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Abstract: Although laminar shear dispersion mechanisms are known to mix passive scalars at 

rates that are orders of magnitude higher than by molecular diffusion, it is even higher if the 

velocity field causes chaotic particle trajectories. The objective here is to lay the groundwork to 

calculate global averages like lyapunov exponents, diffusion rates, transport coefficients etc. for a 

given steady laminar flow field with chaotic particle trajectories, by using the tools developed in 

periodic orbit theory (POT) of hyperbolic dynamical systems. The given flow field is a steady 

three-dimensional swirling flow in a closed cylinder with a rotating bottom boundary condition. 

This velocity field is a solution to the 3d Navier-Stokes equation for a Reynolds number of 1400. 

At this Re the velocity field is steady and has already bifurcated to form a single steady 

breakdown bubble. A poincare map is calculated for the 
�
 = 0 plane in cylindrical polar 

coordinates and periodic prime-cycles up to period 20 identified using a multipoint newton-

rapshon search algorithm. All the period-one orbits are centers with complex eigenvalue while 

most orbits with higher time periods are saddles.  Stability and time periods of these periodic 

orbits are used to evaluate various cycle expansion formulas of POT.  
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1. Introduction 

 

Passive scalars in any fluid flow mix due to two fundamental processes namely, molecular 

diffusion and dispersion. Out of these, diffusion is understood as a deterministic process 

happening due to the collision of molecules causing exchange of momentum and positions. Often 

in fluid flows this process is much slower than mixing due to dispersion (often called stirring). 

Dispersion is said to have taken place if any scalar blob present in the flow is stretched and folded 

by the transporting velocity field thereby causing the blob to occupy an ever-growing amount of 

space of the flow field with time. In the case of bounded flows, the scalar blob eventually 

occupies all the available space and asymptotically approaches a uniform scalar concentration 

over the entire space. 

 

Any transporting velocity field of flows in nature is always three dimensional and non-linear. 

Therefore it is very likely that the fluid elements within such flows have chaotic trajectories. Even 

in the simplest case where the flow field is steady, one may still expect chaotic trajectories due to 

the non-linear nature of the field. Living among such flows, how does one study the dispersion of 

scalar blobs in them? Such a study is very important from an engineering point of view where 

reactors, mixers, diffusers etc. are the objects of design in many industries such as chemical, 

mechanical, civil and environmental etc. Flow fields in these objects are typically turbulent and 

therefore constitute the frontiers of such studies. The most simplest flow fields however are 

laminar and steady. Even such flows may be of potential interest to objects of nano-technology 

where one may build a reactor whose size does not allow for turbulent mixing. Study of 

dispersion in such simple flows will be a good groundwork to study turbulent dispersion. 

 

This article sums up the study of a particular steady laminar flow that has attracted appreciable 

amount of attention in literature due to its simple, yet rich dynamics. The flow is in a cylinder 

with a rotating bottom boundary condition. The Reynolds number of the flow is 1480 and is a 

steady laminar velocity field. This flow also belongs to the class of swirling flows due to the 

driving Ekman layer at the rotating boundary. Treating the cylinder as a mixer, the objective is to 

calculate the mixing properties of this flow field using the tools developed in periodic orbit theory 

of finite dimensional chaotic dynamical systems. The analysis involves finding only those fluid 

elements that return to their original position after a finite time. The trajectory of such a particle is 
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a periodic orbit and the set of all such periodic orbits constitutes a dense subset of the cylinder. In 

other words the closure of this set is the entire phase space (here the set of all positions occupied 

by the fluid). A direct result of the periodic orbit theory is that any long-term description of a 

finite dimensional chaotic dynamical system is purely a function of the set of periodic orbits 

along with their stabilities alone. Therefore properties, depending on long-term behavior, such as 

global averages, transport coefficients, diffusion rates, entropies and Lyapunov exponents etc. are 

a function of the dense set of periodic orbits. By calculating the stabilities of these periodic orbits, 

one can extract the exact values of the long-term properties by summing over all the periodic 

orbits, in the so called cycle expansion formulas. These infinite sums are convergent for most 

types of chaotic systems and calculation of periodic orbits up to a short time period is sufficient to 

obtain a reasonable estimate to their exact values. Such an analysis of a given flow field is 

presented in the following sections. 

 

 

2. Background 

 

The dynamical system studied is given by the following equations 
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Where u, v and w are the velocity field satisfying the Navier-Stokes equations for the rotating lid 

container problem. The flow field is in a cylinder of radius R and height H filled with an 

incompressible Newtonian fluid of kinematic viscosity � . Boundary conditions involve one end of 

the cylinder rotating at a constant angular velocity �  while the rest of the cylinder is held fixed. 

Non-dimensionalizing the governing equations yields two parameters namely the aspect ratio, 

H/R, and the Reynolds number Re = � R2/ � . The flow field in (1) corresponds to an aspect ratio of 

2.0 and Re = 1480. The solution to the Navier-Stokes equation is that obtained by Sotiropoulos &  

Ventikos (2001) who solved numerically the unsteady, three-dimensional Navier-Stokes 

equations using a second-order-accurate finite-volume method. The solution is obtained on a 
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curvilinear mesh with 150x97x97 grid nodes in the axial and transverse direction. To obtain the 

velocity at a point within a computational cell, the tri-linear interpolation is used as follows: 
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where the coefficients Ai are calculated by solving an 8x8 linear system of equations for every 

cell. 

 

 

 

3. Dynamics 

 

Integration of equation (1) yields the trajectories of fluid particles advected by the velocity field. 

The calculated typical trajectories within the cylinder are shown in Figure 1. From the figure it is 

clear that particles at the bottom of the cylinder are accelerated away from the cylinder axis due 

to the rotation and therefore spiral their way upwards and then dive back to the bottom close to 

the axis at the top of the cylinder. The flow also has a vortex breakdown bubble at the center, 

which may have resulted from a bifurcation due to instabilities in the flow. The breakdown 

bubble is better visualized by calculating trajectories only using the U and W components of the 

velocity field. Figure 2 shows the visualization of the bubble and also some qualitative trends in 

the flow. 

 

From the periodic orbit theory, all the long-term behavior of (1) is governed solely by the set of 

periodic trajectories alone. Inorder to find these periodic trajectories, a poincare map is calculated 

for the 
�
 = 0 plane (XY plane with X>0, Y>0). Inorder to generate the map, a grid of 300x1000 

particles are placed on the XY plane respectively and the image of each particle on the same 

plane is calculated by integrating each initial point until each trajectory intersects with the plane. 

A bi-linear interpolation is used to find the image of any particle within a cell as follows: 
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Figure 1. Typical trajectories inside the cylinder (X is axial direction, Y and Z are transverse 

direction) 

 

 

Figure 2. Visualization of the breakdown bubble located on the axis of the cylinder. 
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Figure 3 shows the first iterates of an initial 300x1000 grid of particles placed on the 
�
 = 0 plane. 

From the figure it is clear that although the flow in the cylinder is incompressible, a poincare map 

appears nowhere close to a Hamiltonian map. However, the neighborhood of any periodic cycle 

must be mapped in an area preserving fashion (determinant of the Jacobian equals unity). Now, 

since the set of all periodic cycle points is a dense subset of the map’s phase space, one can 

expect the determinant of the map to equal unity on a dense subset of the map. 

 

Locating the periodic orbits in the poincare map is done using a multi-point shooting Newton-

Rapshon algorithm.  Figure 4 shows periodic prime-cycle points up to period 10. The eigenvalues 

of the Jacobian of the nth iterate of the poincare map are also calculated. 

 

 

4. Periodic orbit theory 

 

Given a chaotic system, the periodic orbit theory enables the exact calculation of observables 

depending on the long-term behavior of the system. Such observables included averages, 

transport coefficients, lyapunov exponents, diffusion rates etc. For any observable a(x), a scalar 

valued function of the phase space . The expectation value <a> can be defined as a space time 

average in the phase space of the dynamics as follows: 
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Inorder to obtain <a> it makes more sense to first examine the evolution of a scalar funtion by the 

Perron Frobenius operator as: 
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Figure 3. First iterate of 300x1000 particles on 
�
 = 0 plane. 

 

 

 

Figure 4. Prime cycles in the poincare map corresponding to a periodic trajectory 
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Where  At = 
� t

xad
0

))(( ττ  is the cumulative of the observable a(x). As   t �  ∞ one can expect 

the integral in (5) to grow exponential as follows 
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where the growth rate goes to a limit 
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It can be easily shown that the derivatives of the above function at � =0 are infact statistical 

moments of the observable of interest. For example: 
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The function s( � ) is essentially the leading eigenvalue of the kernel operator in (5).  And can 

therefore be obtained from either the trace of the operator or the determinant of the operator. The 

leading eigen value is infact the largest zero of the determinant of the characteristic equation of 

the operator. It can be shown that the spectral determinant of the characteristic equation of the 

operator in (5) is: 
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The symbols have their usual meanings. Using the above equation, one can calculate the function 

s(
 ), by finding the zero of (9) for every 
 . One can therefore calculate (8) upto arbitrary amounts 

of accuracy. 
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 5. Dispersion rate 

 

Having found periodic orbits and their stabilities, the calculation of dispesion rate for this flow is 

straightforward. Dispersion in fluid flow is defined as Taylors (1921) “Diffusion by continuous 

movements” . Suppose a particle moves from x(0) to x(t) after a time t, one can define the average 

position of a particle starting at x(0)  as 
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A direct measure of dispersion, in terms of how far a wantering fluid particle may have traveled 

from its initial position is given by 
2)( ><− xx . Lets define the dispersion constant Ds 

analogous to the Einstein’s definition of diffusion constant as follows 
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where d is the phase space dimension. In (11)  <x(0)> is infact the average phase space position 

of the sytem and is independent of the initial position as any trajectory explores the entire phase 

space for long times. This quantity can be calculated by setting the observable of interest as the 

position itself (i.e. a(x) = x). Once <x> is obtained, a new observable namely x-<x> can be 

defined (i.e. a(x) = x - <x>). Therefore the dispersion constant can be shown to be: 
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where s( � ) is a funtion generated for the observable x(t) - <x>, where <x> is essentially the center 

of mass of the phase space obtained using the natural measure as the density function. 
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6. Conclusion and future directions 

 

The periodic theory proves to be an extremely strong theory to calculate averages that depend on 

long-term behavior from local properties of a dynamical system.  

 

Having found sufficient number of periodic orbits along with their stabilities, the calculation of 

the function s(
�

) for appropriately chosen observable, inorder to calculate the Dispersion constant 

will be generated. The Dispersion constant, lyapunov exponents, etc can be calculated for 

different Reynolds numbers and Swirls. Higher Reynolds numbers would correspond to periodic 

velocity fields and therefore will increase the phase space dimension by one every time a new 

period is introduced. 
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