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It has become fashionable to report on the existence of deterministic chaos in biophysical neuron
models. Much of the time, the importance of this behavior is given as self-evident. Moreover,
it is rarely transparent whether these studies actually investigate a chaotic behavior since a full
mathematical analysis is not pursued. This report revisits a biophysical paper reporting chaotic
bursting in an intrinsically bursting neuron model ref. [1]. Using cycle-expansion techniques, we
determine whether these models in fact produce chaotic oscillations and how these oscillations come
to be. We related these results to biological mechanisms that may be responsible for the chaotic
dynamics in neurons. Finally, we investigate how likely chaotic bursting is to play a functional role
in single neurons given the presence of large noise in the vast majority of biological systems.
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0. DISCLAIMER

This is a term report for the class ‘Chaos and What To Do
About It’ taught by Predrag Cvitanović at the Georgia
Institute of Technology during the Fall semester of 2008.
The content has not passed any rigorous peer review and
may contain errors.

I. INTRODUCTION

There is little doubt that chaotic oscillations abound
in neural systems. After all, even the smallest nervous
systems are composed of thousands of coupled oscillators
that are highly non-linear, but obviously bounded to
some functional regime. Many studies, however, claim
that functional chaos arises in single neurons that exhibit
‘bursting’ behavior ref. [1, 2]. Here we examine why this
claim is true, and why it is probably meaningless.

Bursting is a dynamic state characterized by
alternating periods of activity and quiescence. Many
dynamical systems demonstrate bursting behavior. For
instance, nerve cells can exhibit autonomous or induced
bursting by firing separated groups of action potentials
in time. Autonomous bursting neurons are found in a
variety of neural systems, from the mammalian cortex
ref. [3] and brainstem ref. [4] to identified invertebrate
neurons ref. [5].
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II. STATE SPACE ANALYSIS OF BURSTING

Dynamical bursting models are a system of ordinary
differential equations of the form

ẋ = f(x, y), (1)
ẏ = εg(x, y), x ∈ Rm, y ∈ Rn, (2)

where 0 ≤ ε is a small parameter. (1–2) are
singularly perturbed (SP) differential equations. Thus,
using geometric singular perturbation methods ref. [1],
the dynamics of bursting models can be explored
by decomposing the full system into fast- and slow-
subsystems: (1) and (2), respectively. Here, the
slow-subsystem can act independently, be affected
synaptically, or interact locally with the spiking fast-
subsystem to produce alternating periods of spiking and
silence in time. To examine the dynamical mechanism
implicit to a certain bursting behavior, y is treated as
bifurcation parameters of the fast-subsystem. This is
formally correct in the singular system for ε = 0, but is
reasonable when there is large time separation between
fast and slow dynamics. One should note that when ε 6=
0, the existence of topological objects, such as equilibria
and limit cycles, and events, such as bifurcations, of the
isolated fast subsystem do not actually exist; they are
merely estimates of system dynamics that converge to
true dynamics as ε→ 0.

An benefit of this fast-slow perturbation analysis is
that it allows an objective categorization of bursting
mechanism by the type of pseudo-bifurcation to and
from the active phase. The Chay-Keizer model ref. [6]
was the first single neuron model to report on intrinsic
aperiodic spiking and bursting behavior ref. [1]. Using
the topological categorization scheme, this model is a
fold/homoclinic burster - it enters the spiking regime via
a fold of equilibria and leaves when the stable periodic
orbit describing spiking is annihilated via collision with
an unstable equilibrium. The Chay-Keizer model is a
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FIG. 1: Solution to (2) and (3) with parameters I = 1, µ =
0.02, vc = 10, vr = 1, d = 0.2. With the exception of µ,
these parameters are held constant in this report. v escapes
from silence via fold of equilibria shown as a green dot. The
stable equilibrium, vsq (bold line) defines the resting potential
during silence. After the fold, periodic spiking is enforced by
resets, shown by lines with arrows, until vr = vuq and v falls
back to vsq via a homoclinic orbit bifurcation, shown as a red
dot.

five parameter model with four variables dictating fast
dynamics and a single slow variable. This system can
be reduced to a canonical form while preserving the
fold/homoclinic bursting mechanism. State equations are

v̇ = I + v2 − u, (3)
u̇ = −µu, (4)

where I is a constant current and µ is a small positive
constant. The system is reset after a voltage spike by,

if v = vc, (v ← vr, u← u + d), (5)

where vc − vr and d are discrete shifts in variables that
account for hyperpolarization and voltage coupling of u,
respectively. Using the slow variable u as a bifurcation
parameter of (3), the equilibria of v are

√
u− I. A

topologically normal saddle-node bifurcation occurs at
u = I. When u < I, v → vc like tan(t) and a reset
occurs. A typical bursting solution is plotted in Fig. 1.

III. ENTER CHAOS?

The Chay-Keizer model displays a regime aperiodic
spiking in a parameter representing a time constant of the

1.0 1.5 2.0
2

0

2

4

6

8

10
 0.04

1.0 1.5 2.0
2

0

2

4

6

8

10
 0.038

1.0 1.5 2.0
2

0

2

4

6

8

10
 0.03697

1.0 1.5 2.0
2

0

2

4

6

8

10
 0.0369

1.0 1.5 2.0
2

0

2

4

6

8

10
 0.03688

1.0 1.5 2.0
2

0

2

4

6

8

10
 0.0362

1.0 1.5 2.0
2

0

2

4

6

8

10
 0.03613

1.0 1.5 2.0
2

0

2

4

6

8

10
 0.03

1.0 1.5 2.0
2

0

2

4

6

8

10
 0.02

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2: Period doubling route to a chaotic regime in µ,
as witnessed in the Chay-Keizer model, is confirmed in the
canonical model.(a)-(e) period doubling route through 1-, 2-
, 4-, 8-, 16-periodic solutions. (f) Aperiodic spiking. (g)
Aperiodic bursting. (h,i) Stable bursting.

slow variable, equivalent to µ in (3). As the parameter
corresponding to µ was decreased in their model, a
transition from periodic spiking to bursting occurred via
a period doubling sequence to a chaotic regime. We
encounter the same behavior in our simplified model, as
shown in Fig. 2.

IV. SYMBOLIC DYNAMICS

It is possible (and convenient) to further reduce (3–
4) to a one dimensional discrete time map. To do this,
we use a introduced by Lorenz in the examination of his
attractor by recording spike to spike values of u. For µ =
0.0362, this results in the mildly discouraging unimodal
map shown in Fig. 3(a). We will refer to this map as the
U(u).

Iterated unimodal maps, like U , are well understood.
The non-wandering set of U resides in M ≈
[1.67204, 1.83674]. M can be partitioned into two
segments M0 ≈ [1.67204, 1.8), M1 ≈ (1.8, 1.83674] and
a symbolic dynamics defined by

si =
{

0 if ui ∈M0

1 if ui ∈M1.
(6)

Using (6), an infinite symbol sequence, S+(u0) =
s1s2s3... represents a unique future itinerary for each
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FIG. 3: (a) One-dimensional spike to spike map of u. State
space is partitioned to allow a binary symbolic dynamics.
The red dot is ucrit and therefore its images determine the
kneading sequence allowing the creation of a topologically
conjugate dike map. (b) The non-wandering set of the dike
map is bounded between the kneading value k (arrow) and
its image −2ku +2. The trajectory originating at the red dot
has equivalent symbolic dynamics as the kneading trajectory
in (a).

u0 ∈ M. Kneading theory ref. [7] provides a simple way
to relate U to a topologically-conjugate piecewise linear
tent-map on the unit interval. A kneading sequence for U
is K = S+(u∗0) where u∗0 = 1.80 is the critical point that
provides the maximum image under U . K is converted
to the kneading point, kb

b = 0.w1w2w3... by

wi+1 =
{

wi if si+1 = 0
1− wi if si+1 = 1,

(7)

where w1 = s1. Finally, kb is converted to the kneading
value k via a binary expansion. This value is then used
to create the dike-map,

f(x) =

 2x if x ∈ [0, k/2)
k if x ∈ [k/2, 1− k/2]

−2(1− x) if x ∈ (1− k/2, 1].
(8)

If one compares U with (7), it becomes apparent that if
f(S+) > f(K) the the future itinerary S+ is inadmissible
in U since the image of the u0 corresponding to S+

exceeds u∗0. With µ = 0.0362, we estimated k ≈ 0.9147...
for a finite K of 50 or so kneading segments to create the
dike-map shown in Fig. 3.

V. PRUNING AND CYCLE ID

Thus far, a biophysical neuron model has been reduced
to a 2-dimensional canonical form and then to a 1-
dimensional unimodal map. In order to elucidate
qualitative properties of these equivalent systems using
periodic orbit theory, we must locate periodic orbits. The
first step in this process is to construct a grammar within
the framework of the symbolic dynamics defined by (6)
that excludes inadmissible periodic orbits.

Vis a vis symbolic dynamics, prime periodic points
are a single representatives from the permutation class
of each future itinerary that repeats after a finite length,
pi = s1s2...sn = sns1...sn−1 = · · · = s2s3...s1. By
identifying inadmissible symbol strings, called pruning
blocks, under f and removing periodic itineraries that
contain these blocks from the set of full binary prime
cycles, we determine what cycles are admissible under
U . Pruning blocks are identified by the following pruning
rule: any string of adjacent symbols that results in an
image of f greater than k cannot exist under U .

There exist and infinite number of pruning blocks for f .
Their identities are revealed by examining the succession
of images of k shown in Fig. 3(b). One pruning block
is obvious from the figure: no more than two adjacent
0’s can appear in an itinerary of the non-wandering set.
Thus, 000 is a pruning block of f . To find the rest,
notice that K begins with two 0’s and then is mapped to
u < uq = 2/3 where uq is the fixed point corresponding
the the fixed point 1. One can deduce from this that any
itinerary with adjacent 0’s will map to {u ∈M1|u < uq}.
Because of this, as the itinerary progresses, it forms a
clockwise cobweb around uq and in this case,

f : {u ∈M1|u < uq} 7→ {u ∈M1} (9)
f : {u ∈M1|u > uq} 7→ {u ∈M0 ∪M1}. (10)

Hence, the itinerary must leave M1 from a u > uq

but enters at a u < uq. An equivalent statement is:
subsequences 00Sx0 with Sx = {11, 1111, 111111, ...}
comprise an infinity of pruning blocks for f (Fig. 5(a)).

Prime cycles are identified as repeating binary symbol
strings that do not contain a pruning block and are given
in Table I to length 9. Armed with this information,
finding cycle points under U is simple given an adequate
search method. We implemented a multi-point shooting
routine ref. [8] to find cycle points on U , the first few
results of which are shown in Fig. 4.

VI. TRANSITION GRAPH

A compact description of all admissible itineraries
under U is represented by walks on an infinitely large
Markov-graph that conforms to the previously defined
grammar. This graph is infinitely large to accommodate
the infinite pruning blocks defined above, but finite
truncations will be useful for practical calculation. For
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TABLE I: Admissible prime cycles of U .

Length Cycle Length Cycle Length Cycle

1 1 2 01 3 001
011

4 0111 5 00101 6 001011
00111 010111
01011 011111
01111

7 0010101 8 00100101 9 001001011
0010111 00100111 001010101
0011111 00101011 001010111
0100111 00101101 001011011
0101111 00101111 001011101
0110111 00111011 001011111
0101011 01010111 001110101
0111111 01011011 001110111

01011111 010101011
01101111 010101111
01111111 010110111

010111011
010111111
011011111
011101111
011111111
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FIG. 4: (a) Prime cycles of U to length 4. (b) Equivalent
prime cycles found of f . Pruning blocks 000 and 0011
disallow 0001, and 0011. These are shown as black lines;
notice how they violate the kneading condition by producing
images greater than k.

example, Fig. 5(b,c) shows the formation of a Markov-
graph for itineraries under U of length 6 or less. Periodic
orbits are represented by walks that return to their
starting point on the graph.

T is the transition matrix that accounts for all possible
transitions on Fig. 5(c) and is given by the following [6×6]

0

00

1

01

0010

001

0011

(a) (b)

(c) (d)

00111

001111

x
00110

0011110

x
000x

001110

FIG. 5: The construction of a finite transition graph and
shadowing graph for f and/or U . Solid lines represent ones
and dashed lines zeros. This example is trucated to include
the pruning blocks 000 and 00110 . (a) First a binary
path to all pruning blocks is diagramed. (b) Next, admissible
continuations are provided with arrows. (c) The transition
graph is finished by finding where these continuations ”feed
back into” the diagram. Symbols on the continuations are
removed from the left until a match to a node in (a) is found,
then a recurrent connection is created. (d) A shadowing graph
is created by delineating intersection points for loops of (b)
on the same graph.

matrix.

T =



1 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0



VII. TOPOLOGICAL ENTROPY

Figure 5(c) can be transformed into the shadowing
graph in Fig. 5(d) by simultaneously graphing all non-
intersecting loops of the transition graph ref. [8]. The
characteristic polynomial of a finite graph is given by
the sum of all possible partitions, π, of the graph into
products of k non-intersecting loops, tp each loop trace
carrying a minus sign ref. [8],

det (1− zT ) =
∑

k

∑
π

(−1)ktp1 . . . tpk. (11)
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Since our transition graph is infinite, the identity above
must be approximated via a cumulate expansion ref. [8],

det (1− zT ) = 1/ζtop

=
∏
p

(1− znp) (12)

= 1−
∞∑

n=1

cnznp . (13)

This formula is known as the topological zeta function.
For the purpose of calculating the topological entropy,
we set the cumulant expansion coefficients, cn = 1 and
the weight of a prime cycle p to tp = znp if p exists
and tp = 0 if it is pruned. Thus a finite estimate of the
topological zeta function for Fig. 5(c) can be read off the
shadowing graph, which shows fundamental loops. It is,

1/ζtop = 1− t1 − t01 − t001 − t00111 +
t1t001 + t1t00111

= 1− z − z2 − z3 + z4 − z5 + z6. (14)

The smallest real zero of this approximate topological
zeta function is z = 0.569840... giving topological entropy

h = − ln(0.569840...) = 0.562399... (15)

The transition matrix, T , for our finite transition graph
can be used to check if the zeta function is correct. The
leading eigenvalue of this matrix is λ◦ = 1.75488.... The
topological entropy

h = ln(1.75488...) = 0.562399..., (16)

copies the zeta function result.

VIII. DENSITY TRANSPORT

The following is a brief outline of material detailed
in ref. [8] that will motivate the following paragraphs.
Let ρ(u, n) be a function defining a density over the
non-wandering set of U , Ω, with infinite partition Ω =
{M1,M2, . . . }. ρ(u, n) has normalization∫

Ω

ρ(u, n)du = 1. (17)

We can define a linear operator Ln that acts on the
space of real analytic functions (that can define ρ(u, n))
called the Perron-Frobrenius operator (PFO). For the
U , Ln can be thought of as an infinitely large square
matrix linearly transforming initial densities of points
in each infinitesimal partition of state-space. Periodic
orbit theory provides an elegant method to relate the
eigenspectrum of Ln to periodic orbits under U in order
to measure average quantities of a chaotic system.

In an unstable system, prediction of specific dynamics
is impossible since initial conditions can only be specified

to finite precision. Finding long time averages of
over chaotic dynamics is, however, possible and made
exponentially accurate in practice via implementation of
periodic orbit theory. Let a be some observable we are
interested in. We can integrate this observable over a
prime cycle p of length np of with cycle point u0,

Ap(n) =
np∑
i=1

a(fn(u0)). (18)

Since the prime cycles of a chaotic system are areas
of high recurrence and since the flow is assumed to
be smooth and hyperbolic, the crux of periodic orbit
theory states that long time averages of observables for
a chaotic systems can be represented by weighted sums
of observables on periodic orbits ref. [8]. This idea is
intuitive: the calculation of observables on periodic orbits
can be carried out in finite time since in infinite time, the
orbit contributes only multiples, kAP , of the observable
integrated over a single period.

If we continue to think of Ln as a square matrix, it
is easy to visualize how trLn relates to periodic orbits.
Entries along the diagonal of Ln operate to cause a
recurrence of p(u, n) in time. As n → ∞ the action of
Ln is dominated by its leading eigenvalue. Since,

trLn =
∑

eig(Ln), (19)

trLn is dominated by the leading eigenvalue as well. The
specific method for determination of the spectrum of Ln

from periodic orbits is fully explained in ref. [8]. We now
implement this idea for the U map in order to determine
whether the system is in fact chaotic.

IX. WHAT IS CHAOS?

Chaotic dynamics are defined by two qualities: orbits
are (1) locally unstable yet (2) global recurrent (mixing).
We have already shown that dynamics under U fulfill
the second characteristic. Topological entropy is the
rate of increase in the number of admissible periodic
orbits with respect to cycle length. Since U has a
positive topological entropy, individual trajectories show
an increasing tendency for recurrence over long time
evolution.

One way to show that the dynamics under U is chaotic,
is by calculating its Lyapunov exponent

λ = lim
n→∞

1
n

ln |δu(n)|/|δu0|, (20)

where δ is a small separation between two initial
conditions. Thus the Lyapunov exponent describes the
mean rate of separation between trajectories in a given
system, |δx(t)| = eλt|δx0|. If the Lyapunov exponent
of U is positive, then the system is chaotic since both
criteria for chaos are fulfilled.
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X. CYCLE EXPANSIONS FOR DYNAMICAL
AVERAGING

Zeta functions can be respresented as a series
of of unstable periodic orbits of increasing length
appropriately weighted by instability, length and their
integrated observable called a cycle expansion,

1/ζ =
∑
fund

tfund −
∑

n

cn, (21)

where first sum is over fundamental cycles and the second
term is a sum over curvature corrections. Fundamental
cycles are those that cannot be shadowed by pseudocyles
composed of combinations of extant prime cycles. The
curvature parts are prime cycles minus their shadowing
pseudocycles, which makes these corrections small. Zeros
of cycle expansions give the eigenvalues of the evolution
operator. If all cycles are weighted equally, this formula
reduces to the topological zeta function (14). The cycle
expansion of U to length 6 is given by,

1/ζ = 1− t1 − t01 − t001 − [(t011 − t01t1)]
−[(t0111 − t011t1)]− [(t00101 − t001t01) +
t00111 + (t01011 − t01t011) +
(t01111 − t0111t1)]− [(t001011 − t001t011 − t00101t1 +
t001t01t1) + (t010111 − t01t0111 − t01011t1 + t01t011t1)
+(t011111 − t01111t1)]− . . . (22)

The weight of a cycle within the cycle expansion (22) is
given by,

tπ = (−1)k+1 1
Λπ

eβAπ−sTπznπ , (23)

where Aπ is some observable integrated over the cycle
or pseudocycle cycle, π, of length nπ and stability Λπ.
When calculating observable on non-dissipative systems,
the leading eigenvalue of Ln, equivalent to the leading
zero of (12), acting on the space of real analytic functions
is z◦=1. Thus ρn is conserved under Ln; the escape rate
is 0.

The derivative of the dynamical zeta function
evaluated at an appropriate eigenvalue provide
exponentially converging estimates of dynamical
averages in increasing expansion length. For bounded
flows, where the leading eigenvalue of the evolution
generator is s = 0, the exponent in (23) vanishes and
this derivative reduces to

〈A〉ζ =
∑

π

(−1)k+1 |Ap1|+ |Ap2|+ · · ·+ |Apk|
|Λp1 . . .Λpk|

. (24)

Therefore, the Lyapunov exponent can be evaluated as

λζ =
1
〈n〉ζ

∑
π

(−1)k+1 ln |Λp1|+ · · ·+ ln |Λpk|
|Λp1 . . .Λpk|

, (25)

where 〈n〉ζ is calculated by (24).
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n p

FIG. 6: Lyapunov exponents for prime cycles to length
seven shown against the inverse of cycle length. Note that
at two prime cycles of length seven, 0011111 and 0100111,
have Lyapunov exponents near marginal. This occurs because
these orbits contain cycle point very close to u∗0 and this
should make us reconsider there use in the expansion.

It is important to note that this method only works
for systems that are strictly hyperbolic; that is they are
are exponentially bounded away from marginal stability,
λ = 0. The Lyapunov exponent for prime cycles to length
seven are shown in Fig. 6. The system is hyperbolic,
but at some cycles are close to marginal stability which
implies the convergence of dynamical averages may be
slow in cycle length.

The estimate of the Lyapunov exponent by the cycle
averaging formula (25) is given for finite cycle expansion
truncations to length 6 in Fig. 7. Because we only carried
out the calculation for cycles to length 6, the convergence
of the estimate is not obvious. However, this is to be
expected as shown in refs. [9, 10]. Since (22) accounts
for all fundamental cycles, the the basic estimate of λζ

to after length 5 should be generally accurate. If we had
continued the calculation for longer cycles, the estimate
would have fully converged. We obtained a final estimate
of λζ = 0.54695.

XI. LYAPUNOV EXPONENT THE EASY WAY

A common way to calculate the Lyapunov exponent of
a one dimensional map is by a Taylor expansion to linear
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FIG. 7: Cycle averages for 〈n〉ζ (dashed) and λζ (solid).
After n = 5, all fundamental cycles have contributed to the
expansion, and only small curvature corrections polish the
estimate. If the cycle expansion were carried out for longer
cycles, this would be more obvious.

order,

δui+1 =
dU

du
δui + . . . (26)

Therefore, a local Lyapunov exponent is defined by

λloc = log |δui+1

δui
| = log |DU |. (27)

This calculated many times over a trajectory and
averaged to get an estimate of λ. By averaging λloc

for 10,000 iterations, we estimated λ = 0.536377 which
confirms general accuracy of the cycle averages (22).

XII. DISCUSSION

We have shown that the fold/homoclinic bursting
neuron investigated by Chay et. al. ref. [1, 6] is chaotic
over a narrow region of parameter space corresponding to
a recovery time constant for some slow variable u. The
fact that the chaotic regime of µ was narrow is totally
general to all single slow variable bursting neurons. To
understand why, we return to the state-space analysis
presented at the beginning of this report.

Chaos in single slow variable bursting neurons can only
occur when the singular perturbation methods described
in sect. II fail to provide an accurate description bursting

1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05
0.90

0.95

1.00

1.05

1.10

u

v

FIG. 8: Magnification of Fig. 2(f). The local instability
of the chaotic fold/homoclinic bursting is equivalent to the
failure of fast/slow dissection techniques. Instead of the
unstable equilibria of the fast subsystem, shown as a dotted
line, being hard boundary for trajectories to continue spiking
or return to rest, it provides the local instability needed
for chaotic dynamics to emerge (red portion of state-space).
Recurrence to this area of instability is provided by the
discrete resets, or in biology by hyperpolarization following
each action potential.

dynamics. Fig. 8 is a magnification of Fig. 2(f). If the
fast and slow dynamics were infinitely separated in time
in the dotted line representing the unstable equilibria
would provide a definitive saddle point for trajectories to
maintain a limit cycle in the fast subsystem or contract
to its fixed point after the homoclinic orbit bifurcation.
This is not true in the chaotic regime. Instead each
trajectory is rides close to the unstable manifold of
this pseudo-saddle for sometime before quickly diverging
back to the pseudo-limit cycle of the fast subsystem.
This action provides the local instability (stretch) and
the discrete resets provide the recurrence (fold). If the
fast-slow separation was accurate, all trajectories would
converge on the equilibrium of the fast subsystem and
all local instability would be lost, resulting in the stable
bursting limit cycles seen for low values of µ. Hence,
chaotic spiking in a single neuron with one slow variable
necessary occurs ‘briefly at the transition between tonic
spiking and bursting.

In terms of biological neural systems, it is obvious
why this mode of chaotic activity in a single neuron is
probably not very meaningful. The large noise present
in even the simplest of nervous systems make it unlikely a
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phenomenon relying on such a fragile choice of parameter
would be useful. Additionally, the idealization studied
in this report is a single neuron, in total synaptic
isolation. A functional neuron is constantly barraged
my many inputs that commonly have some effect on
parameters such as the recovery time constant of a
slow chemical oscillation, like those of calcium currents,

hyperpolarization activated currents, and slow sodium
currents. As was stated at the beginning of this report: it
is absurd to think of a highly coupled system of non-linear
oscillators, like a biological neural network, without
considering chaotic dynamics. However in the case of an
isolated one-variable bursting neuron, it seems unlikely
for chaos to more than an interesting epiphenomenon.
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