self adjoint we must furthermore have that the propagator is
symmetric in its arguments ���


G��r
 �r�� � G��r�
 �r� ������

We consider the case where the point of the observer is in the lit region of the
source since this also covers the case where the observer is in the shadow region
relative to the source� To obtain the �eld at the points of tangential incidence
we use the ��dimensional version of ������ If R is the distance from the source
to this point we obtain

Gi �
i

�
�

�

k�R
����eikR�i��� ������

where we have chosen the constant in front so that Gi represents the short�
wave limit of the �eld from a source of unit strength i�e� a source for which

�iH���
� �kR��� is the exact solution�

From ����� it follows that the di�raction constant D�Q�� is dimensionless
and therefore if it depends on the wavenumber k it must do so in a dimensionless
combination ka where a has the dimension of length� We shall let a be the local
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Q(    ,0)

P2

P1 Q 1

Q2

P(r,    )

Figure ���� The geometry of the disk and the source� The two families of rays
going from the source Q to the receiver P are shown�

radius of curvature at the point where the ray impinges� One might expect
that a detailed description of D�Q�� would include all kinds of derivatives of
the surface but we shall assume from now that to the leading order D�Q��
only depends on the local properties of the obstacle through this combination�
The decay exponent � which has the dimension ��length we shall also assume
depends only on k and on the local radius of curvature even though small
correction terms might depend on other geometrical properties of the surface�
Under these assumptions it should be possible to determine the leading terms
in Dm and �m from the �eld di�racted by any simple shape�

The geodesics on the surface of the circle are simply arcs of the circle im�
plying that the ratio d��Q���d��t� is unity since the tube of rays cannot spread
into the direction orthogonal to the plane� Further more because the wavefronts
on the surface of the cylinder are simply points the radius of curvature �� is
in�nite so that ��������s����� obtains its limitting value s��� in the expression
������� Also since the radius of curvature is constant the di�raction coe�cients
and the decay exponent will be constants� Using ������ for the incident �eld
and for the �eld leaving the disk and hitting the receiver we obtain by applying
the above considerations

Gd��r
 �r
�� � �	�k�����r� � a���r�� � a��
���� expfik��r�� � a����� � �r� � a�����


�
i�

�
g
X
m

D�
me

�ik��m�t ������

Equation ������ gives the value of the �eld at P associated with any ray from
Q that creeps along the surface of the cylinder a distance t� As we see there are
two families of rays� The �rst family follows the straight line QP� winds around
the disc a number of times and then follows the straight line Q�P � The second
family follows the path QP��windings�Q�P � For the �rst family t takes the
values tn � t���n�a where t� � a���� ���a cos���a�r��a cos���a�r�� and �
is the angle between the source and the observer� In case of the existence of more
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than one obstacle of course one or both of the families might be nonexisting�
Inserting these values of tn the expression ������ becomes a geometrical series
and we obtain for the �rst family

G
���
d �r
 �� � �	�k����r� � a�������r�� � a������

� expfik��r�� � a�
��� � �r� � a�
��� �
i�

�
g

�
X
m

D�
me

�ik��m�t� ��� expf���ika � a�m�g
��	 ������

For the second family everything is the same except that ��� � �� is replaced
by �� � � and adding the contributions from both families we get

Gd�r
 �� � �	�k����r� � a�������r�� � a������

� expfik��r�� � a�
��� � �r� � a�
��� �
i�

�
g

�
X
m

D�
m

expf�ika� a�m���� � ��g� expf�ika � a�m���� � ��g
�� expf���ika � a�m�g

� expf��ika� a�m��cos���a�r� � cos���a�r��
g ����	�

Equation ����	� is the �nal Keller expression for the �eld at P caused by the
source at Q in the frame of the geometrical theory of di�raction� As we see the
reciprocity condition ������ is automatically ful�lled as it should and we note
that the Greens function has the structure

Gd � GfreeGdiffGfree	 ������

What is left to be done is to compare this expression to the expansion of the
exact solution of the propagator of the problem for large ka to determine the
coe�cients Dm and �m� An expression for such an expansion we shall obtain
in the following section�

��� The exact ��disk propagator

In the following derivations we shall mainly follow the work of Franz ��	
 and
the excellent rewiev notes by A� Wirzba ���
� As above we assume that the disk
is centered at the origin in the two�dimensional plane and we introduce the
usual polar coordinate system �r
 ��� The stationary ��disk problem therefore
corresponds to the Helmholtz equation in � dimensions�

��

�r�
�

�

r

�

�r
�

�

r�
��

���
� k�

�
u�r
 �� � � ������

�with k �
p
�mE��h�� Since we are interested in scattering o� a hard wall

we impose the Dirichlet boundary condition u�r
 ��jr�a � �� The free energy�
domain Greens function of the problem is given by ��	


G��kj�r� � �r j� � � i

�
H

���
� �kj�r� � �rj� ������
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� � i

�

��X
m���

eim�H���
m �kr��Jm�kr� for r� � r
 ������

where � is the angle between �r� and �r�

As the ��disk scattering problem is separable the full propagator can be
simply constructed by splitting Jm in the free propagator expression in an
incoming and outgoing Hankel function and imposing the boundary conditions

Jm�kr� �
�

�
�H���

m �kr� �H���
m �kr��

where the asymptotically outgoing Hankel function H
���
m �kr� obtains a scatter�

ing phase from the boundary condition G � � on the surface

H���
m �ka� � SmmH

���
m �ka� � ��

Smm � �H
���
m �ka�

H
���
m �ka�

Dirichlet b�c� ������

We can therefore write the ��disk Greens function as

G�k�r�
 k�r� � � i

	

��X
m���

eim�H���
m �kr��

�
H���

m �kr� � SmmH
���
m �kr�

�
������

where the scattering matrix Smm� � mm�Smm contains the boundary condition�
As for kr � � the number of contributing terms in the sum in ������ becomes
bigger and bigger the result is only useful for small values of kr� Our aim is to
�nd a numerical useful result also for large values of kr� Such an expression can
be obtained by following the work of Franz ��	
 and use theWatson resummation
method ��	
 which leads to an asymptotic expansion of the �eld� The idea here
is to write the sum ������ as a contour integral in the complex plane and obtain
the individual terms as the residues of a suitable function� More explicitely we
have

