Chapter 9

Appendices

9.1 Derivations and examples of chapter 5

The Jacobian as an integral

Equation (5.17) can be obtained by integrating the time derivative of the Ja-
cobian, which can be obtained as follows

q(t + 5t) = q(t) + qot

= q(t)+ %—Hét (9.1)
p(t + 5t) = p(t) + pdt

= p(t) - %—Z& (9.2)

which gives

9%H 92H
J(t+6t) = ( L S50 i a”i%”zf;t )
" 9¢;9q ot 1- 9q:0p; ot
= 1+ J(t)ét. (9.3)

From the last expression we can read of the time derivative of the Jacobian

9%H 92H
_ 0¢;0p; Op;Op;
J(t) = CPH 9H
0q;0q; 0q;0p;
= D%H

The differential equation for the M flow

The differential equation that drives the M flow can be derived in the following
way. If we substitute the elements of the infinitesimal Jacobi matrix (9.3). For
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infinitesimal time we have
AM = M'-M
= (Jpq + JppM)(Jqq + Jqu) -M

= ((Jpq + JppM) - M(Jqq + Jqu))( g t Jqu)il (9.4)
which gives
AM(JQQ + Jqu) = (Jpq + JppM) - M(Jqq + Jqu)
0*H  0°H 0*H  0°H
= - M)-M M) (9.5
(aqaq * 0q0p ) (6p8q * OpOp ) (9:5)
And since in the limit 6¢ — 0 we have J,; — 1 and J,, — 0 we get
0*H 0’H  9’H 0*H
M=- M M+ M M .
<6q8q * OpOq * 0qop + OpOp ) ’ (9:6)

The volume ratio as an integral

The expression for the volume ratio (5.24) can be derived by splitting the ratio
into a product over ratios of infinitesimal time evolution:

Vi) _ 1 Vew
V(gp) tl;[o Vi
=[] det(Igq + IpM")
t=0
u 0*’H  0°H _,
= Hdet 1+ (a o +8p8pM>5t)
t 32
= ew{ [ 150+ apap M]dr} (9.7)

Evolution of the quasi-classical wave function

If we only consider the delta functions in the kernel (9.39) and the initial wave
function the calculation goes as follows. First we integrate out M and p in the
evolved wave function:

HapMt) = [ ddpdMS(g — q'(a,p)0(' — p'g,p) M ~ M'(g,p, M)

2
< oo = VS(a.0)30 - S50 (4,0)
= / dadpd(q/ — ¢'(0.))3(0' ~ p'(4.p)) M’ — M'(q.p.0S(a.

x d(p—VS(q, ))d)(q,O)
- / dgs(d' — q'(¢, VS(¢,0))5(' — p'(¢. VS(,0))
x — M'(q,VS(q,0),8%5(q,0)/0q%))1(q,0)

0)/0¢%))
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Then when we finaly do the ¢ integral we obtain the evolved wave function in
the same form as the initial one, divided with the determinant of the Jacobian
of the configuration space evolution which is just the volume ratio

7 1 o 82S(q,at)

_ I / !
Plap, Myt) = 5 0 = VS, )M — =55

—t /’0‘
|det(%_§)| )¥(q"(q'),0)

(9.8)

In order to get the right volume ratio in front of the old wave function we
therefore have to multiply this expression with /| det (%—'{;) |, which is just

equal to the term (V(¢')/V (¢))"/? in (5.24), and hence gives the change of the
sign in the trace integral in the exponent.

9.1.1 Alternative derivation of the curvature trace

In this section we shall derive the general result of the curvature integration
in an arbitrary number of dimensions. The derivation of the result will follow
a different approach than the on in section 5.3. Here we consider the general
evolution of Lagrangian manifolds corresponding to the periodic solutions of
the curvature flow.

Lagrangian manifolds

The definition of a Lagrangian manifold involves the symplectic form denoted
w, which is an antisymmetric, bilinear operator acting on vectors in phase space.
If we let dz1 = (0q;,0p;) and dz2 = (0q,, dpy) be two small displacements in
phase space, then the action of the symplectic form on them is defined by

w(dz1,023) = 0Py -0qy — Py - 6qy (9.9)
or, in matrix form
w(0z1,0z9) = 021 w02y (9.10)

where w is the unit symplectic matrix,

= 01 9.11
=% (9.11)

The matrix w is antisymmetric and orthogonal, so w' = w™! = —w. Note
that only two vectors are involved in the definition of the symplectic form
no matter how many dimensions in the phase space. The symplectic form is
invariant under canonical transformations, in the sense that the value of the
right hand side of equation (9.9) is independant of the canonical coordinates
used to compute it.
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We now define a Lagrangian manifold as an f-dimensional surface L in the
2f dimensional phasespace such that at all points (x, p) on L and for all vectors
0z1,0zo tangent to L at (x,p) , we have

w(dz1,0z2) = 0. (9.12)
As an example we can investigate under which conditions a surface of the form
L = {xp)p=Mx} (9.13)

is lagrangian. Inserting the condition (9.13) into the definition of the symplectic
form yields

(Mdq,) - dqy — (Mdqy) -6q; = 0 (9.14)
which implies
M;; = My (9.15)

i.e. that that matrix M should be symmetric. This is going to be an important
restriction in the following sections.

As we menchioned before the symplectic form is conserved by canonical
transformations. As a special case this implies that the symplectic form is
conserved by a Hamiltonian flow since this can be considered as a canonical
transformation. This means that Lagrangian manifolds evolve into Lagrangian
manifolds in Hamiltonian flows, - an important fact that we shall also use in
our following considerations.

The curvature integral

We consider integrals of the type

I(¢',p',M') = /dqddef(q,p,M;t)5(Q’ —q")s(p" —p")s(M' — NI.JL6)

where the super script ¢ indicates the variabel evolved in time ¢ . Doing the
q integral gives a sum over certain ¢ values who has the possibility to end up
at the correct final ¢’ if they are provided the correct initial momentum. The
p integration rules out all except one of the initial ¢ values since the phase
space flow gives unique solutions to the Hamilton equations. In this way we get
a unique point (g,p) defined in phase space namely the initial condition that
leads to (¢/,p') in time ¢.

Once this point is specified the flow defines a (parametrized) flow on the
curvature subspace g, ) * M — M'. The map works in the following way:
given (qo, po) and My we have defined a little fraction of a Lagrangian manifold

L = {(g,p)lp(dq) = po + Modq}

where we assume that dg = ¢ — ¢ is very small. That the manifold is really
Lagrangian is ensured by the fact that M is symmetric since it is the second
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derivative of the action function M = 925/ 0q;0q;. This manifold can then be
uniquely evolved in time ¢ according to Hamilton Jacoby equations and from
the new manifold generated in this way we can obtain M’ = M!(qq,pg) as a
function of the original curvature. M’ then specifies the tangent manifold at
the point (¢’,p’) by the relation

5p = Mq. (9.17)

Example

As an example of the time evolution of the curvature matrix, we consider the
free flight part of an N dimensional billard. Here we have

z(t) = x(0) +Mopz(0)t (9.18)
and

p(t) = p(0) (9.19)
so that we can write

p(t) = Moz
= My(1 + Myt) " z(t) (9.20)

which gives
p(t) = Mp(1+ Mot) z(t) (9.21)

and hence we see that the curvature matrix is a sort of generalized Sinai-
Bunimowich curvature.

We are interested in the trace of the evolution operator £ in (9.16)

! = / dgdpdMs(q — q')é(p — p')d(M — M)
X e? foTp(HquerpM)dT (9.22)

Following the strategy in section 3.1 we introduce longitudinal x| and perpen-
dicular x| coordinates along the total x = (¢,p, M) flow to evaluate the con-
tribution from a prime periodic orbit to the trace. In the longitudinal direction
we get

oo

/dxH(SH(x _x) = T, 6(t—rTy) (9.23)

r=1
where T}, is the period of the prime periodic orbit. In the perpendicular direction
we get
1

|det(1 — 7)) (9-24)

/dxlél(x —x"r) =
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where J, is the transverse stability matrix, u(t + T},) = J,u(t) of the entire
dqt opt

flow. Since o = av =0 it has the structure
A J 0
detd, = | " (9.25)
x  Jm

and since this is block diagonalizable the determinant splits up into a product
of the usual transverse determinant and a determinant corresponding to the M
flow

det(1—J7) = det(1—Jp)-det(1 — Jngj). (9.26)

We can then write the trace in a form similar to the one in [15]

8t —1rTy)

ot = S, ST TR A

zp: p§|det(1—.]§)| pr
(9.27)

with
1 rTp

€5f0 (Hpg+HppM)dr
A = 9.28
b M;_M [det(1 — Ing))] (9.28)

The first point in obtaining (9.28) is then to find the periodic solutions of
the M flow. To do this we note that the invariant manifolds W* and W* of
the periodic orbit locally defines linear subspaces E* and E* which are tangent
to the invariant manifolds at the periodic orbit [42] Let us say that ES =
span{si,s9,...sy} and E* = span{uj,us,...uny} . Now let us look at the
mixed subspace L = span{ej,es,...ey} where the e; 's are taken from the
union {si,Sg,...Sy,Us,Us,...uy}. This space has the right dimension for
being a Lagrangian manifold, and taking the symplectic form on two of the
eigenvectors and evolving the flow for one period of the orbit we get

w(f'(de;), f'(de;)) = Nidjw(de;, de;)
= w(éei,éej) (9.29)

where the last equation follows since the symplectic form is conserved by the
flow. From this it follows that the symplectic form actually vanishes on any
set of eigenvectors where the product \;\; is different from unity. This implies
that a mixed subspace choosen in this way is actually a Lagrangian manifold.
If we now let the flow evolve such a manifold for one period, we get for points
on the Lagrangian manifold close to the periodic point

.7:t(:L‘* + 5@181 +...+ 5aNeN) = z* + Jp(5a1e1 + ...+ 5aNeN)
z* + A15a1e1 +...+ AN(SaNeN
e z*+1L (9.30)

so that an N-dimensional superposition of the linear subspaces is also locally
invariant and hence leads to a periodic solution of the curvature flow.
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If we are only looking at Hamiltonian flows where the eigenvalues of the
Jacobian are non degenerate, we see that for every eigenvector of the Jacobian
the symplectic form on all other eigenvectors except the one with eigenvalue
A~' must vanish due to the above argument. However, the symplectic form
on an eigenvector with eigenvalue A and its adjoint with eigenvalue A~! does
not vanish. To see this we can consider the simple case where the phase space
is 4-dimensional. Let us denote the four eigenvectors deq,...,deq4 with corre-
sponding eigenvalues A1, Ag, Afl, Ay L. We can now choose a vector x so

w(der,x) # 0 (9.31)
Expanding x on the four eigenvectors and applying the linearity of w then yields
w(5e1,5e3) 75 0 (932)

since all the other terms vanish due to the above argument. This means that
in the non degenrate case where one can uniquely define the adjoint vector
corresponding to an eigenvector by virtue of having the inverse eigenvalue, such
two adjoint vectors can never lie in the same Lagrangian manifold. In this case
the number of Lagrangian manifolds that are periodic solutions to our extended
flow can therefore easily be counted. A given Lagrangian manifold is expanded
by N eigenvectors of the Jacobian which each can be either an unstable or the
adjoint stable eigenvector. This gives 2V different possibilities and hence there
are 2V periodic solutions of the curvature flow.

By the above considerations we have now found all the periodic solutions of
the curvature flow as the 2V possible null-manifolds spanned by the eigenvectors
of the Jacobian. The task is therefore now to find the eigenvalues of Jpg as a
function of the usual cycle stabilities.

2-dimensional flows

In the case of a 2-dimesional Hamiltonian flow reduced to a 2-dimensional
Poincare section return map one can use the rational fraction transformation
technique of the Sinai Bunimovich curvature to get the variation of M as illus-
trated in [15]. Since this procedure is restricted to two dimensions we will here
show a procedure to get the M stabilities which can be generalised to higher
dimensions. The idea is simply the following. Suppose that we have already
found the periodic solutions of the M flow. Then we make a small variation
0M of the periodic solution My. This gives us a new manifold according to
(9.17). Using the usual Jacobian we then evolve as many points on this new
manifold as it takes to span it (N) for a period of time 7}, and then from the
evolved points we construct the linearization of the evolved manifold. From
this manifold we then get the evolved curvature matrix M? which is of the form

(Mp +6M)! = My + Jpp6M + O(6M?) (9.33)

where now Jyg should be expressed in terms of the cycle stabilities.
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To see how this works we first consider a simple two-dimensional example
where the result is known [15]. In two dimensions we can reduce the problem
to a 2-dimensional Poincaré surface of section mapping which will then have an
unstable u = (u1,ug) direction of stability A and a stable direction s = (s1, s2)
of stability A~!. If the system is hyperbolic we have A > 1. In the usual
Cartesian coordinates the full Jacobian can be found by the set of equations

Ju =Au
Js =Als

This gives the Jacobian

—(Aupsg — 382) (A — Lyuys )
ﬂ)

. o -1
J = (s1u2 — sou1) ( —(A = F)uzss  (Aups) — 2

The linearized stable and unstable manifolds which are both simply lines on
the Poincare section see fig 9.1 are characterized by their slopes mg = so2/s1

p

m,= u /4

m,= s /s

q

Figure 9.1: The stable and unstable manifolds in the Poincare section. A
variation of the unstable manifold is shown.

and m,, = uy/u;. We now make a small variation dms of ms. This corresponds
to points on the line (z,p) = (x, (ms + dms)x). These points are mapped by
the Jacobian into a line of slope

J21 + J22 (ms + 5m5)

(ms + dm)' oy g (e T 0m)” (9.34)
According to (9.33) we expect the result to be of the form
(ms + oms) = mg + Admg + O(6m?) (9.35)
we therefore expand the denominator to the first order in dm;
S N /T 0 | Ul v | Ul e
Ju + Jigmg
_ Ja + S (1+( J22 Ji2 \oms)

Ji1 + Jiams Jo1 4 Jagms  Ji1 + Jiams
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But since mg was an invariant of the map this simply gives

Joo — Jiamg
s 0 s, - s 0 s 9.36
(mg + 0my) m+J11+J12msm ( )

Putting in the entities from the Jacobian we get
(ms +0mg) = ms+ A20m; (9.37)

that is A, = A? for the stable direction. For the unstable direction everything
is similar and we get A, = A2

The trace integration in 2 dimensions

To get the trace of the new evolution operator £ we have to do the integral
L = [ dgdpdME (g p, M, g p, M, 0) (9.38)

with the kernel

. to il 1 o2 | 8%H
emerfO d77+§T‘I'{ apaq#»apapl\/l

}5(q—qt(q,p))5(p—pt(q,p))5(M—Mt(q,p, M)), (9.39)

where ¢'(q,p), p'(¢,p) and M!(q,p, M) denote the evolution of ¢, p and M
from the initial coordinates ¢,p = VSy(¢q) and M = 0;0;5(¢) during the time
t, and v is the Maslov index. this integral is exactly of the type (9.16.) For a
2-dimensional flow we saw that the stabilities of the M flow could be found in
terms of the stabilities of the periodic orbits. So what is left is to evaluate the
integral of the trace. Assuming the Hamiltonian to be of the form H(q,p) =
p?/2m + V(q), we are left with the integral

V(d') )1/2
Vi)

Now the volume ratio in (9.40) is in configuration space but is determined by
the initial M matrix since this gives the variations in initial momenta of the
0¢’s spanning the initial configuration space volume element. This means that
the initial M matrix decides if we are on the stable or the unstable manifold.
Therefore the volume ratio is quite simple to determine since it is simply A or
A~ if we are on the unstable respectively stable manifold.

exp{% /Otde(T)} — (9.40)

In higher dimensions we are in general on some mixed stability manifold L
spanned by N phase space vectors e;. To determine the volume ratio we select N
infinitesimal vectors dqy, s . . . dqn spanning a small parallelepiped around the
periodic point in configuration space. The volume of this is det(dqidqs . .. dqn)
. We then evolve these according to the Jacobian and evaluate the volume of the
projection of the image on configuration space. By choosing dq; = m,(e;) the
projection of the e; vector on the g-space, we can easily calculate the image of
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the N dx; = (dq;, 0p;) = de; vectors. The volume of the evolved parallelepiped
in configuration space is then given by det(Aym e, Aomses ... Aymgen) . Since
multiplication of a column of a matrix by a factor A changes the determinant
of the matrix with the same factor we get the volume ratio as the product of
the stabilities of the manifold

V(g") A

Vi) i:l_[lAZ (9.41)

We now have everything we need to do the integral in 2-dimensions. The
unstable and the stable manifold through the periodic orbit yields in the M
integration respectively |A,|"/?/(1 — A;?) and A, 171271 — A2). Putting this
into (9.28) yields

Apl2ag Y
pr 1 _ A2 |1 — A2
1= A7 P
A7l JAp[
1—Ay% 1 — A
which is the formula obtained in [15] for 8 = 1/2.

A

(9.42)

Higher dimensions

As we saw above we know how to do the trace integral in any number of di-
mensions, and we know what the periodic solutions of M are. The only thing
we need now is to generalize the scheme in the above section (9.1.1). To see
how it works let us consider the following simple example in 3-dimensions. Here
the phase space is 6-dimensional but a Poincaré section and reduction to the
energy shell reduces the problem to a 4-dimensional map. Let us further as-
sume that the Jacobian in these coordinates is diagonal with diagonal elements:
A, Ao, Afl,Agl . Then My = 0 is a periodic solution since this corresponds
to a swarm of points lying in the g-plane with zero momentum:

L = {(q1,92,p1,p2)|p1 =p2 =0}

We then make a small variation dM of the curvature matrix and select two
vectors that spans the manifold corresponding to {M. As an example we might
choose:

1 0
0 1
T om0 T dmae
dmoq 0mao

The image under the Jacobian of these two vectors is given by

Ay 0
span{ 0 A }
5m11Af1 ’ 5m12Af1

6m21A51 6m22A51
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from which we get the evolved curvature matrix by “division” M’ = §p’/dx’

! ! omi2
omy; = A omiy = 142

dmaa
A3

! _ !/ _
omy, = e 0myy =

From this we can directly get the stabilities of the periodic M solution cor-
responding to this choice of initial curvature. One should of course take care
that the bonds on M require this to be symmetric and we should also remem-
ber to take other M solutions into account in the final result. The last point is
not so straight forward in this example because all the other Lagrangian planes
will be caustics since they have zero variation in one of the g-directions (in two
dimensions this would correspond to that the invariant subspaces was the x and
y axis. The x-axis is of course well described as a function of x whereas the
y-axis is not given as y =m -z !).

The general N-dimensional case

The idea of the above 2-dimensional example is good and we should try to
make use of the eigenvectors of the flow. The main strategy is straight forward:
we make a variation of the curvature matrix giving us a variated Lagrangian
manifold. This we express in the basis of eigenvectors of the Jacobian, and
then evolve it for one period by use of the cycle stabilities. Then we go back to
the original curvature space and read off the eigenvalues in terms of the cycle
stabilities.

This program is simple but require that we account for some details about
how the dM;;’s are related to the vectors spanning the variated Lagrangian
manifold (these vectors are of course not eigenvectors anylonger).

To simplify the notation we start with a few definitions. Suppose we have
a Lagrangian manifold: L = span{e;,es,...ey} which also can be spanned
by the curvature matrix M. This we can express by introducing the usual
orthonormal basis of unit vectors in configuration space 1; = (0,...,1,...,0)
where the '1’ is on the i’th place of the only N entities. Then we also have

1.
L= span{( M?l ) N,
(3

which also in short can be written

Lzspan{( 1\/}1 >}

For the variated lagrangian manifold we use the notation
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1
oL = Span{( (M + 6M)1 >}

This we can also expand as before in terms of the eigenvectors but then we
just have to add a small displacement vector to each of the eigenvectors to
get the correct variated manifold. These displacement vectors can in turn be
expanded by all the vectors we did not use to expand the original L. This reads:

2N
0L = span{e; + Z 5Mz'jej}7]jil-
We can also define
2N R
51?12- = Z 5Mz-jej
j=N+1
= /ME (9.43)

where E is the matrix consisting of the last N eigenvectors which does not lie
in the original manifold:

E = (eny1,ent2,...,€2N). (9.44)

Analogously we finaly define

dmy;

Omoy;
5mi = 2

Imn;
whereas

5m11 e 5m1N
oM =

6mN1 e (5mNN

which ends our initial definitions. The geometrical interpretation of the de-
fined vectors is indicated on figure 9.2.

Since we can interpret dM and dM as vectors themselves in RY 2, there
exist an invertible matrix P such that

M = P&M
(9.45)
and

M = P '§M. (9.46)

where the entities of the matrices are now written as single column of length
N?2. This simply corresponds to a rescaling and rotation of the matrices and
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L+dL

Figure 9.2: The geometrical significance of the introduced vectors. The dm;
vectors connects the original Lagrangian manifold L to the variated manifold
along the directions not used to span L. The dm; vectors on the contrary
connects L to L + JL in vertical direction.

is therefore obviously a welldefined transformation. We note that the map P
only gives a valid relation between éM and M around vectors of the form

2N
oe; + Z M\Zijéej (947)
j=N+1

Now we evolve the variated Lagrangian manifold by applying the Jacobian
on the e; + dm; vectors

2N 2N
J(ei—i— Z 6Mijej) = Ae; + Z 6MijAjej

(9.48)

This image we can not immideately map back to the dM;;’s because this map
was only defined in the neighbourhood of of the e; vectors. The evolved manifold
can however also be described by

2N
L+6L = span{Aiei—i— Z 6]\;[ijAjej}Z-]\;1
j=N+1
2N g
= Span{ei+ Z 5Mijxj_ej}£\;1
j=N+1 ¢
(9.49)

where the latter is a description of the same manifold in a form that can be
mapped directly back to the dM;j description by P. We then have that the
evolved 0M;; is given in diagonal form by
~ A;: -
SMj; = KZ&MU
(9.50)
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or
.y AT e
0 = —]} 0
{Ai
(9.51)
where we have introduced the vector form of the matrices d M = (0My1,...,6Mn,. ..

and where [A;/A;] is a diagonal matrix, having the eigenvalues of the original
manifold in the denominator. This implies

- ! -~/

M = P'SM
Al o=
= P! [—] PiM (9.52)
A
where we now got rid of the tilded coordinates by mapping back with P. The
eigenvalues of the dM map is given by the zeros of the determinant

det(P~! {%] P-)\l) = det([ﬁ—l] — A1)
2N A

- I 11 -

i=1j=N+1 A
= 0. (9.53)

This gives the N? eigenvalues of the M map

Aj
where the indices run like ¢ = 1,..., N representing the first IV eigenvectors used

to span the original manifold, and 5 = N + 1,...,2N denotes the remaining
N eigenvectors. We now must recall that the M integration takes place over
the space of symmetric matrices, since the curvature matrix M is the second
derivative of the action and therefore is symmetric. We therefore also only can
allow for symmetric variations of the solution. That dM is symmetric implies
that we only have the N(N + 1)/2 symmetric eigenvectors éM = §; ; + J;,
where i =1,...,N and 7 =¢,... N with the stabilities
Aivn

A = . i=1,....,.N j=4,...,N (9.55)
A;j

We can now write down the general result of the M integration

Ap,r = /dMefot dT%Tr(HquFprM)(;(M _ Mt(M))

oN N
= ZHIAHI’"/ZHH— PN AL (9.56)
1=14=1 J=1

where [ labels the periodic M solutions.

,OMnyN),
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In the simple 2-dimensional case the above formula would reduce to

t
Apy = /deﬁﬁﬂMaM—nﬂmm

2 1 1
= S TT AT — AL /AL
7j=1

1=14=1
A2 A
|1_A;;2r| |1_A12)r|
|A;1|1/2 |A;|_5/2
1 _ A;?T‘ 1 _ A;Z?"

(9.57)

which is the previously obtained result.

Example: solution of the usual second order equation

To see how the formula (5.62) works let us try first to solve a usual second order
equation. To be specific we can try

—2?4+2+2=0

that has the roots z; = 2 and zo = —1. First we should get the equation on the
form (5.44) which implies B = —1,C = —2 and for instance A =1 and D =0
since we are more free to choose the two latter constants. J then looks like

1 -1
J=
-2 0
To diagonalize J we have to solve the characteristic second order equation

v —y—2=0

which yields y = 2,y = —1. It is obvious that we have now solved the original
equation already, but in the N-dimensional case we would at this point have
solved an equation

a0+a1y+...+a2Ny2N:0

in stead of dealing with N x N matrices! The eigenvectors are easily found to

be
1 1
01:[_1] ,andv2:[2]
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so that the matrix that diagonalizes J is given by the inverse

B 11 o1
-1 2 2 -1

since we are allowed to permute the columns. The linear fixpoint equation
(5.58) now yields

which both has the solution 7 = 0. This finaly gives us the solutions
—1
m = =T, Ty,

which yields respectively m = —1 and m = 2.

Example: solution of a second order matrix equation

Here we try with a bit more complicated 2-dimensional example. Let the ma-
trices be given by

S EHEN P

and
0 —1 1 -4
C — ’D =
0 1 1 6
This gives
5 0 0 2
0 2 0 —2
J= 0 -1 1 -4
0 1 1 6

which turns out to be diagonalized by

T,

Il
- oo O
—_ == O
—_ = = =
= w N =
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where the rows can be permuted arbitrarily. Since the two lower rows of T
determines the solution there will be K42 = 6 different solutions of the form

\ / -1
M = —T, T,

We note here that permutations within the rows does not change the M solution
since

~(PT,,) 'PTy, = —T,, P 'PTy

= M (9.58)

For T the solution is

131770 1 3 -1
Ml:— =
1 4 11 -1 0
The remaining solutions are

1 —1] [ /3 1/3 ]
M2: 3M3:
| —1/2 0 ~1/3 —1/3

[0 —1] [0 1/2 ]
M4: 3M5:
i 0 —1/2

and finaly

o 0 1
““lo -1

That all these are in fact solutions can easily be verified by direct substitu-
tion into (5.44).

Example: The periodic M solutions generated by a symplectic Jaco-
bian

As a demonstration of the considerations about symplectic matrices we shall in
this example diagonalize a symplectic 4 by 4 Jacobian by a symplectic rotation.
This leads us to 22 = 4 symmetric M solutions using the results obtained in
section (5.3.1).

Let J be the Jacobian

-13 -1 -8 =2
y_ | 19 —263/6 —76/3 —41/3
“ ] 60 52 33 14

87  155/2 46 23
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The symplectic matrix T given by

-8 -6 —4 -2

6 6 3 2
T=11 32 0 1
3 4 1 2

diagonalizes J and we have

2 0 0 0

4. |0 =3 0 0

TIT =19 0 112 0
0o 0 0 -1/3

CHAPTER 9. APPENDICES

where we note that the eigenvalues enters in the right sequence according to
(5.70) in order for the diagonalized Jacobian to be symplectic. Using eq. (5.62)

we get the solutions

11
M, = —
o]

for the identity permutation 7(1234) = 1234,

115 2
My =—-
312 5

with the permutation 7(1234) = 3214,

[4/3 1 ]
M; = —
1 3/2

with 7(1234) = 1432, and finaly

o’ 2 0
T o 3

with 7(1234) = 3412.

So this is an example where J can be diagonalized by symplectic rotations
in four different ways each leading to different M solutions of the fixpoint equa-

tions.
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Example: The Hamilton Jacobi equation near a periodic orbit

As another application of our solution to the fixpoint equation of the rational
fraction transformation of the curvature matrix, we can create the solution to
the Hamilton Jacobi equation in the neighbourghood of a periodic orbit going
through (xo,po). In that case we simply have

S(x) = S(x0) + Po(x — o) + (x — x0)"M(x — x0) + O(|[x — x0[H9)

As we shall see in section 7.1 this can be used to speed up the calculation
of h corrections to the Gutzwiller-Voros zeta function.

9.2 Derivations and examples of chapter 6

The geometrical contribution to the semiclassical propagator

The expression for the geometrical part reads

Y +o0+1i€ .
Geo (b7, ki) = —- dv ¢’ (Hy)(kr')ﬂ,g?)(kr)—H,EU(kr')

_g —o0-+i€ ngl)

We first discuss the saddle point approximation of the first term. The saddle-
point condition here is

Vsi Vsi
0 + arccos Gy T AICCOs -5 = 0 (9.60)

The geometrical interpretation of this is that the two points 7 and 7 should
be on the same side on the line joining 7 with 7 as measured from the point
of closest approach to the center of the disk (see fig. 9.3). If ¥ and 7 are on

Figure 9.3: the line joining 7 with ¥ . The point of closest approach to the
center of the disk is indicated.

opposite sides with respect to this point the first summand in (9.60) wil have

1 (ka)
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a vanishing contribution in the semiclassical limit. So in case there is a real
saddle the contribution of the first summand in (6.33) reads

. . in/k2r2 2 i Jk2r2— 12
i +o0+ie " eiVGngl) (kr’)Hl(IQ) (kr) N _ig el\/ r 1/511 l\/ ri-vg,
8 J—oo-+ic 87 (k2r ’2—u§ )—(kZTZ_Vgl

X
)i

1
z (7—vs1)%(
2, 2 2,02 _,2
/dl/e \/k _"S \/k v,

2 tLdirect1 — Z7r/4
Y deirectl

where Lgirect1 = \/(kr’)2 —vZ - \/(kr)2 —v%, = |7 — 7] is the geometrical
distance between 7 and 7. Note that the result (9.61) is exactly what we get
if we insert the semiclassical Debye approximation is the expression (6.21) for
the free propagator, as it also should in the semiclassical limit kr > 1.

The evaluation of the second summand in (9.60) is slightly more tedious

because it involves the ratio of the two Hankel functions HJS> (ka) /H ( a).
For the first summand we deformed the integration path in order to pick up a
saddlepoint at the real v axis if it existed, and otherwise we received a vansihing
contribution which we then neglected. In the evaluation of the second summand
we shall now see that we are guarantied the existence of a real saddle vp < ka
and in addition a saddle vgo > ka if the saddle in the first summand was
nonexisting. In order to use this the path is deformed so that starting from the
left-upper asymptotic region in the v plane it goes via the saddle vg < ka on
the real v axis to the first zero of the Hankel function H,g2)(ka) in the lower
complex v plane. Secondly, from there the path passes to the right asymptotic
region which lies (depending on the existence of the other saddle vgs on the real
axis) in the upper or lower part of the v plane. We first discuss the contribution
from the first saddle vp < ka after the Debye asymptotic condition has been
inserted for all Hankel functions appearing in the second geometrical summand
n (9.60). The saddle is determined from the condition

0 4 2 arccos k_z — arccos % — arccos Z—}; =0 (9.62)

which is guaranteed to exist and to be real-valued when 7’ lies in the light region
of 7 and when ' > r > a. The existence of the saddle becomes obvious when
we note the geometrical significance of the saddle point condition. We see that
this corresponds to the geometrical reflection off the disk of the ray from 7 to
7 see fig(9.4). The semiclassical result for the second geometrical summand in
(9.60) therefore reads

i 2 eikLreﬂ—iﬂ'/4

O B 9.63

+4 T VEkReg ( )
where where

Leen = d +d (9.64)

2dd’

_ !
Reff = d+d+ﬂ

)

(9.61)
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V.
I’ 2arcos—
a

ka

zeros

Figure 9.4: The reflection condition leads to the saddle point vg < ka.

2dd’
a cos ¢

= d+d+ (9.65)

d = Vr2 -2 — a2 — b2
d = Vr2—b2 /a2 — b2

b = a|sing|,

where ¢ is the angle of incidence measured with repect to the normal at the
point of reflection.

For v > ka there might exist yet another saddle if the condition

0 — arccos 222 — arccos 232 = () (9.66)
kr! kr
can be met for a real vgo. In the limit v > ka the ratio of the two a-dependent
Hankel function becomes H l(,Z)(ka) /H l(,l)(ka) ~ —1. and the remaining evalua-
tion of the integral with respect to the saddle gy follows completely the one
presented for the geometrical saddle vg; with the result

7 2 eiLdireth_7:71_/4
4V \Y deirectQ

where Lgirect2 = \/(kr’)2 — v, + \/(k:r)2 — vZ, is the distance |7 — 7] of the
direct geometrical path between 7 and 7 in this situation. The only difference
to the above discussed case of the first geometrical summand in (6.33) is that
here 7 and 7 lie on opposite sides on the line connecting these points with
respect to the line’s point of closest approach to the origin. This case and the
case of the first summand therefore exclude each other and we get no double
counting: either the direct geometrical semiclassical propagator comes from the
first summand in (6.33) or from the second saddle of the second summand, but
not from both. Finally as we assumed 7’ > r there is only the special situation

(9.67)
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left where 7 coincides with the point of closest approach to the origin of the
line joining 7" are and 7. Since this is just a single point which depends on the
choice of the origin of the coordinate system and which can be approached from
both sides (7 on the same or opposite side as 7) with the same result, we do
not have to deal further with this problem.

The stability-cumulant expansion relation for the 2-disk system

The stability reads

_ 2 _
Lo R a+\/aR 2Ra (9.68)

The identity that should be prooven is

1 [a 1 1
3Wan (” m) = VA(-A?)

= S (9.69)
We first note that
s = <\/K1+% 4 \/Kl_ %> (9.70)
and therefore calculate
1 _ R+ VR?—-2aR (9.71)
VA + % Va(R — a+ VR —2aR)
and
; _ R—2a+ vVR?—-2aR (9.72)
VA - % \/a(R —a+ VR?—2aR)
and the sum S is therefore reduced to
o Va(R —a+ VRZ —2aR)(R— a+ VR? — 2aR 073
2(R? — 2aR + (R — a)VR? — 2aR
pulling out hte square root we get
. 1y/a(R — a+ VRZ=2aR(R — a + VRZ — %aF)
2 VR? —2aR(VR? —2aR+ R —a)
1 [a(R—a+ VR?—2aR)
- 5\/ R? — 2aR (6-74)

Now we are in a position where we can easily check if the two expressions
coincides. This would imply

\/R—a+\/R2—2aR 1 <1+ 1 )

(9.75)

B J1-24/R

R2 — 2aR - 2R
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By squaring both sides we obtain

2R(R—a+ VR2—2aR) S S 2 (9.76)
R? —2aR - 1-2a/R " \/1—2a/R '
or
R?—Ra+RVR?—2aR _ R?>- Ra+ RVR?-2aR 0.77)

R?2 — 2aR - R?2 —2aR

which proves the identity since both sides were positive from the beginning.

9.3 A program that calculates Clp(l)

In this section we present the FORTRAN code that calculaties the first order
h correction in the case of two-dimensional billard systems. In this version
the program finds the correction contribution associated with a single periodic
orbit, in the full 3-disk domain. The program is easily generalized to arbi-
trary 2-dimensinal billard systems, by specifying the length segments (Li) and
the bouncing angles (angles) of the periodic orbit, together with the expansion
coefficients of the billard wall (C2,C3 and C4) at the bouncing points. The
program first solves locally the Hamilton Jacobi equation in terms of the ex-
pansion coefficients S, (t), Sy2(t), Sys(t), Sys(t). These solutions are then used
to drive the amplitude equation (7.31) which is then finaly used to calcuate the
correction term by means of the integral (7.128),(7.135).

program hbarcorrection

implicit none

integer Npmax,Norbit 'Max number of flight segments,
'number of orbits.

parameter (Npmax=40,Norbit=1)

* Note all the arrays can only handle Npmax orbit segments!!

real*8 Li(Norbit,Npmax) ! length(orbit, segment)
real*8 angles(Norbit,Npmax)! bounceangle(orbit,teta_i)

integer i,j,iteration,Np !counting dummies, iteration =
'numbers of iterations of the P.O0.
IN_p =

'topological length of orbit.

real*8 teta,A,B,C,D,E,1 !Current bouncing angle, integration
Iconstants and index of
Ithe wave funciton.
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real*8 C2,C3,C4 !Expansion coefficients of the
Icircle.

real*8 Syy,Syyy,Syyyy !Discontinuous evolution variables

real*8 AO,Ay,Ayy,Ayplus 'of phase and amplitude.

real*8 Sy2minus (Npmax) ,Sy3minus (Npmax) ,Sy4minus (Npmax)
real*8 Sy2plus(Npmax),Sy3plus(Npmax),Sy4plus(Npmax)

real*8 AOarray(Npmax)

real*8 Ayarray(Npmax) 'Arrays for the amplitude coefficients.
real*8 Aarray(Npmax) 'Arrays for the integration
real*8 Barray (Npmax) !constants.

real*8 Carray(Npmax) ,Darray(Npmax) ,Earray(Npmax),Int

* Arrays for the value of the phase coefficients just before and
* after a bounce:

real*8 Sy2minus(Npmax),Sy3minus(Npmax) ,Sy4minus (Npmax)

real*8 Sy2plus(Npmax),Sy3plus(Npmax),Sy4plus (Npmax)

real*8 t,t0,tO0array(Npmax) !Time variables, array for tO constants.
real*8 lambda,pi !Stability of the orbit and pi.
parameter(pi = 3.1415926535897932384626433832795040 )

* Internal functions:

real*8 Sy2,Sy3,Sy4 !Continuous time evolution functions
real*8 Afct,Ayfct,Ayyfct 'of phase and amplitude
real*8 Ayplusfct 'Function that gives Ay right after bounce.
real*8 IntegralDt,Int !The integral and its accumulated
'value.

* External functions:

real*8 SmxyyypSpxyyy,SmxxyymSpxxyy,SmyyymSpyyy

real*8 SmxyymSpxyy, SmxyypSpxyy,SmyymSpyy,SmyypSpyy
xAbove functions gives: Sm(inus)... (p(lus)/m(inus)) Sp(lus)....

real*8 segn !gives the sign: segn(l) = (-1)"1.

* The evolution functions:

Sy2(t,t0) = 1.0d0/(t + t0)
Sy3(A,t,t0) = A/((t + t0)*%3.0d0)
Sy4(A,B,t,t0) = B/(t + t0)**4.0d0 - 3.0d40/(t + t0)*x3.0d0
& + 3.0d0*A*A/(t + t0)*x5.0d0
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Afct(E,t0,t,1) = Exdexp((1+0.5d0)*dlog( t0/(t + t0)))
Ayfct(A,C,E,t0,t,1) = (E/dexp((1+1.5d0)*dlog(t + t0)))

& *(C + (1+1.d0)*(1+1.d0)*(A/2.0d0)*(t0**(1+0.5d0))/(t+t0))
Ayyfct(A,B,C,D,E,t0,t,1) = (E/dexp((1+2.5d0)*dlog(t + t0)))

& *(D
& + ( ((1+2.0d0)**2.0d0)*A*C/2.0d0
& +(1%1+3.d0*1+2.0d0)*(1.5d0+1)*(B/6.0d0)* (t0**(1+0.5d0)))
& /(t+t0)
& + ((1+2.0d0)*(1+1.0d0)*(0.5d0*(1+2.0d0)
& *(1+1.0d0)+1+1.5d0)
& *(A*A/4.0d0) * (t0**(1+0.5d0)))/((t + t0)**x2.0d0) )
Ayplusfct (AO,Ay,C2,teta,l) = -segn(l)*(Ay -
& C2x(dsin(teta)/dcos(teta)**2.0d0)*A0
& *(1+1.0d0)*(1+1.0d0) )

* The integral:
IntegralDt(A,B,C,D,t0,t,1) =
& ( (1+0.5d0)*(1+1.5d0)
& + D/ (t0**(1+0.5d0)) ) *t/(t0*(t + t0))
& +( ((1+2.40)*%2.40)*(A*C/4.40)/(t0**(1+0.5d0) )+
& + (1+2.d40)*(1+1.40)*(1.5d0+1)*B/12.0d0 )
&  *(t*x(t + 2.0d0*t0)/(t0*x(t + t0))**2.0d0)
& +(1+2.d0)*(1+1.0d0)
& *((1*1+3.d0*1+2.0d0) *0.5d0+1+1.5d0) * (A*A/12.d0)
&  *(1.0d40/t0%%3.0d0 - 1.0d0/(t + t0)*%3.0d40)

stk ok o o sk sk ok o s o okt s o sk sk sk ok kst ok o e ks o o sk sk o o stk ok o ok sk ok s o ok sk ok
* Main program:

stk ok o o sk sk o o o ok stk o s o sk sk sk ok o e ok stk sk o e ks s o o sk stk o o sk ok o ok sk ok s o ok sk ko ok
* initialisations :

5 continue
iteration = 0
write(*,%) 1=’
read(*,*) 1

Cc2
C3
Cc4

1.0d0 !
0.0d0 ! Constants for the circle
3.0d0 !

t=0

enddo

* Orbit input: Np = number of flight segments,Li = length of flight
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* segments, angles = bouncing angles.
stk ok sk sk o ok sk o e ok sk s ok sk s ok ks s ok sk sk s ok sk sk sk e ok sk s ok sk s ke sk sk sk ok sk sk sk ok sk ok sk e ok sk sk s ok sk ok e ks

open(unit = 13, file = ’orbit.segm’, status = ’o0ld’)
read(13,*) Np

doi=1, Np
read(13,*) Li(1,1i)
read(13,*) angles(1,i)
enddo
Li(1,Np+1) = Li(1,1) ! To ensure periodic
angles(1,Np+1) = angles(1,1) ! boundary conditions
stk sk ke ko ko sk sk ks ke sk ok sk ko ok ok ok sk ko ks sk ok sk sk sk ok sk ok sk sk sk ok sk sk sk sk ok sk sk sk ok sk o sk ook

Syy = 5.0d40 ! First the phase

Syyy = 1.040 ! coefficients are initialized
Syyyy = -1.0d40 ! arbitrarily.

10 continue

%

* Here is the orbit loop for solving the HJ equation around the P.O.
*

*First calculating the constants tO,A and B:
do j=1,Np

£=0.0d0

t0 = 1.0d0/Syy

A = Syyy*(t0%%x3.0d0)

B = (Syyyy + 3.0d0/t0%*3.0d0
& - 3.0d0*AxA/t0**5,.0d0)* (t0**4.0d0)

Aarray(j) = A
Barray(j) = B
tOarray(j) = t0

* Then evolving the phase coefficients in continuous time:
t = Li(1,j) Iflight time = length of j’th orbit segment.
Syy = Sy2(t,t0)

Syyy = Sy3(A,t,t0)
Syyyy = Sy4(A,B,t,t0)
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Sy2minus (j+1) = Syy !
Sy3minus(j+1) = Syyy !minus indicates the value
Sy4minus (j+1) = Syyyy !just before next bounce.

* Then the discontinuous jumps at the bouncing points:

teta = angles(1,j+1) !teta = the current bouncing angle.

Syyyy = Syyyy
- 4.0d0*dsin(teta)/dcos (teta)

*SmxyyypSpxyyy (Syyy,Syy,C2,C3,teta)
+ 6.0d0*(dsin(teta)/dcos(teta))**2.0d0
*SmxxyymSpxxyy (Syy,C2,teta)
+ 6.0d0*dsin(teta)/dcos(teta)**2.0d0*C2
*SmyyymSpyyy (Syyy,Syy,C2,C3,teta)
+ 12.0d40%*(1.0d0/(2.0d0*dcos (teta)**1.0d0)
- dsin(teta)**2.0d0/dcos (teta)**3.0d0)*C2
*SmxyypSpxyy (Syy,C2,teta)
+3.0d0*dsin(teta)**2.0d0/dcos (teta) **4.0d0*C2**2.0d0
*SmyymSpyy (Syy,C2,teta)
-4.0d0*dsin(teta)/dcos(teta)**3.0d0*C3
*SmyypSpyy (Syy,C2,teta)
+ 2.0d0*C4/dcos (teta)*+*3.0d0

PRI RIRIIIIRIIIIRIRIRR

Syyy = -Syyy + 2.0d0*C3/dcos(teta)**2.0d0
- 3.0d0*dsin(teta)/dcos(teta)**2.0d0*C2
*SmyypSpyy (Syy,C2,teta)
+ 3.0d0*dsin(teta)/dcos(teta)
*SmxyymSpxyy (Syy,C2,teta)

R

Syy = Syy + 2.0d0*C2/dcos(teta)

Sy2plus(j+1) = Syy
Sy3plus(j+1) = Syyy
Sy4plus(j+1) = Syyyy
enddo

* End of orbit loop for the HJ equation. Then to ensure periodicity:

Sy2plus (Np+1)
Sy3plus(1) = Sy3plus(Np+1)
Sy4plus(1) = Sy4plus(Np+1)

Ito be able to read Sy(1l) = Sy(Np+1)

Sy2minus (1) = Sy2minus (Np+1)

Sy3minus (1) = Sy3minus (Np+1)

Sy4minus (1) = Sy4minus(Np+1)

Sy2plus (1)
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iteration =
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iteration + 1

if (iteration.ge. 25) then

goto 100 ! At least in the 3-disk case it turns

else I out that 25 iterations is even more than
goto 10 ! sufficient.

endif

*This ends the solution of the HJ equation.
100 continue

* Now for the evolution of the amplitudes:

iteration = 0

AO = 1.0d0 ! A0 is set to 1, by normalization conditions.
Ay = 3.0d0 ! Ay and Ayy are initialized arbitrarily.
Ayy = 5.040

110 continue

* start of orbit loop:
do j = 1,Np

AOarray(j) = AO

t0 = tOarray(j)
A = Aarray(j)
B = Barray(j)

teta = angles(1,j+1) !teta = the current bouncing angle.
t = Li(1,j5) 't = current flight time = length of curent
'orbit segment.

* First the calculation of the integration constants.
E = A0
C =(t0**(1+1.5d0))*Ay/E-(A/2.0d0)
& *(£0%*(1-0.5d0) ) * ((1+1.0d0) **2.0d0)
D = dexp((1+2.5d0)*dlog(t0))*Ayy/E
-((1+2.0d0) **2.d0) *A*C/ (2.d0*t0)
-B*(1+2.d0)*(1+1.d0)*(1/3.d0+0.5d0) * (£0** (1-0.5d0) ) /2.0d0
- ((((1+2.d0)*(1+1.d0))**2.d0)/8.40
+(1+2.d0) *(1+1.d0) *(1+1.5d0) /4.d0 )

L5 i
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& *xAxA*dexp((1-1.5d0) *dlog(t0) )

Earray(j) = E
Carray(j) = C
Darray(j) =D

* then the continous evoln. of the amplitudes:

A0 = Afct(E,t0,t,1)

Ay = Ayfct(A,C,E,t0,t,1)
Ayarray(j+1) = Ay

Ayy = Ayyfct(A,B,C,D,E,t0,t,1)

* then finaly the jumps for the amplitudes:

Ayplus = Ayplusfct(AO,Ay,C2,teta,l)

Ayy = segn(l)*Ayy + dtan(teta)*

& ((segn(1l)*Sy2minus(j+1)*Ay + Sy2plus(j+1)*Ayplus)
& *(1+2.d0)*(1+1.5d0)
& + segn(1)*(Sy3minus(j+1) + Sy3plus(j+1))*A0
& *(1+2.0d0) *(1+1.0d0) *(1+1.0d0) /2.0d0)
& + dtan(teta)**2.0d0*A0
& *(1+1.0d0) * (1+2.0d0) * (1+0.5d0) * (1+1.5d0) /2.0d0
& *xsegn (1) *(Sy2minus (j+1)**2.0d0 - Sy2plus(j+1)**2.0d0 )
& + C2xdsin(teta)/dcos(teta)**2.0d0*(segn(1l)*Ay - Ayplus)
& *(1+2.0d0)/2.0d0
& - C2/dcos(teta)*0.5d0*A0
& *segn (1) *(Sy2minus(j+1) + Sy2plus(j+1) )
& *(1+2.0d0) * (1+1.0d0) * (1+0.5d0)
& +segn(1)*2.0d0*1*(1+1.0d0)*(1+2.0d0) *A0
& * (C2xC2*1*dtan(teta)**2.d0/4.0d0 -
& C3xdtan(teta)/6.0d0)/dcos(teta)**2.0d0
&  +1x(1+2.d0)*(1+1.0d0)*(1+0.5d0)*A0*C2*segn (1) *Sy2minus (j+1)
& xdtan(teta)**2.d0/dcos(teta)
& + segn(1)*1*(1+2.d0)*C2*xAy*dtan(teta)/dcos(teta)
Ay = Ayplus
A0 = segn(1)*A0 ! just for completenes
enddo

*End of the individual orbit loop
*For periodicity we redefine:
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AOarray (Np+1) = AO
Ayarray(1) = Ayarray(Np+1)

*And after running through the orbit we renormalize the A coeffs.:

Ayy = Ayy/AO
Ay = Ay/AO
A0 = AO/AO

*(Lambda is just the stability of the orbit included to check the
*validity of final result)
lambda = 1.0d0/(dabs(A0)**(1.d40/(0.5d0+1)))

write(*,*) AO,Ay,Ayy !we check the convergence visualy.

iteration = iteration + 1
if (iteration.ge. 25) then

goto 200 'Also for the amplitude
else 125 iterations seems to be
goto 110 ok in the 3-disk system.
endif
200 continue

* Now we should have everything to do the integration to find a(l)

Int = 0.040
do j =1, Np
t=Li(1,j)

teta = angles(1,j)
A0 = AOarray(j+1)

t0 = tOarray(j)

A = Aarray(j)

B = Barray(j)

C = Carray(j)
D = Darray(j)
E = Earray(j)
write(*,*) A,B,C,D,E,tO
Int = Int + IntegralDt(4,B,C,D,t0,t,1)

enddo
write(*,*) C(1) = ’,Int/2.0d40
write(*,*) ’lambda ’,lambda !To be checked with correct stability
close(13) !to ensure convergence has set in.
goto 5

end
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st sk sk s s s ok sk sk sk sk s s s ke sk sk sk sk s s ok sk sk sk sk ok sk sk sk sk e ke sk sk sk s ok sk sk s ok ok sk sk s s ok ok sk ok
* The bouncing functions:

st sk sk s s ok sk sk sk sk s s ke sk sk sk sk s s ke sk sk sk sk sk ok sk sk sk sk s ok sk sk sk s ok sk sk s ok ok sk sk sk sk s ok ok sk ok
real*8 function SmyypSpyy(Syy,C2,teta)

implicit none

real*8 Syy,C2,teta

SmyypSpyy = 2.0d0*(Syy + C2/dcos(teta))

return
end
st sk sk s s s ok sk sk sk sk s s s ok sk sk sk sk sk s s ok ki sk sk sk ok sk sk sk sk ke ok sk sk sk s ok sk sk s ok ok sk sk sk s s ok ok sk ok
real*8 function SmyymSpyy(Syy,C2,teta)
implicit none
real*8 Syy,C2,teta

Syy=3yy
SmyymSpyy = -2.0d0%C2/dcos(teta)

return

end
sk ko ok ok o K ok o Kok o sk ok o sk ok o sk ok ok ok o sk ok K ok o Kok ok sk ok sk ok o ko ok sk ok skok ok o K ok sk ok Kok o ok ok
real*8 function SmxyymSpxyy(Syy,C2,teta)

implicit none

real*8 Syy,C2,teta

SmxyymSpxyy = -Syy**2.0d0
& + ( Syy + 2.0d0*C2/dcos(teta))**2.0d0

return

end
3k 3k 3k 5k >k 3k >k 3k 3k 3k >k 3k 3k 3k 3k 3k 3k 3k 5k 3k 5k >k 3k %k 3k >k 3k >k >k 3k >k 3k >k 3k >k >k 3k >k 3k >k 3k 5k >k 3k >k 3k 5%k >k 5%k >k %k %k %k %k %k %k k %k
real*8 function SmxyypSpxyy(Syy,C2,teta)
implicit none

real*8 Syy,C2,teta

SmxyypSpxyy = -Syy**2.0d0
& - ( Syy + 2.0d0*C2/dcos(teta))**2.0d0

return
end

st sk sk s s ok sk sk sk sk s s s ke ok sk sk sk sk s s ok sk sk sk sk sk ok sk sk sk sk ke ok sk sk sk s ok sk sk s ok ok sk sk sk sk s ok ok sk ok
real*8 function SmyyymSpyyy(Syyy,Syy,C2,C3,teta)
implicit none
real*8 Syyy,Syy,C2,C3,teta,Spyyy
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SmyyymSpyyy = Syyy - Spyyy(Syyy,Syy,C2,C3,teta)

return

end

st sk sk s s ok sk sk sk sk s s ok sk sk sk sk s s ok ki sk sk sk ok sk sk sk sk e ok sk sk sk s ok sk sk s ok ok sk sk sk sk s ok ok sk ok
real*8 function SmxxyymSpxxyy(Syy,C2,teta)
implicit none
real*8 Syy,C2,teta

SmxxyymSpxxyy = 2.0d0* (Syy#**3.0d0
& - ( Syy + 2.0d0%C2/dcos(teta))**3.0d0)

return
end
stk sk s s s ok sk sk sk sk s s s ok ok sk sk sk sk s s ke ki sk sk sk ok sk sk sk sk ke ok sk sk sk s ok sk sk s ok ok sk sk sk sk s ok ok sk ok
real*8 function SmxyyypSpxyyy(Syyy,Syy,C2,C3,teta)
implicit none
real*8 Syyy,Syy,C2,C3,teta,Spyyy

SmxyyypSpxyyy = -3.0d0*(Syy*Syyy + (Syy + 2.0d0*C2/dcos(teta))x*
& Spyyy(Syyy,Syy,C2,C3,teta))

return

end

stk s o o o sk sk sk o o o o sk sk sk o o o o sk sk s o ok sk sk o o ok sk sk sk ok o ok sk sk sk o o ok ok sk sk o o ok k ok ok
real*8 function Spyyy(Syyy,Syy,C2,C3,teta)

implicit none

real*8 Syyy,Syy,C2,C3,teta, SmyypSpyy, SmxyymSpxyy

Spyyy = -Syyy + 2.0d0*C3/dcos(teta)**2.0d0

& - 3.0d0*dsin(teta)/dcos(teta)**2.0d0
& *C2*SmyypSpyy (Syy,C2,teta)
& + 3.0d0*dsin(teta)/dcos(teta)*SmxyymSpxyy(Syy,C2,teta)

return
end
sk sk sk ok ok o o kKooK ok ok o o koK sk sk ok ok o o ok sk ok ok o kK sk ok ok ok kK sk sk ok o o K sk sk ok o o K K ok ok ok ok ok Kk ok
real*8 function segn(l)
implicit none

real*8 1,pi
parameter (pi

3.14159265358979323846264338327950d0 )

segn = dsin(pi/2.0d0 + 1*pi)

return
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end
st sk sk st ok ok ok ok ok ke ok ke ok sk sk sk sk ok sk ok e ok ke ok ke ok s sk ke ok e sk s ok sk ok e sk sk ok sk sk sk sk sk sk ok ok sk sk ok sk sk sk ok ok ok ok