��X
m���

f�m� �

I
C
d�

f���

ei��� � �
�

I
C
d�

e�i��f���
�i sin����


 ������

where the path C encircles counterclock�wise the real ��axis� This resummation
is valid in case f��� is holomorphic in the strip D which covers the real ��axis
i�e� D � C�

Using the Watson resummation the ��disk propagator yields

G�k�r�
 �r� � � i

	

I
C
d�

ei������

�i sin����
H���

� �kr��
�
H���

� �kr� � S���H
���
� �kr�

�
������

The contour C can be transformed to a path above the real ��axis

� i

	

I
C
d��� � � i

	

Z ���i	

���i	
d��� � i

	

Z ���i	

���i	
d���

� �
i

	

Z ���i	

���i	
d��� � i

	

Z ���i	

���i	
d���� ������
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where the integration variable � has been changed to �� in the last term� Using

the rules H
���
�� �kr� � exp�i���H

���
� �kr� and H

���
�� �kr� � exp��i���H���

� �kr� for
the Hankel functions we �nd the following form of the one�disk Greens function

G�k�r�
 k�r� � � i

	

Z ���i	

���i	
d�

cos���� � ���

�i sin����
H���

� �kr��
�
H���

� �kr� � S��H
���
� �kr�

�
	

����	�

We now have the following three possible situations� �a� �r lies in the �shadow
region of �r� with respect to the disk� �b� �r lies in the lit region and �c� �r lies
on the boundary of the lit and the shadow region� We will exclude the latter
case since in the two� and three�disk cases which we are mostly interested in
there are no grazing contributions for the corresponding di�ractional rays� This
case has to be handled with di�erent methods than the ones presented here�
Further more the situation �a� is a special case of case �b� since they will both
have di�ractional terms whereas in case �b� there will also be a direct and a
re�ected ray� We shall therefore in the following deal only with case �b� i�e� the
lit region� This case also corresponds to the semiclassical derivation above using
the Keller construction� The creeping angles can be immediately obtained as

����
n � �� � � � arccos

a

r�
� arccos

a

r
� ��n ������

����
n � �� � � � arccos

a

r�
� arccos

a

r
� ��n ������

and are positive for any n � �
 �
 �
 	 	 	� As in the Keller construction the index
n parameterizes the fact that the creeping ray can wind around the disk n times
before leaving it� The prefactor in ����	� can be written as

cos���� � ���

i sin����
� � ei�������

�� ei���
� ei�������

�� ei���
� ei�� 	 ������

Note that the last term does not contain any poles on the real axis any longer
as we shall see this term will contribute only to the direct and re�ected ray
contributions in the semiclassical approximation� We can therefore write

G�k�r
 k�r�� � Ggeo�k�r
 k�r
�� �Gcreep�k�r
 k�r

�� ������

with

Ggeo�k�r
 k�r
�� � � i

	

Z ���i	

���i	
d� ei��

�
H���

� �kr��H���
� �kr��H���

� �kr��
H

���
� �ka�

H
���
� �ka�

H���
� �kr�

�


 ������

Gcreep�k�r
 k�r
�� � � i

	

Z ���i	

���i	
d�

ei������� � ei�������

�� ei���
H���

� �kr��

�H
���
� �kr� H

���
� �ka��H

���
� �ka�H

���
� �kr�

H
���
� �ka�


 ������

where we have splitted up the Greens function in a pure geometrical term
corresponding to the ordinary geometrical theory of di�raction and into a pure
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di�ractional or creeping term corresponding to the new introduced di�ractional
rays propagating on the surface of the obstacle� The semiclassical evaluation
of these two contributions will be quite di�erent� In the following we shall
investigate the two cases in some detail�

����� The geometrical contribution

In this paragraph we shall account for the geometrical part of the semiclassical
expression of the propagator� The expression for the geometrical part reads

Ggeo�k�r
 k�r
�� � � i

	

Z ���i	

���i	
d� ei��

�
H���

� �kr��H���
� �kr��H���

� �kr��
H

���
� �ka�

H
���
� �ka�

H���
� �kr�

�

As we see the expression does not contain the Watson denominator so we are
free to deform the integration path across the real axis� However the integral
cannot be substituted by a residua sum because there is no damping term
ensuring that the integrant vanishes at in�nity� Before evaluating the integral
we note that we can split up the expression further into the �rst part which
is independant of a and which therefore can only contain information about
the direct geometrical contribution and into the second term which then turns
out to contain the re�ection contribution� The semiclassical evaluation of the
summands will now consist in �rst inserting the Debye approximation for the
Hankel functions

H���
� �kr� �

s
�

�
p
�kr�� � ��

exp

�
i
q
�kr�� � �� � i� arccos

�

kr
� i

�

�

�

������

H���
� �kr� �

s
�

�
p
�kr�� � ��

exp

�
�i
q
�kr�� � �� � i� arccos

�

kr
� i

�

�

�

������

which is valid for �kr�� � �� � �� Second we shall evaluate the resulting
integrals via the saddlepoint approximation where the saddles are located on
the real � axis� The result of this procedure yields �see appendix ��� for details�

Ggeo�k�r
 k�r
�� � � i

�

r
�

�

eiLdirect��i���
p
kLdirect�

�
i

�

r
�

�

eikLre��i���
p
kRe	

������

where Ldirect� �
q
�kr��� � ��S� �

q
�kr�� � ��S� � j�r� � �rj is the geometrical

distance between �r� and �r and where

Lre
 � d� � d ����	�

Re	 � d� � d�
�dd�p
a� � b�

� d� � d�
�dd�

a cos�
������
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with

d� �
p
r�� � b� �

p
a� � b�

d �
p
r� � b� �

p
a� � b�

b � aj sin�j 

where � is the angle of incidence measured with repect to the normal at the
point of re�ection� The parameter b thus becomes the usual impact parameter
known from scattering theory�

Note that the result ������ is exactly what we get if we insert the semiclas�
sical Debye approximation in the expression ������ for the free propagator as
it also should in the semiclassical limit kr � ��

Modulo a sign change �which takes into account the Dirichlet boundary
condition at the disk� the re�ection contribution of the semiclassical propagator
������ has the same structure as the semiclassical direct piece ������ the only
di�erence being that the length Ldirect� is replaced by Lre
 in the exponent and
by Re	 in the denominator� The quantity Lre
 is just the length of the re�ected
ray between �r� and �r whereas Re	 is the e�ective radius which determines the
strength of a corresponding ray bundle� It takes into account that a ray bundle
which starts at �r� spreads not only according to the passed distance Lre

 but
gets a further spreading by the re�ection on the concave surface of the disk� If
we compare the e�ective radius to what we get when we use the formula for the
development of the Sinai Bunimovich curvatures in a single bounce

! � l�

nbounceY
i��

�� � li�
�
i �

� l��� � l��
�

l�
�

�

a cos�
��

� l� � l� �
�l�l�
a cos�

� Re� ������

where ��i is the curvature right after the i�th bounce

��i � ��i �
�

a cos�i

 ��i �

��i��

li�
�
i�� � �

	 ������

The e�ective radius is then nothing else than the usual stabilities which we can
obtain from the Jacobian of the �ow �����

����� The di�raction case

Let us now turn to the evaluation of the creeping terms ������� The creeping
terms still contains the denominator �� � ei���� and the integration path can
therefore not be deformed on the real axis� However since the creeping angles
are all positive they lead to an exponential damping exp�i���n � in the semi�
classical limit and the path can be deformed in the upper half plane and the
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integral replaced by a convergent sum of the residua i�e� the zeros of the Hankel

function H
���
� �ka�� The creeping parts of the ��disk Greens function therefore

becomes

Gcreep�k�r
 k�r
�� � � �

	i

�X
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��iH���
�l

�kr��
ei�l������ � ei�l������

�� ei�l��
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���
�l �ka�

�
��H

���
� �ka�j���l

H���
�l

�kr�

������

where �l �with l � �
 �
 �
 			� labels the zeros of the Hankel functions H
���
� �ka�

in the upper complex ��plane� Expression ������ is still exact� The semiclassical

approximation is to evaluate the Hankel functions H
���
� �ka� and H

���
� �ka� under

the Airy approximation �which is valid for ka� � �

H���
� �ka� � �

�
e�i
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�

ka

� �

�

A�q���� and H���
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�
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�

�
�
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� �

�

A�q����

with �see ref���	
�
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�
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�l � ka� ql

�
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�
ka

� �

�

ei
�
� �� ka�� � i�l�k� ������

and

�l � ka for ka� � ������

where the q��s are the zeros of the Airy integral A�q� �
R�
� dt cos�qt � t��

approximately given by ql � �
����

�

� ���fl� �
�g�

�

� � The coe�cients �l are damping
coe�cients introduced in the Keller derivation above �����

�l � qle
�i���

�
k

�a�

� �

�


 l � �
 �
 �
 	 	 	 	 ������

This approximation is justi�ed since there are two competing saddles in the

integral representation of H
���
� �ka� in the case H

���
� �ka� � � which is the con�

dition for the poles� After inserting the Airy approximations into ������ and
using

A�q
���
l � �

�

�

e�i���

A��q���l �
������

which follows from the Wronskian of Airy integrals��


A�z�A��ze�i������A��z�A�ze�i����� � ��
�
e�i��� 
 ������

the energy�domain creeping propagator becomes
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with

Dl � �
�

� ��
�

��ei����
�ka�

�

�

A��q���l �
	 ������

Finally we replace the remaining Hankel functions H
���
�l �kr�� and H

���
�l �kr�

by their Debye approximation ������ a step which is justi�ed since we work
under the condition that j�r� j � j�rj � a � j�l�kj� The Debye approximation for
the Hankel functions reads

H���
�l

�kr� �
�
	 �

�
q
�kr�� � ��l



A

�

�

ei
p

�kr�����
l
�i�l arccos��l�kr��i��� 	 ������

We would of course like if we could substitute the disk radius a for the ratio
�l�k since we would then obtain the creeping ray interpretation of all the l�mode
contributions� In order to check if this is a valid approximation we write the
zeros of the Hankel functions in the Airy approximation as

�l � ka�� � i�l�k� �� ka� �l � ka
�
� �O��h

�

� �
�

������

Inserting this into the Debye approximation and expanding to the second order
in �l we obtainq

k�r� � ��l � �l arccos��l�kr� � k
p
r� � a� � ka arccos�a�r�� �l arccos�a�r�
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�

� �
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������

for the exponent where we have used the relation p � �hk� In this calculation the
linear terms arising from the square root and from the arc cosine cancels exactly
alowing us to obtain the creeping interpretation of the geometrical contents of
the expression� For the prefactor a similar calculation gives
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Note it is not justi�ed to throw away the �l arccos�a�r� term in the exponent

since this term scales as O��h�
�

� �� The O��h
�

� � correction of the prefactor can



�� CHAPTER �� DIFFRACTION

however be safely neglected since it is a O��h� correction to the above mentioned
term in the exponent�

Inserting these expansions into ����	� we get modulo O��h
�

� � corrections in
the semiclassical limit

Gcreep�k�r
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Comparing this expression to ����	� we see that they coincide and thus that
the di�raction coe�cients Dl in ������ are to be identi�ed with the original
introduced di�raction coe�cientsDm in ������ By using the Airy approximation
of the �l�s ������ we also note that the phase factors ei�l�diff contains a damping
term of the form exp���diffql���ka���� sin������ even when k is real� This is
the damping exponential of the creeping path� This concludes our semiclassical
evaluation of the ��disk Greens function�

It should at this point be noted that the derivation above is not valid for
rays that are almost grazing �tangent� or for rays that are scattered in a very
forward direction� This is due to that in the illuminated region the Debye
approximation fails if �ka � lr� 	 �ka����  where lr is the angular momentum
of the re�ected ray� In the shadow region the residuum resumation fails if
the creeping angle becomes very small i�e� of order � 	 �ka����� The region in
between the illuminated and the shadow region is called the penumbra and if one
wants to evaluate the Greens function here one should consider the penumbra

corrections as introduced by Smilansky et� al ���
 and which are di�erent from
the creeping contributions discussed above� In the examples we are going to
study which are basically the three�disk scattering system the periodic orbits
are composed by segments that are either purely geometric or purely creeping
since the ray wind around the disk by at least ���� We shall therefore not
consider these contributions further�

����� Fields di�racted by edges

As a further development of the geometrical theory of di�raction in two dimen�
sions we here consider the �eld di�racted by the sharp edge or vertex of two
semi in�nite straight lines meeting with an angle ��� n�� where � 	 n 	 � is
a real number ��� ��
� We proceed in quite the same fashion as in the case of
di�raction by a smooth object and start by introducing the usual polar coor�
dinate system ��
 �� with the vertex of the wedge centered at the origin of the
coordinate system� We let � and � be the angles of the incident and di�racted
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rays measured with respect to the direction normal to the wedge on the side
where the rays come from �see �gure �����

n

Figure ���� The geometry of the incident and di�racted rays and the wedge�

First of all the free propagation is still done by the usual geometrical optics
so that the �eld is described by rays that are straight lines �in a homogeneous
medium� and the �eld at distance R from a source of unit strength is given
by ������� To �nd the amplitude A�r� we consider the tube enclosed by two
neighbouring rays� The cross�sectional area of this tube is proportional to r and
the �ux through it is proportional to rA�� As a consequence of �ux conservation
we therefore �nd that A�r� must be proportional to r����� As in the case of
di�raction by a smooth object we also assume that the di�racted amplitude is
proportional to the incident amplitude and we can therefore write

ud � Duir
����eikr ������

where ui denotes the incident �eld and D is the di�raction constant� As in
the case of the ��disk system we can because of the simple structure of the
problem obtain an exact solution for the Greens function also in this case�
This is done in detail in ref���� �	
� Here we merely state the result of this
asymptotic expansion which reads

ud � eikrp
kr

� sin���n�

n
��cos���n�� cos��� � ���n��� � �cos���n�� cos��� � �� ���n���


Comparison to equation ������ now yields

D �
sin���n�

n
��cos���n� � cos��� � ���n��� � �cos���n�� cos��� � �� ���n���


which is the expression for the di�raction constant in case of edge di�raction�
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��� The general Keller propagator

We next adress the problem of getting the complete Greens function in the
general case� Here there might be many di�erent obstacles and therefore many
di�erent trajectories leading from the source to the receiver� For each such ray �
the contribution to the Green�s function is the product of the Green�s functions
and di�raction coe�cients along the ray�

G�qA
 qB
 E� �

n�Y
i��

Gi�qA
 qA� 
 E�
�X
l��

Dl�A�GD
l �qA� 
 qB� 
 E�

�Dl�B�G�qB� 
 qB
 E�	 ������

where n is the number of segments of the path and the Greens functions are
either the Van Vleck the creeping or the edge di�raction propagators� To get
the complete Greens function G�q
 q�
 E� of the system we should then �naly
sum up the contributions of the form ������ for all the paths that connects q
with q� at energy E

G�q
 q�
 E� �
X

�q�q�

G�q
 q
�� ������

where � labels the paths connecting q with q� at energy E�

����� Connection to the trace formula

To incorporate di�raction e�ects into the trace formula one should compute
the trace of the Green�s function derived above� As in the case of the Gutzwiller
trace formula " derived from a pure geometrical approximation of the Green�s
function " the trace receives the leading contributions from tubes encircling the
closed curves which now can have di�ractional arcs too� In the case of ordi�
nary geometrical orbits the trace can be evaluated in terms of a saddlepoint
approximation which transforms the integral to a sum over paths that are not
just closed but are in fact periodic� This is due to the fact that the saddle point
condition is equivalent to identifying initial and �nal momentum� In the case
of creeping orbits the situation is not that straightforward since we are dealing
with hard wall potentials that does not allow for variation of the path on the
inside of the boundary of the obstacle� This means that we can only approach
the saddle point from one side which inhibits the usual saddle point approxi�
mation� At this point it is therefore not clear how to proceed with the usual
scheme to obtain the trace� Since the aim of all our e�orts is not directly to get
the trace but to obtain a quantization condition i�e� a condition for a complex
k value to be a resonance of the system we shall here take another approach
to this problem than the usual direct trace integration� We simply determine
the exact quantum mechanical resonance condition for a simple example �the
two�disk scattering system� and then make the usual cycle expansion ansatz
for the spectral determinant related to the scattering problem� By comparison
of the exact resonance condition and the cycle expansion we then can obtain a
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rule relating the ingredients of the semiclassical propagator including di�raction
terms to the weigths of the periodic orbits used in the cycle expansion� That
this procedure is valid and really gives an approximation to the exact quantum
mechanical resonances were recently shown by A� Wirzba and M� Henseler ���
�
In a remarkable work they investigate the two�dimensional scattering of a point
particle from n non�overlapping �xed disks and study the connection between
the spectral properties of the quantum mechanical scattering matrix and its
semi�classical equivalent based on the Gutzwiller�Voros zeta function� They
rewrite the determinant of the scattering matrix in such a way that it separates
into a product over n determinants of ��disk scattering matrices �representing
the incoherent part of the scattering from the n�disk system� and the ratio
of two mutually complex conjugate determinants of the genuinely multi�disk
scattering kernel M which represents the coherent part of the scattering

detS�n��k� �

��


nY
j��

detS����kaj�

��
� detM�k��y

detM�k�
����	�

where aj are the radii of the n disks� Further more they show that in the semi�
classical limit theM determinants will approach the Gutzwiller�Voros spectral
determinants with the inclusion of di�ractional periodic orbits� In the following
we shall sketch how this relation can be obtained just for the M determinant
which is su�cient to obtain the scattering resonances i�e� the poles of the
scattering matrix S�

����� The exact poles of the scattering matrix

As a speci�c example we choose the two disk scattering system which has only a
single geometric periodic orbit� We shall here mainly follow A� Wirzba ��� ��

and Gaspard and Rice ���
� In ���
 it was found that the Scattering matrix S
had the following structure

S � �� iCM��
D ������

The exact quantum mechanical resonances are found as the pole of the scat�
tering matrix which then becomes the wave numbers where the characteristic
determinant detM�k� vanishes

detM�k� � �	 ������

The matrixM can be constructed according to the methods in ref����
 and for
the A� symmetry �which corresponds to regarding the fundamental domaine as
the system in it self� it has the following structure

M � ��A

Amm� �
�

�

Jm�ka�

H
���
m� �ka�

�
����m�

H
���
m�m��kR� �H

���
m�m��kr�

�
	 ������

Here R is the seperation of the centers of the two disks wheras a is the radius
of the disks� Since M�k� has the structure M�k� � � �A�k� it is natural to
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expand the determinant in the characteristic equation ������ as

detM � exp�Tr ln���A��

� � � TrA� �

�
�TrA� � �TrA��
 � 	 	 	 ������

This procedure is mathematically valid since the matrix A is trace class ���
�
We now make the ansatz that ������ should be semiclassicaly represented by
some Gutzwiller�Voros like spectral determinant

#Z�z
 k� �
Y
p

�Y
l��

��� tpl�k�z
np� ������

where the prime periodic orbits should now allow also for di�ractive periodic
orbits� In ������ z is as usual just a book keeping parameter keeping track of the
topological order np of the cycles� In the end after expanding the determinant
in powers of z it will �nally be put equal to �� To get the ansatz into a shape
where it is comparable to ������ we rewrite it as

#Z�z
 k� � exp

�X
p

�X
l��

ln��� tpl�k�z
np

�

� exp

�
�
X
p

�X
l��

�X
m��

�tpl�k�z
np�m

m

�

� exp��
�X
n��

Trnz
n� ������

where we have gathered all terms of power zn in the terms Trn� Expanding the
exponential this �nally yields

#Z�z
 k� � �� Tr�z � �

�
�Tr� � Tr���z

� � 	 	 	 ������

As we see this has exactly the same structure as ������ due to the expansion
of an exp�log� in both cases� It is therefore natural to make the transition
from exact quantum mechanics to semiclassics at this point since this yields a
shortcut compared to the trace evaluation of the creeping Greens function�

To proceed we then have to �rst get A and evaluate its trace and then
compare this to our semiclassical ingredients from the geometrical and creeping
propagators�

For the A� subspace the matrix A is ���
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which gives the trace
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Using the Watson transformation ������ we can transform the sum to a complex
contour integral

TrA �
�

�i

I
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�

sin����

J��ka�
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�
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� �kR� � exp��i���H���

����kR�
�



where we used H
���
��m�kr� � H

���
�m�kr�� As in the case of the one disk propa�

gator we can transform the contour path C to run in the upper half plane by
substituting �� for � in the second part of the contour integral
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After some rewriting where we use for instance ��
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As in the case of the ��disk propagator we can here split the trace into a
geometrical and a creeping contribution where the latter is the one that still
contains the Watson denominator sin����� Under the semiclassical assumption
that ka �� � we can therefore evaluate the integral by using the same procedure
as in the case of the ��disk Greens function� The geometrical part of the trace
yields ���


TrAgeo � �
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�� �a�R

�
exp�ik�R � �a�� ������

Truncating the cumulant expansion ������ to the �rst order in A we therefore
get the condition for resonances using only geometrical input
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This should be compared to the �rst order truncation of the cycle expansion
of the semiclassical expression for the spectral determinant i�e� the Gutzwiller�
Voros determinant
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where the fact that the stability is squared comes from the symmetry reduction
since we are dealing with a boundary orbit� From the analytic expression for
!�

!� �
R� a�

p
R� � �Ra

a
������

it can indeed be shown that �see appendix �����

�
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�p
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so that the stability factor as well as the phase of the semiclassical expansion of
the geometrical part are in comlete agreement with the ordinary semiclassical
Gutzwiller�Voros expression of the spectral determinant�

The semiclassical evaluation of the creeping part of TrA takes place in
exactly the same fashion as in the ��disk propagator� There are two fundamen�
tal creeping paths corresponding to the two kR�dependant Hankel functions

H
���
� �kR� and H

���
����kR�� Following ��� �	
 we can therefore immediately write

down the contributions
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where we used the expression ������ for Dl in order to make the expression
resemble the creeping propagator ������ and where
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�
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whith A��ql� denoting the derivative of the Airy integral at ql� In the expression
������ we recognize the exact form of the creeping propagator for the ��� shaped
orbit in the fundamental domain�

The b trace yields similarly
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where we used the approximation

�l � ka ������

which is valid for large values of ka� In both cases the sum runs over the zeros

�l of the Hankel function H
���
� �ka� in the upper half plane� In the last expres�

sion we recognize the contribution to the Greens function from the periodic

shaped orbit in the fundamental domaine�

By comparison to the cumulant expansion it then becomes clear how to get
the resonance condition at least to the �rst order� to get the trace of A we
simply take the contributions to the Greens function from all the periodic orbits
of topological length � including the di�ractive orbits� For the higher orders in
z terms like �TrA�� gives combinations of shorter orbits whereas TrAn terms
will contain higher order periodic creeping orbits� That this is so for the two
disk system is quite obvious because of the simple geometry� For a general
N �disk system the proof is not quite that simple but for low orders in z it can
be checked by direct computation of the traces� In the three disk system the
relation between low order periodic creeping orbits and the trace of A has been
performed by A� Wirzba ��� ��
�

Even though it is not necessary for �nding the resonances we can now also
get the semiclassical approximation of the trace by using the relation

TrG�E� �
d

dE
ln��E� ����	�

Here the di�raction as well as the creeping segments will give extra contri�
butions compared to the usual geometrical time contribution but since these
contributions are of the order �ka����� we can neglect these since we have al�
ready done this in our approximation of �l� The di�raction contribution to the
trace therefore reads in this approximation

TrGD�E� �
X
cycles

T �E�

i�h

nY
i��

D�qi�G�qi
 qi��
 E� ������

where T �E� is the time period of the cycle �without repeats� and G�qi
 qi��
 E�
is alternatingly the free propagator and the creeping propagator�

����� Cycle expansion of the di�raction spectral determinant

To apply the di�raction spectral determinant we here discuss how to use the
well known cycle expansion ��	
 to calculate this� Using the ansatz ������ the
total spectral determinant can be written

��k� � �G�k��D�k� ���	��

where we have split the formal product into the usual Gutzwiller Voros spec�
tral determinant representing the purely geometrical input and the di�ractive
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spectral determinant representing the new information obtained from the geo�
metrical theory of di�raction� The product is only formal since the eigenener�
gies are not given by the zeros of �G�E� or �D�E� individually but have to
be calculated from a curvature expansion of the combined determinant ��E�
itself�

The di�raction part of the spectral determinant is

�D�E� � exp

�
	� �X

p�r��

�

r

npY
i��

�D�qpi �G�qpi 
 q
p
i��
 E�
r



A 
 ���	��

where the summation goes over closed primitive �non�repeating� cycles p and
the repetition number r� The product of Green�s functions should be evaluated
for qpi belonging to the primitive cycle p� After summation over r the spectral
determinant can be written as

�D�E� �
Y
p

��� tp� ���	��

with

tp �

npY
i��

D�qpi �G�qpi 
 q
p
i��
 E�
 ���	��

where qpi belongs to the primitive cycle p� Here the mode numbers l of the
di�raction constants and the corresponding summations have been surpressed
for notational simplicity� they can be easily restored as e�g� in the �nal expres�
sion �������

We can conclude that the di�ractional part �D�E� of the spectral determi�
nant shares some nice features of the periodic orbit expansion of the dynamical
zeta functions��	
 and it can be expanded as

�D�E� � ��
X
p

tp �
X
p�p�

tptp� � � � � 	 ���	��

Now if we restrict ourselves to include only the l � � mode then the weight
���	�� has the following property which helps in radically reducing the number
of relevant contributions in the expansion� If two di�erent cycles p and p� have
at least one common piece in their di�raction arcs then the two cycles can be
composed to one longer cycle p�p� and the weight corresponding to this longer
cycle is the product of the weights of the short cycles

tp�p� � tp � tp� 	 ���	��
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As a consequence the product of primitive cycles which have at least one
common piece in their di�raction arcs can be reduced in such a way that the
composite cycles are exactly canceled in the curvature expansion

Y
p

��� tp� � ��
X
b

tb
 ���	��

where tb are basic primitive orbits which can not be composed from shorter
primitive orbits� To see that this nice composition rule does not hold if we
include the higher l modes as well we can consider the two shortest pure creep�
ing orbits and their composition in the two�disk system� These two orbits are
then the �� and the 
 shaped orbits� If we consider the two orbits in the
fundamental domain they will have the following schematic form

t� �
eikRp
R

X
l

Cle
i�l�

t� �
eik

p
R���a�q

�R� � �a�����

X
l

Cle
i�l��i�l�� ���	��

where � is the little extra angle the ray has to creep in the case of the 

shaped orbit as compared to the � shaped orbit� The above weights are only
given modulus an for this purpose unimportant overall factor� The composition
of the two orbits can be constructed by �rst following the �� and then the 

shaped orbit� The weight for the composed orbit therefore reads

t�� �
eikRp
R

X
l

Cle
i�l��i�l�

eik
p
R���a�q

�R� � �a�����

X
l�

C �le
i��
l
��i��

l
�

� const�
X
ll�

ClCl�e
i��l��l� ���i��l��l��� ���		�

If the composition rule were to hold when including all the l modes we would
expect that the expression ���		� should be the product of the two individual
terms in ���	��� By taking the product

t�t� � const�
X
ll�

ei��l��l����i��l�� ���	��

we see that this is not the case in general� This is due to that in the composed
orbit the overlapping creeping segments are not identical to any of the original
creeping segments since the orbit shifts from �� �creeping to �
 �creeping
each time the ray creeps around the disk� Of course the composition rule would
still hold if the creeping segments were identically the same as it is the case for
repetitions of a creeping orbit� t�a � t�a�

��	 Numerical results

In this section we try to demonstrate the signi�cance of the di�raction cor�
rections to the trace formula� As working examples we have chosen our usual
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favorite systems� the two� and three�disk scattering systems� In order to be
able to use only the basic primitive orbits and the composition rule for these
we have restricted the calculations to the l � mode only� As the real part of
the damping coe�cient �l goes like �l�k� � const�Re k����l� �

��
��� and since

the di�raction coe�cients Cl is a decreasing function of l we assume that the
calculation will give the leading behaviour of the full spectral determinant�

����� Results for the two	disk system

To demonstrate the importance of the di�raction e�ects to the spectra we
have calculated the A� resonances of the scattering system of two equally sized
hard circular disks with disk separation R � �a where a is the radius of one
disk� In this system there is only one geometrical periodic cycle along the
line connecting the centers of the disks� Its stability !p � �		�	���� and action
Sp � kLp � k ��a yield the geometrical part of the spectral determinant��� ��


�G�k� �
�Y
j��

�
� �

eikLp

!
����j���
p

�

 ������

where k �
p
�mE��h and �m � �h � � and leads to the following predictions

for the semiclassical A� resonances

kresn�j �

�
���n� ��� i

� � �j

�
ln!p

�
�Lp ������

with n � �
 �
 �
 � � �� Note in the above expressions ����j��� replaces the usual
weight �� � �j��� since the geometrical orbit in the two�disk problem lies on
the boundary of the fundamental domain�

Fig� ��� shows the �rst four new basic cycles in the fundamental domain���
�
We computed the geometrical data of the �rst ten orbits and used them to
construct the creeping and geometrical Green�s functions� If the ray connecting
q and q� is re�ected once or more from the curved hard walls before hitting
tangentially one of the surfaces we can keep track of the change in the amplitude

by the help of the Sinai�Bunimovich curvatures ������� The e�ective radiusRe�
b 

the length of the geometrical arc LG
b and the length of the di�raction part LD

b

of the �rst ten orbits with creeping sections are listed in Table ����

The di�raction part of the spectral determinant is �nally given by

�D�k� � ��
X
b�l

����mbCl
a���ei����eik�L

G
b
�LD

b
���lLDb

k���
q
Re�
b

� �

�� e���ik��l�a

 ������

where Cl � ��������������Ai��xl�� and Ai��xl� is the derivative of the Airy
function evaluated at it�s l�th zero xl� We computed the spectra by truncating
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mb LG
b �a Re�

b �a LD
b �a

� �����	�������� �����	�������� ��	����������	
� �������������� �������������� ������������	�
� ��	����������� �	����	�����	� ������			�����
� �������	������ �	��	����	���� �������	������
� ���	���������� ��	����������� ����������		��
� ���	���������	 ���������	���� ��������������
� ���	�������	�� ��������	����� ������		����	�
� ���	���������� �������������� ������	�������
� ���	��	������� ����	��������� ��������������
� ���	���������� ��������	����� �����	��������

Table ���� The �rst ten basic cycles tb which include creeping sections in the
fundamental region of two�disk problem �with disk separation R � �a�� The
cycles are labeled by the number mb of geometrical re�ections from one of the

disks� The length of the geometrical arc LG
b  the e�ective radius Re�

b and the
length of the di�raction segment LD

b are listed in units of the disk radius a�

the product �G�k��D�k� at maximal cycle length � and using only the l � �
term in the now restored summation over the creeping mode number� The exact
quantum mechanical resonances were computed following ref����
�

The leading semiclassical resonances are given equally well with and without
creeping modi�cations� In �g� ��� we can see that the new formula describes
the resonances of the two disk system with a few�percent error while the com�
putation based on the geometrical cycle alone ������ gives completely false
results for the next�to�leading resonances �see ��������

����� Results for the �	disk scattering system

In order to apply the geometrical theory of di�raction to the calculation of
semiclassical resonances we also have to account for the di�raction �creeping�
orbits of the system� To give an overview of the work to be done we start by
counting the number of periodic creeping orbits to be evaluated� Because of the
symmetry of the system we can assume that the creeping orbit always starts
tangentially from the �half�� disk in the fundamental domain which we label disk
number � see �g� ��	� Considering �rst an orbit with no geometrical bounces we
see that it has two di�erent disks to go to and for each each disk two di�erent
sides to creep in� This makes a total of four di�raction orbits of topological
length �� When these are folded back into the fundamental domain we see that
two of them are self retracing� The two other orbits are tracing the same orbit
but in opposite directions� If we consider paths of the particle with m bounces
we see that there will be �n�� � �m�� periodic creeping orbits of topological
order n as for each one of the m bounces the particle can choose between two
disks� Thus the number of periodic creeping orbits grows exponentially fast with
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Figure ���� The simplest classes D��� �a� and D��� �b� of curves in two dimen�
sions� In the window �c�� the �rst four basic orbits in the fundamental domain
of the two�disk system�
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Figure ���� Resonances for the A� subspace of the two�disk system �with disk
separation R � �a� in the complex k plane in units of the disk radius a� The
diamonds label the exact quantum mechanical resonances which are the poles
of the scattering matrix� The crosses are their semiclassical approximations
including the di�raction terms derived in this paper� The boxes refer to the
ordinary Gutzwiller semiclassical approximation with �j � �
 �� where the
di�raction e�ects are not included�
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the topological length n of the orbit� It is quite astonishing however as we will
see later how few of these orbits are in fact needed to get a good description
of the scattering resonances �including the ones with large imaginary parts��
The creeping orbits can be described completely by their itinerary ����� 	 	 	 �n
where the �i�s are taken from the alphabet f�
 �
 �g and where we do not allow
the repeats 	 	 	 �� 	 	 	  	 	 	 �� 	 	 	 and 	 	 	 �� 	 	 	 � This description contains a
double degeneracy due to the fact that the orbit has the choice to creep around
the �nal disk clockwise or anti�clockwise� For instance $���� can represent two
di�erent orbits which start from disk � in the fundamental domain then hit disk
number � and �nally creep around the �nal disk ��� clockwise or anti�clockwise�

The restriction that the creeping periodic orbits should start and end tan�
gentially on one of the disks simpli�es the search procedure for them consider�
ably� whereas in the case of geometrical n�bounce cycles one had to minimize
a function of n bouncing parameters we here only have one parameter in play
namely the angle where the creeping orbit leaves the initial disk� Suppose now
that we want a speci�c creeping orbit described by a series of disk bounces plus
the speci�cation of the �nal creeping domain as above� We then scan through
all the angles that leave the �rst disk in the fundamental domain� This gives
us an interval of angles where the �rst wanted disk is being hit� We then scan
this interval for bounces on the next disk in the itinerary and so on� Finally
we scan the last obtained interval to �nd the angle under which the ray creeps
into the wanted side of the �nal disk� Having obtained the creeping cycles we
can calculate the e�ective radius by using the usual Jacobian ������ for the
stabilities� In table ��� we list the data for the �rst few creeping cycles�

To evaluate the results of the di�raction extended Gutzwiller�Voros spectral
determinant we compare the resonances determined by this to the resonances
determined just from geometrical orbits and to the exact quantum resonances�

The data are displayed in �g� ���� As one can see the Gutzwiller Voros de�
terminant accounts reasonably well for the leading order of resonances whereas
it fails for the next series� In �g� ��� however we can see that " when a few
periodic creeping orbits are introduced " the results are qualitatively di�erent
and represent much better the trend of the exact quantum resonance data� For
instance one can make a one�to�one identi�cation of the quantum and semiclas�
sical resonances which is not possible in the purely geometrical theory since in
that approximation even the number of resonances is wrong�

The series of subleading resonances also approximately de�nes the lower
boundary of the region in which the di�ractional spectral determinant still has
a high accuracy and good convergence properties� This can also be seen from
�g� ��� since for small Re k and large negative Im k we have a relatively larger
deviation between the exact and creeping resonances�
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21

3

Figure ��	� The full ��disk system with a copy of the fundamental domain�
Representatives of the creeping orbits of topological length � are displayed in
full space as well as in the fundamental one�
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Figure ���� �Left� The exact quantum mechanical resonances �diamonds� and
the pure geometrical Gutzwiller Voros resonances �crosses� in units of ��a in
the complex k plane� The resonances belong to the one�dimensional A� repre�
sentation of the ��disk system with R�a � �� In the semiclassical calculation
cycles up to topological length � have been used� The leading resonances close
to the real axis are described well by the Gutzwiller Voros resonances whereas
the subleading semiclassical resonances clearly deviate from the exact quan�
tum resonances� �Right� The exact quantum mechanical �diamonds� and the
semiclassical �crosses� A� resonances of the R�a � � three�disk system� The
resonances are calculated by including di�ractional creeping orbits up to order
� in the geometrical theory of di�raction� As in the two disk case an improve�
ment of the approximation is clearly visible especially for the second row of the
leading resonances as well as for the subleading di�ractional ones� In the latter
case the qualitative trend is clearly reproduced� As discussed above the accu�
racy of the semiclassical resonances becomes worse in the region where Re k is
small and Im k is large�
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pc Re�
b �a LG

b �a LD
b �a

�� �������� �������� ���		���
�� �����	�� �����	�� ��	�����
�� �������� �������� ��������
�� �����	�� �����	�� ��	�����
��� �	����	�� ��	����� ������	�
��� �	��	���� �������	 �������	
��� �	����	�� ��	����� ��������
��� �	��	���� �������	 �������	
��� ��������� ������	�� ���	�	��
��� ��������� ������	�� ����	���
��� 	��	����� ������	�� ����	���
��� ��������� ������	�� ����	���

Table ���� Creeping cycle data for the ��disk system with R � a � �� The �rst
column indicates the itinerary of the orbit second column the e�ective radius
of the orbit calculated by means of the Sinai�Bunimovich curvatures and �naly
the third and fourth columns shows the length of the free �ight and the creeping
sections respectively�

����� Corrections to the Airy approximation

In our calculation of the di�ractive Greens function Gcreep we used the Airy
approximation ������ for the Hankel functions and its zeros� This approximation
is only the leading term in a polynomial series of corrections to the zeros� In
reference ��	
 and especially in Franz and Galle ���
 one can �nd correction
terms to order O��ka����� to the standard Airy approximation of the zeros �l
of the Hankel function H

���
� �ka� in the complex plane� These corrections read
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FIG.9:  Shape Resonances in 1-Disk-System: QM exact vs. Semiclassical creeping
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FIG.9":  Shape Resonances of 1-Disk-System: QM exact vs. Semiclass. creeping (with 2nd Airy corr.)  ( R=6a )
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Figure ����� �Left� The exact quantum�mechanical resonances for the ��disk

scattering system �given by the zeros of H
���
m �ka�� are plotted as diamonds

the di�ractional semiclassical resonances which are given by the zeros of the
creeping determinant ���disk�k� �

Q�
l���� � ei�l��a� are plotted as crosses�

In this calculation only the standard Airy approximation is used� Note that
the creeping terms to this order systematically underestimate the magnitude of
the imaginary part of the exact resonances� We also see that the semiclassical
data becomes better with increasing real part of the wave number k and with
decreasing jImkj as they should as semiclassical approximations� �Right� The
same as above �gure except that the semiclassical resonances now include the
two �rst terms up to order O��ka���� in the Airy corrections� We see that the
approximation is almost perfect especially for the leading row of resonances�
The inclusion of the �rd Airy correction �terms of order O��ka������ does not
change the plot further� The data are from A� Wirzba�

�l � ka� ei����ka����sl

�e�i����ka����� s
�
l

��

��ka���

��

�
�� s�l

�

�
������

�ei���
�ka����

����

�
��sl � �	�s�l

�	�

�

� 	 	 	 
 ������

where sl � �����xl and xl is the l�th zero of the Airy integral Ai�x� �R�
� dt cos�xt � t��� The standard Airy approximation only contains the �rst
two terms in the above series and therefore is only of order O��ka������ Wirzba
���
 has studied the in�uence of these corrections in the simple case of the ��
and ��disk scattering systems� As can be seen from �gure ���� it turns out that
the corrections improve the pure creeping results considerably� For the ��disk
scatterer a similar improvement of the resonances are observed by inclusion of
the next terms in the Airy approximation�
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As seen from the numerical results it would be very nice if one could in�
corporate the Airy corrections into our expression for the creeping propagator�
This however is not so straightforward in the general case as in the ��disk sit�
uation� The reason is that it is not su�cient to include the Airy corrections in
the decay exponents �l since one should also include the changes in �l in the
Debye approximation which makes the previous so clear geometrical interpre�
tation of the ingredients of the propagator more ambiguous� The improvements
in the results are though quite dramatic so it seems worthwile to try to �nd
the analog in the Keller construction� However this still remains to be done�

��� Discussion

In this chapter we have derived a method to obtain a semiclassical approx�
imation to the quantum propagator including certain di�raction e�ects such
as di�raction along smooth surfaces as well as di�raction from vertices� The
method is based on the geometrical theory of di�raction introduced by Keller�
We have shown how the introduced periodic creeping orbits in�ict on the
Gutzwiller trace formula and we have constructed a scheme on how to incorpo�
rate the di�raction e�ects in the semiclassical spectral determinant for quantum
systems� By numerical computations we have furthermore shown that by inclu�
sion of the di�raction e�ects the semiclassical resonances of simple scattering
systems changes dramatically and describes very well the exact quantum res�
onances� As the description is semiclassical we use the Van Vleck propagator
for the free �ight sections and our semiclassical approximation to the creeping
propagator for the creeping sections� The errors of the resonances entering by
this approach are therefore mainly originated in three sources�

�� To be able to keep our calculation in terms of basic primitive cycles we
used only the l � � mode in the semiclassical approximation to the creep�
ing propagator� This approximation is justi�ed when the real part of ka
is of order of or larger than � since the exponential damping term �l�k�
goes like

�l�k� � const�Re �ka�����l � �

�
���� ������

and the relative error thus introduced is less than � percent for ka 	 ��
This error is therefore not su�cient to explain our deviations from the
exact resonances�

�� In our semiclassical evaluation of the creeping propagator we use the Airy
approximation� As it was demonstrated by the calculations of A� Wirzba
the polynomial terms in the Airy corrections can give sizeable corrections
to the calculated resonances� In the simpler ��disk���
 and ��disk���
 prob�
lems the contributions resulting from the higher polynomial terms in the
Airy expansion of the creeping propagator move the subleading semiclas�
sical resonances on top of their corresponding exact quantum analogs to
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�gure accuracy� In the three�disk case the corresponding calculation is
plagued by the exponentially proliferating number of periodic orbits but
the hope is of course that the corresponding Airy correction terms could
improve the subleading semiclassical resonances as well�

�� Even the cumulant expansion of the exact quantum mechanical scattering
determinant is for large negative Im k very delicate as the single terms
entering the cumulant expansion become individually large���
� As the
periodic orbit expansion is just the semiclassical approximation to the
cumulant expansion ���
 it cannot be expected that the periodic orbit
expansion works better than this� In fact as the individual contributions
of the periodic orbits become larger with increasing negative Im k the
individual errors from the semiclassical expansion are also increasing such
that the total error can become sizable�

It would be natural to expect that the exponential proliferation of periodic
orbits in the case of the ��disk system might destroy the validity of the semi�
classical description completely� We conclude that this seems not to be the
case� As we have demonstrated one only need the basic representatives of the
creeping families to change the picture of the scattering resonances drastically
in the direction of the exact quantum resonances�


