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Introduction

After calculus was invented by Newton and Leibniz 
�� years ago� the main goal

of mechanics has been to �nd an analytic solution describing the exact dynamics

of a given mechanical system� If an analytic solution could not be obtained� then

one tried to �nd a perturbation solution close to an exact solution� Problems which

could not be solved this way were usually left untouched by mathematicians and

physicists� Newton obtained the exact solution of the gravitational two body prob


lem while for the three body problem he could obtain only perturbation solutions

in some limits� The way we attack these kinds of mechanical problems �and other

dynamical problems� from the chaos
theory point of view is di�erent� We try to

explain the dynamics not as one analytically describable path� but as a collection

of di�erent possible paths from which one can calculate average quantities of the

system� The questions we ask and can answer are closer to the theory of statistical

mechanics and quantum mechanics than to the traditional mechanics�

The �rst to emphasize that one should study the global dynamics in the phase

space of the system in a qualitative way was Poincar�e who introduced several of

the ideas and methods we use today� He discussed stable and unstable manifolds�

de�ned the surface of section �today called the Poincar�e map�� and stressed the im


portance of the periodic orbits� By the end of the ��th century Poincar�e and others

proved that the three body problem did not have the analytic solutions which New


ton hoped to �nd� The ideas of Poincar�e were developed by other mathematicians

in the beginning of the ��th century� but received scant given little attention in

physics and applied mathematics� Birko� continued Poincar�e�s work on discrete

mappings and stable and unstable manifolds� In the middle of this century the dig


ital computer was developed� and use of computers to numerically solve problems

which do not have analytic solutions became a very important part of the study of

dynamical systems� The interplay between the numerical simulations and develop


ment of the theory has been fruitful� with many examples of numerical experiments

giving new theoretical insights� such as the Fermi
Pasta
Ulam coupled oscillator

chains� the Lorenz attractor� the integrable Toda lattice� the chaotic H�enon
Heile

problem� the Feigenbaum period doubling� and the H�enon attractor� These results

gave new insights in the structure of the problems without a traditional analytic

solution� Important theoretical results were obtained by mathematicians like Kol


mogorov� Arnold� Moser� Sinai� Smale� Newhouse� Ruelle and many others� These

�strange� problems are now usually referred to as chaotic systems� There is no

agreement on the ultimate de�nition of a chaotic system� but this may be unimpor


tant since in practice there is general agreement on what the interesting questions
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are� In the last �� years there has been a huge interest in chaotic systems and many

new results have been obtained� The work giving the background for this thesis

will be discussed in the text where we use these results� We build on the results

concerning symbolic dynamics obtained by Sharkovskii� Smale� Metropolis� Stein�

Stein� Milnor� Thurston� Grassberger� Cvitanovi�c and many others�

�Quantum
chaos� is the youngest of the theories in the �chaos family� and

at the moment maybe the one with fastest progress� The problem of quantum

mechanics and chaos is discussed from many di�erent points of view� all the way

from philosophical discussions to the real experiments� The semi
classical theory

of chaotic systems is of most interest to us since this theory gives a close relation

between the study of a classical system and the corresponding quantum systems�

and for both the quantum system and the classical systems description of periodic

orbits of the classical system plays an essential role�

In this thesis we will study the structure of orbits in classical chaotic systems

and a major tool will be the concept of symbolic dynamics� As much of the work

in chaos theory� this work is a mix of theoretical results� computer simulations and

applications to physical systems� We do not claim that the theoretical results here

are rigorously proven� they are mostly based on numerics and conjectures� Some of

the theoretical results may easily be turned into theorems while other conjectures

will need a lot of work to be proven� falsi�ed or improved� We have obtained

descriptions of the orbits existing in chaotic systems and these descriptions can be

used in calculations of quantities like the energy levels of a quantum system� In

this thesis we work out a method for obtaining this description� Most applications

of this are left as future work�

A number of new results connected to the symbolic description of chaotic systems

are presented here� Bifurcation diagrams for three
modal one
dimensional maps are

drawn in a symbolic parameter plane� topologically equivalent to a usual parameter

plane� A global bifurcation diagram for this map has not been shown before� We

obtain similar bifurcation diagrams for the general once
folding two
dimensional

maps� the H�enon map is one two
parameter realization of such once
folding map�

These bifurcation diagrams are obtained by an approximation procedure which or


ders the in�nite
dimensional parameter space in a hierarchical manner� This yields

in a rather complicated description of bifurcations which agrees with numerics for

the H�enon map worked out in detail by Mira ���
� and with other numerical exam


ples of once
folding maps� We think that this description presented here for the �rst

time is the correct way to describe these bifurcations� There are many questions

not yet settled concerning the correctness of the assumptions underlying this theory�
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The important question of a unique partition of the folding map is addressed and

we propose a method that should yield a unique partition� Generalization of these

results to an n
folding two
dimensional map is also discussed� For a number of bil


liard systems� 

disk� �
disk� �
disk� hyperbola billiard� stadium billiard and wedge

billiard� we de�ne a well ordered symbolic dynamics description and obtain a prun


ing front� The pruning front distinguishes between symbol strings corresponding to

the admissible and the forbidden orbits� This can be used to construct an approxi


mate Markov partition� Finding the topological entropy is the simplest application

of the theory� These results are the �rst systematical description of admissible or


bits for the billiard systems and this is the �rst implementation of a construction

of approximate Markov partitions in billiard systems� We also investigate in some

detail the bifurcation of orbits in billiard systems as the parameters change� This

yield singular bifurcations which we show can be described by symbolic dynamics�

We compare the singular bifurcations of billiards with bifurcations found in smooth

Hamiltonian potentials� and �nd families of orbits bifurcating together described

by the same symbolic dynamics in both systems� This relation between symbolic

description of orbits in billiards and in smooth systems� apparantly not investigated

before� o�ers a better understanding of bifurcation of orbits in smooth Hamiltonian

systems�

The pruning front for dispersive billiards and some of the results for bifurcations

in billiards and smooth potentials are published in refs� ����� ���� ����� One result

concerning the change of symbolic description of unstable orbits in the H�enon map

is also published in ref� ������



Part I

One�dimensional maps

�





Chapter �

Unimodal map

��� Bifurcations in the unimodal map

A curious feature of chaotic systems is that the description of most phenomena

observed in many di�erent chaotic systems is greatly aided by a proper understand


ing of the simple one
dimensional unimodal map� so we will devote a considerable

amount of space to the review of this well known and much studied map�

A unimodal map is a continuous one
dimensional function R � R with a

monotonously increasing �or decreasing� branch� a critical point xc as the maximum

�minimum� point� and a monotonously decreasing �respectively increasing� branch�

We assume in this section that the critical point is a maximum point� The dynamics

of the point x is given by the iteration

xt�� � f�xt� a� �����

and some simple examples of unimodal maps are the logistic map

xt�� � axt��� xt� �����

drawn in �gure ��� for a � 
��� and the tent map

xt�� �

��
� axt xt � ���

a��� xt� xt � ���
� ���
�

drawn in �gure ��� for a � ����� For convenience we assume a � �� because a � �

gives a function with a minimum point and with the same dynamics� Both the

logistic map and the tent map are unimodal and have similar topological properties�

while metric properties are very di�erent� The tent map is a singular map� while

the logistic map is typical for smooth maps with a critical point f ��xc� � � with

��
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Figure ���� The logistic map f�x� �

ax�� � x� with a � 
��� and the orbit

starting at the point x � ����

Figure ���� The tent map f�x� � ax if

x � ��� and f�x� � a��� x� if x � ���

and the orbit starting at the point x �

����

f ���xc� �� �� We will �nd that two
dimensional systems often have bifurcations

similar to those we �nd in one of these two simple maps�

The iteration of points x is illustrated graphically in the �gures ��� and ���� We

draw a horizontal line from the point x � xt on the function f to a point on the

diagonal y � x and then we draw a vertical line from this point on the diagonal to

a point on the function f � This point has x � xt�� and we �nd the time series

x�x�x� � � � �����

from the starting point x�� It is this time series we want to study � its convergence

to an asymptotic attractor and the transient dynamics�

The �rst numerical experiment we do on the computer is to �nd the attractor

limt�� xt and plot the attractor as a function of the parameter a� This picture is

the well known bifurcation tree for the logistic map in �gure ��
 ����� ���� The tent

map also has an attractor� and the bifurcation tree for the tent map is drawn in

�gure ����

The symbolic sequence of an orbit given by the time series ����� is de�ned as

follows� In a smooth map the critical point xc is the x
value giving f ��x� � � and

for the logistic map xc � ���� The tent map has a special point which we also

may call a critical point at xc � ��� where f�x� has a maximum point and f ��x� is

discontinuous� Let ����� the binary symbols be de�ned as

st �

��
� � if xt � xc

� if xt � xc
� �����
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Figure ��
� The bifurcation tree of the logistic map� a� The whole tree� b� magni�cation

around the period � resonance�

Figure ���� The bifurcation tree of the tent map� b� magni�cation around the creation

of the �xed point�
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The symbol string S � s�s�s� � � � with st � f�� �g is the forward itinerary of point

x�� Symbols L and R are often used ����� instead of � and � so the symbols indicate

if the point xt is on the left side �L� or the right side �R� of the critical point� If

xt � xc the symbol st � C is often used but we will investigate separately these

special orbit�

Figure ��� shows the trajectory of the point x� � xc � ��� in the logistic map

and we read the symbol sequence from the �gure

s�s�s�s�s�s� � � � � ������ � � � ���	�

The tent map in �gure ��� gives the same �rst 	 symbols when we start with

x� � xc � ���� The symbol string obtained by choosing x� � xc is of special

interest and this string is called the kneading sequence of the unimodal map�

A periodic orbit of length n is a real solution of

f 	n
�x� � f�f�� � � f�x� � � ��� � x �����

The unimodal map� eq� ������ has �n solutions in the complex plane� and we will

therefore have �n or less period n orbits for the map�

A periodic orbit of length n is described by an in�nite repetition of a length n

symbol string� indicated by the line over the string�

S � �s�s�s� � � � sn�� � s�s�s� � � � sn �����

Each point xt in a periodic orbit can be associated with one of the �n possible

symbolic strings s�s� � � � sn� A cyclic permutation of the symbolic string s�s� � � � sn

to a new string sksk�� � � � sns� � � � sk�� is the description of the point xt�k�� in the

same periodic orbit�

A periodic orbit is stable if�����df
	n
�x�

dx

����� � jf ��x� � f ��f�x�� � � � � � f ��f�f�� � � f�x� � � ����j � � �����

If we draw the function f 	n
�x� then for a stable periodic orbit the slope of this

function at the �xed point is between �� and �� The interval on the parameter axis

where a periodic orbit is stable is called the stable window of the periodic orbit�

����� Fixed point and period doubling

Both �xed points �period � orbits� x � �� x � � � ��a of the logistic map �����

exist for all a � �� The �rst solution x � � is stable for � � a � � and unstable for

a � �� This solution has x � xc for all parameter values and we denote this orbit
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as � and the point as x� where the index gives the symbolic description of the orbit�

To avoid a too cumbersome notation we don�t use the line over the symbols if it is

clear from the context that we refer to a periodic orbit� We then write x� and �

which should be understood as x� and ��

The other �xed point x � ����a is unstable for � � a � �� stable for � � a � 


and unstable for a � 
� This �xed point has x � xc for � � a � � and x � xc

for a � �� As the interesting dynamics take place for a � � it is tempting to

identify this orbit by � and denote the point x� for all values of the parameter a�

but this has to be done with care� It is typical that a stable orbit change symbolic

description somewhere within the stable window� In one
dimensional smooth maps

this is always at the parameter value where the orbit is super
stable df 	n
�x��dx � ��

i�e� where one of the points in the orbit is identical to xc� In a unimodal map there

is only one of the n points in a period n orbit that can cross the critical point and

the symbolic description of the orbit can only change in one symbol

s�s� � � � sn��sn � s�s� � � � sn����� sn� ������

In the multimodal maps discussed in chapter � there are several points in the

periodic orbit that can cross a critical point and the symbolic description can change

in di�erent ways� We choose to call this second �xed point � but we should always

remember that when an orbit is stable � its symbolic dynamics may change and is not

unique� In the unimodal map an unstable orbit has a unique symbolic description�

The stability of the �xed point � changes from f ��x�� � � at a � � to f ��x�� � �

at a � � and to f ��x�� � �� at a � 
� When f ��x�� � � the �xed point has the

unique symbolic description �� The interval a � ��� 
� is the stable window for the

�xed point�

The tent map has a �xed point x� � � for all a � � and a �xed point x� �

a��a � �� that exists for a � � and this �xed point is unstable for all a � �� The

�xed point x� does not have any stable window such as the �xed point in the logistic

map and the �xed point is uniquely described by the symbolic description ��

At a � 
 the �xed point x� of the logistic map has a period doubling bifurcation

where the �xed point becomes unstable and a period � orbit

x�� �
a � �

�a
�

�

�a

q
�a � ���a� 
� ������

x�� �
a � �

�a
� �

�a

q
�a � ���a� 
� ������

is created and exists for all a � 
� The stability df 	�
�x��dx is � at a � 
� it is �

at a � � �
p

� � 
��
	� and it is �� at a � � �
p

	 � 
������ For larger values of

a the orbit is unstable� Close to the bifurcation point at a � 
 both points in the
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Figure ���� The second iterated function f 	�
�x� for a � 
��� The four �xed points of

this function is the two �xed point � and � and the two points in the orbit ���

period � orbit are close to the �xed point on the right side of xc� but for a � ��p�

there is one point on each side of xc� We denote the orbit by �� and its points x��
and x�� �x�� � x���� In �gure ��� the function f 	�
�x� is drawn and the period �

orbit appears as two �xed points in this drawing�

At a � � �
p

	 the period � orbit becomes unstable and a period � orbit is born�

After this orbit has passed the super
stable point its symbolic description is ����

with the four points x���� � x���� � x���� � x����� Notice that the map of one

of this points give another of the points where the index is a cyclic permutation

of the symbolic string x���� � f�x������ x���� � f�x������ x���� � f�x����� and

x���� � f�x������

We can generalize the period doubling bifurcations� Each periodic orbit bifur


cates into an orbit with twice the length and for one parameter value a� � 
����� � � �

there is an accumulation point where the length of the orbit goes to in�nity� It has

been shown by Feigenbaum ���� �
� ��� that there is a universal scaling law for

all maps which have a quadratic critical point� The universality follows from the

Cvitanovi�c�Feigenbaum functional equation g�x� � ��g�g��x�����

The symbolic description of the period doubling orbits is given by Metropolis�

Stein and Stein �MSS� ������ The symbolic description of the new orbit is obtained
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Figure ��	� The bifurcations of the �xed point and the symbolic description of the

periodic orbits�

by writing the old symbol sequence twice and changing the last symbol�

s�s� � � � sn � s�s� � � � sns�s� � � � sn����� sn� ����
�

which is called a harmonic by MSS� The period � orbit ���� bifurcates to the

period � orbit �������� etc� Figure ��	 shows the bifurcation of the �xed point

and the symbolic description of the orbits� We should also observe that the number

of symbols � in these symbol strings is always odd because only orbits with an

odd number of �s can have stability �� and become unstable in a period doubling

bifurcation�

At a parameter a � a� the attractor is a period n orbit and the repellor is

the union of shorter unstable periodic orbits� A point x is a non�wandering point

if for any neighborhood U of x there is a time t such that U 	 f 	t
�U� �� 
� The

union of all non
wandering points are the non�wandering set of the map� For such

a parameter the non
wandering set is the union of the periodic orbits�

The periodic orbits have preimages on the x
axis� In �gure ��� the preimages

of the stable �xed point � are drawn as a function of the parameter a� For a � �

there is one preimage of the �xed point while for a � � there is a in�nite number

of preimages� In �gure ��� the preimages of the �xed point are drawn as horizontal

lines in the �xt� xt��� plane� The preimages converge geometrically to the �xed

point x� � � and its preimage x � ��
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Figure ���� The stable �xed point � and

its preimages as a function of the param�

eter for � � a � 
�

Figure ���� The preimages of the stable

�xed point � drawn as horizontal lines in

the �xt� xt��� plane� a � ���

A complete description of the dynamics of the map in the symbolic dynamics

language requires a description of both the repellor and the attractor� This can

be done by the graphs in �gure ��� a�� b� and c� which gives the symbolic future

of any point in the case of the stable orbits �� �� and ����� Moving along a solid

curve in the graph corresponds to a symbol �� while a dashed curve corresponds

to a symbol �� The arrow shows in which direction to move� In �gure ��� a� we

see that there can be an arbitrary number of symbols � but after a symbol � there

can only be symbols �� For example� the sequence ���������� � � � is legal but the

sequence ���������� � � � can not exist in the map for this parameter value� This is

the description of the symbolic future s�s�s� � � � and is valid for all starting points�

even if x� � xc �s� � ���

The graphs are representations of Markov matrixes describing the dynamics in

terms of symbols� The graph in �gure ��� a� represents the matrix

� �

�

�

�
� � �

� �

�
� ������

The rows are the symbol st and the columns are the symbol st��� A number

� in the matrix shows that the string stst�� is legal and a � shows that the string

stst�� is forbidden�
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Figure ���� Graph representation of legal orbits for a parameter value that gives a stable

a� �xed point �� b� period � orbit ��� c� period 	 orbit �����

The graph in �gure ��� b� represents the matrix

��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

�
														�

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

�














�

������

A row in this matrix is a 
 symbol string st��st��st and a column is a 
 symbol

string st��stst��� A number � in the corresponding matrix element means that

the combination giving the � symbol string st��st��stst�� is illegal� The graph

representation is much simpler and intuitively understandable that the full matrix�

We show later than the construction of a graph is relatively simple and in addition

it is simple to �nd the characteristic polynomial of the matrix from the graph

representation ����� In the �
function formalism in chapter �� this is shown to be

useful�

If there exists a �nite graph there also exists a corresponding �nite Markov

matrix and a �nite Markov partition of the non
wandering set� A system with a

�nite Markov partition is a system with �nite memory in the sense that we only

have to know a �nite length symbol string of the past to know which choices we
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Figure ����� The logistic map with a �

��� and the remaining intervals after 
�

� and � iterations�

Figure ����� The symbolic graph for the

complete Cantor set repellor and the at�

tractor for a � �� where all symbol se�

quences are legal�

have for the next symbol� It is shown by Grassberger ���� that the size of the

symbolic graph goes to in�nity as we converge to the accumulation point a� of

the period doubling bifurcations� At this point the system has in�nite memory as

de�ned above�

The tent map has a singular bifurcation for a � � where all period doubled orbits

from the �xed point � start to exist and are unstable� The parameter a � � is then

simultaneously the point where the �xed point is borne and the accumulation point

a� for the bifurcations of the �xed point�

����� Unimodal map with complete grammar

If the parameter in the logistic map is a � � then the critical point xc diverges

for t � � and x � �� is the attractor� We will now describe the corresponding

repellor� The repellor is a Cantor set and �gure ���� shows that if we start with

the unit interval ��� �� then at each iteration the middle segment of the remaining

intervals escapes from the unit interval�

In symbolic dynamics the orbits in the repellor can be described by all possible

combinations of the symbols � and �� The symbols � and � are letters in a alphabet

f�� �g ����	�

and the grammar for a string made from this alphabet is simply that any combi


nation of letters gives a legal string� This grammar is given by the simple graph in
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�gure ���� which represents the Markov matrix

� �

�

�

�
� � �

� �

�
� ������

If a � � for the logistic map� xc is mapped to the �xed point x� and we have a

chaotic attractor� The symbolic description of the orbits in the attractor is the

same complete binary alphabet as for the repellor�

The tent map for a � � also has a repellor that is described by the same

binary symbolic alphabet and for a � � there is a chaotic attractor with the same

description�

����� The symbolic interval and the kneading sequence

The description of the dynamics for the logistic map when a� � a � � is com


plicated and the symbolic description is useful in describing these bifurcations� To

make a simple theory for the bifurcations we rede�ne the symbolic description� The

Cantor set in �gure ���� can be mapped onto the real interval ��� �� by associating

a real number� 	 to each in�nite symbolic sequence� To keep the ordering of the

points on the x
axis we have to de�ne new well�ordered symbols wt�

An increasing function �f ��xt� � �� preserves the ordering between two points on

the x
axis such that if �xt � xt then �xt�� � xt��� A decreasing function �f ��xt� � ��

reverses the ordering� if �xt � xt then �xt�� � xt��� The symbol st as de�ned in �����

is � if the function increases and � if the function decreases� We associate with xt

a binary number 	�xt� � ��� �� as follows

w� � s�

wt�� �

��
� wt if st � �

�� wt if st � �

	 � ��w�w�w� � � � �
�X
t��

wt

�t
� ������

The number 	�xt� preserves the ordering of xt in the sense that if �xt�� � xt�� then

	��xt� � 	�xt�� We call the symbols w � t the well�ordered symbols and 	�xt� the

well�ordered symbolic future value of xt or for brevity� the symbolic value�

As long as a � � for the logistic map any real number � � 	 � � corresponds to a

symbolic description of an orbit in the non
wandering set of the map� If a � � there

is only a subset of the points in the interval 	 � ��� �� of the interval that corresponds

to the symbolic description of an orbit and the forbidden symbolic values can be
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found using the following observation ������ The largest possible xt value �except a

starting point x�� is the image of the critical point xmax � f�xc�� An orbit described

by a symbolic sequence S will have a point x � f�xc� if 	�S� � 	�xc� and cannot

be an admissible orbit� We de�ne


 � 	�xc� ������

to be the kneading value ����� of the unimodal map and the interval

�
� �� ������

its primary pruned interval�

For the symbolic sequence S� the dynamics is a shift operation

S�fk�x��� � �kS � fsk��sk��sk�� � � �g ������

and the orbit S is not admissible if 	 of any shifted sequence of S falls into the

primary pruned interval� For any orbit S there exists a supremum value 	max of the

orbit and its images

	max�S� � sup
k

	��kS� ������

From this it follows

Theorem ������ ���� ��� ����� Let 
 be the kneading value of the critical point

as de�ned in ������ and 	max�S� be the supremum symbolic value of the orbit S as

de�ned in ������� Then the orbit S is admissible if and only if 	max�S� � 
�

����� Bifurcations and symbolic parameter space

We can make use of the kneading value when describing the bifurcations in the

unimodal map�

The kneading value 
 can be considered as a new topological parameter of the

map� In �gures ���� and ���
 the value of 
 is drawn as a function of a for the

logistic map and the tent map� The plot is a staircase
like monotone increasing

function� The jumps in 
 correspond to symbolic values that are not allowed� Each

jump in 
 has a one to one correspondence to one window on the parameter axis

with a stable periodic orbit for the smooth unimodal map� We can consider the

kneading interval 
 � ��� �� to be a parameter space for the unimodal map and we

will denote 
 the symbolic parameter value when we take this point of view�

The tent map has larger jumps in 
 in �gure ���
 than in the logistic map

because the tent map does not have any windows� but if these two maps have the

same kneading value then the same orbits exist for the parameter values a�
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Figure ����� The kneading value 
 as a

function of the parameter a for the logis�

tic map�

Figure ���
� The kneading value 
 as a

function of the parameter a for the tent

map�

����� Band merging bifurcations

One bifurcation in �gure ��
 is the band merging bifurcation where n � �m�� of

chaotic bands merge into n � �m of chaotic bands� Between two chaotic bands there

is an unstable period n � �m orbit with df 	n
�dx � �� which is an isolated part of

the repellor� At the band merging bifurcation this points starts to belong to the

attractor when two and two of the n ��m�� bands join each other at the n ��m points

of the periodic orbit� The boundaries of the chaotic bands are images of the critical

point and the kneading sequence is preperiodic to the symbolic description of the

unstable period n orbit�

The simplest example of a band merging bifurcation is the point where two

bands merge into one band and the joining point is the �xed point �� The kneading

sequence is here

K � ���

giving the kneading value


 � ����� � ������������� � � � � ��	 ����
�

which is the symbolic parameter value for the two band merging bifurcation for all

unimodal maps� No orbits with 	max�S� � ����� exist for this parameter value�

In the logistic map the parameter value a � 
�	��� � � � gives this band merging

bifurcation and in �gure ���� the map and the preimages of the �xed point is

drawn showing that at this point the parabola is tangent to the closest of the
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Figure ����� The logistic map at the

band merging point when two bands

merge to one band a � 
�	��� and the

preimages of the �xed point drawn as

horizontal lines�

Figure ����� The symbolic graph for the

band merging point 
 � ������

horizontal lines� There exists a �nite grammar describing the non
wandering set

and the Markov graph in �gure ���� shows the rules giving the admissible symbol

strings� Comparing with the graphs in �gure ��� b� and c� we �nd that the �xed

point � that used to be a transient orbit now is included in the last� attracting

part of the graph� The attractor part of the Markov graph in �gure ���� can be

described by the new two letter alphabet

f��� ��g
All combinations of the two letters �� and �� give a symbol string which corresponds

to an orbit in the chaotic attractor�

To each period doubling bifurcation there is a corresponding band merging bi


furcation� The kneading sequence at a period doubling bifurcation is given by ����
�

and is

K � s�s� � � � sn � K � s�s� � � � sns�s� � � � sn����� sn� ������

The band merging bifurcation which corresponds to this is located at the the knead


ing sequence

K � s�s� � � � sns�s� � � � sn����� sn�s�s� � � � sn ������

with the same symbol string s�s� � � � sn� The band merging bifurcations for the �xed

point in the logistic map also converge to the accumulation parameter a� with the

same Feigenbaum scaling factor but with a � a��
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The two kinds of bifurcations have the same kneading sequence at the accumu


lation point�

���������������� � � �

and this gives the topological parameter value


� � ������������������ � � � ����	�

There are similarities between the period doubling and the band merging bi


furcation but there are also important di�erences� The period doubling bifurca


tion is a local bifurcation depending only on the stability of one orbit� The band

merging bifurcation is a global bifurcation involving the critical point and a large

non
wandering set� We �nd that in the discussion of the two dimensional maps in

chapter � this is analogue to a creation of a homoclinic tangency� Also the similar

scaling property of the two kind of bifurcations that exists for the logistic map is not

true for all unimodal maps� The tent map has a singular creation of periodic orbits

but �gure ��� shows that there are band merging bifurcations converging to a� � ��

The description of the allowed symbol strings changes very di�erently around the

two di�erent bifurcations� The period doubling bifurcations create a new structure

in the Markov graph which is a new attractor� leaving the old attractor as a tran


sient loop� The Markov graph does not change from one period doubling bifurcation

to the next� The Markov graph for the band merging bifurcation is valid only for

this parameter value�

����� Resonances

In a chaotic band there are resonances where new orbits are created and there is a

window with a stable orbit that goes through period doublings and band merging

bifurcations and �nally in a crisis bifurcation again gives a band attractor� We look

in some detail at the simplest of these resonances which is the period 
 resonance

in �gure ��
 b��

One stable and one unstable period 
 orbit are created at a tangent bifurcation

in the logistic map at a � 
����� � � �� The symbolic description of both the two

orbits are S � ��� at the parameter where they are created� At the super
stable

point a � 
��
�� � � � the stable orbit changes symbolic dynamics to S � ���� The

symbolic parameter value of the bifurcation creating the two orbits is


 � 	max����� � ����� � 	�� ������
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The symbolic parameter value where the stable orbit crosses the super
stable point

is


 � 	max����� � �������� � ���� ������

The orbit ��� undergoes period doubling bifurcations to orbits with a symbolic

description given by eq� ������ with the initial string s�s�s� � ��� and also band

merging bifurcations with the kneading sequence given by eq� �������

The crisis bifurcation of the period 
 resonance is the parameter value where the

attractor changes from 
 chaotic bands to one chaotic band� This is the bifurcation

when the critical point maps into the unstable period 
 orbit ��� which for the

logistic map occurs for a � 
���	� � � �� This bifurcation has the kneading sequence

������ and the symbolic parameter value


 � �������� � ������ ������

In the general description of a resonance two orbits s�s� � � � sn and

s�s� � � � sn����� sn� are born at a tangent bifurcation at the the symbolic parameter

value


 � 	�s�s� � � � sn����� sn��� ���
��

The string s�s� � � � sn giving a resonance can not be of the form

s�s����s	n��
�s�s� � � � s	n��
 since this orbit would be born at a period doubling� the

number of symbols  �� in s�s� � � � sn is odd and the cyclic permutation �s�s� � � � sn�

is the permutation giving the largest value of 	 � The resonance has period doubling

and band merging bifurcations with s�s� � � � sn as the generating string and the crisis

bifurcation takes place at


 � 	max�s�s� � � � sns�s� � � � sn����� sn��� ���
��

The ordering of resonances along the parameter axis follows the size of 	max�S� and

this ordering of orbits is often called the MSS �Metropolis� Stein� Stein� sequence�

We can mark the values 	�S� on the 
 axis for di�erent periodic orbits S and

this gives a picture analog to the bifurcation tree in �gure ��
� In �gure ���	 a� we

have marked the symbolic value of some periodic orbits orbits and in �gure ���	 b�

we have also drawn some of the intervals that corresponds to stable windows in the

smooth unimodal map� The 

axis may be considered as a topologic or symbolic

parameter axis� The ordering of bifurcations is the same along 
 as along the

parameter a and therefore are these two axis topological equivalent but the metric

properties �scaling etc�� is di�erent�
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Figure ���	� The bifurcation points of periodic orbits plotted at the symbolic parameter

axis 
�

Figure ����� Graph representation of legal orbits for a parameter value that gives the

stable period � orbit� a� The whole automaton� b� The Cantor set part of the automaton

that follows after the ��loop�
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Figure ����� Graph representation of legal orbits for a parameter value that gives the

crisis bifurcation of the period � resonance�

Figure ����� Graph representation for the kneading sequence ��������
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The symbolic automaton graphs for the stable period 
 orbit ��� is drawn in

�gure ���� and the automaton at the band merging point is drawn in �gure ����� In

�gure ���� a� the rightmost part of the graph is the stable orbit but of more interest

is the middle part describing the fractal repellor� When removing the ��loop to the

left and the ��� attractor to the right� the remaining part is drawn in �gure ���� b��

This automaton gives the symbolic description of the Cantor set repellor consisting

of all orbits created for a smaller parameter value except the isolated � �xed point�

It can also be described by the alphabet

f�� ��g ���
��

The automaton for the kneading sequence ������ in �gure ���� shows that the

fractal repellor f�� ��g is still isolated and the attractor is the chaotic bands that

can be described bye the alphabet

f���� ���g ���

�

with all combinations of symbols allowed� For any parameter value larger than

the crisis bifurcation the f�� ��g part is connected to the attractor giving one band

attractor again� One example is given in �gure ���� where the diagram for the

kneading sequence ������� is drawn�

����� Resonances in the tent map

The tent map ���
� has discontinuous f ��x� and for a � � then jf ��x�j � a � � and

there can not be a stable orbit as attractor� The �xed point x� � � is stable for

a � � and unstable for a � �� This does not prevent the map from having chaotic

bands an in �gure ��� we �nd that there are bands close to the bifurcation of the

�xed point at a � � but no bands in a period 
 resonance or in any other resonance�

The band merging from �n bands to n bands in �gure ��� takes place when the

slope of f 	�n
�x� has absolute value �� We have jdf 	�n
�x��dxj � a�n which gives a

band merging for

a � �
�

��n ���
��

These values converges to a � � from above� not as a geometric series but much

slower�

There exists no other band structure than the bands generated by the �xed

point and a chaotic band has no internal resonance structure� This is easily shown

because in the one band region
p

� � a � � the orbits of length n have slope

jdf 	�n
�x��dxj � a�n and this is larger than � for all orbits n � � and then there are
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no bands other than the period � band� The period 
 orbit is born� goes through all

period doublings� band mergings and the crisis bifurcation at one singular parameter

value a � �� �
p

���� � ��	��� � � �� This is one large jump in the plot of 
 as a

function of a in �gure ���
�

From the self similarity it follows that also the �n bands are without internal

structure of bands� The slope is squared for each bifurcation and the shortest orbit

born in the bands is twice as long and cannot have bands�

The plot of 
 as a function of a in �gure ���
 has fewer steps and larger jumps

for the tent map than for the logistic map because of the singular bifurcation points

in the parameter a�

��� Construction of a �nite automaton

There is a simple procedure giving the Markov graph or an automaton for the uni


modal map when we know the kneading sequence K� We can also use the procedure

to generate a Markov graph for other systems given a �nite list of forbidden symbol

strings�

In general there is no guarantee that the Markov graph for the unimodal map

is �nite� One example where the automaton is in�nite is the accumulation point

of the period doubling bifurcation ����� If there exists a stable periodic orbit the

automaton is �nite and ends in a cycle with the symbols of the stable orbit� We

may approximate the automaton for most parameter values with an automaton

for a stable orbit at a parameter value close to the exact parameter value� We

conjecture that the automaton converges to the correct automaton as we choose

parameter values giving stable orbits closer and closer to the parameter value� The

eigenvalue from the automatons converges to the limit also when the attractor is a

chaotic orbit�

A di�erent way to approximate the automaton is to approximate the kneading

sequence by a string that after a �nite number of symbols ends in a periodic orbit�

This may be e�g� a band merging or a crisis bifurcations� This choice also gives

a rational kneading value and a �nite graph and we expect the eigenvalues will

converge� The calculations are however more complicated and it is not so clear

which part of the graph gives the largest eigenvalues�

The part of the automata which gives the eigenvalues we are interested in when

there exist a stable orbit is a Cantor set repellor� We show how to �nd the topolog


ical entropy and other statistical measures from the automaton below� The repellor

is the �rst loop structure that follows after the transient � loop and if they exist as
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isolated transient loops� also after the � loop� �� loop� ���� loop� � � � � This is the

period doubled loops of the �xed point� If the stable orbit is in the one
band region

only � is a transient� If the stable orbit is in the two band region � is a transient

followed by � as a transient and then followed by the repellor giving the largest

eigenvalues� The four band region gives three transient loops etc�

One example is the stable orbit ��� in the one
band region for which the whole

automaton is drawn in �gure ���� a� while the Cantor set part is drawn in �g


ure ���� b�� We �nd in �gure ���� that this Cantor set part is the same automaton

also at the crisis bifurcation and it is the same graph all along the period 
 reso


nance�

The topological entropy �see section ��
� for the transient repellor is here

h � ln

�
�p

�� �

�
� ln���	�� � � �� ���
��

which is larger than the topological entropy for the three chaotic bands at the crisis

bifurcation

h � ln


����

�
� ln����	� � � ��� ���
	�

The topological entropy for the chaotic bands at the crisis of a period n resonance

is ��n
th of the topological entropy for the complete binary repellor h � ln �� The

bands at the crisis of the period 
 resonance has the largest entropy in any resonance

of the one band regime� The topological entropy at the band merging is given by

the graph in �gure ���� and gives h � ln
p

�� The topological entropy is for the

part of the graph following the � loop in the one band regime

ln
p

� � h � ln � ���
��

which is larger than any topological entropy in a resonance� By self similarity is the

same true for the ������� � �band regimes� We expect that the part of the Markov

graph giving the largest topological entropy also gives the leading eigenvalues for

other measures�

Since the repellor is constant from a tangent bifurcation to the crisis bifurcation

we restrict ourself to choose stable periodic orbits born at a tangent bifurcation as

other stable orbits inside a resonance do not give di�erent leading eigenvalues�

The symbolic description of the possible orbits from a point x� in the unimodal

map can be drawn as a path down a binary tree as drawn in �gure ����� We refer

to a node in the binary tree with the preceding symbol string and we refer to the

top node as 
� We �rst draw the kneading sequence K � s�s�s� � � � for the chosen

parameter value as a path in the tree� From each node along this path there is a
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Figure ����� A binary tree�
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Figure ����� The construction of the stable period � automaton� In a� the forbidden

side branches ends in a cross� and in b� the legal side branches are reconnected to the

graph�

side branch and we have to decide if this is a legal branch� The side branch after

the n�th node is s�s� � � � sn��� sn��� and this branch is legal if

	�sisi�� � � � sn��� sn���� � 
 ���
��

for all i � f�� �� � � � ng� A side branch that is legal is connected to the node with

the symbolic description s�s� � � � sk where the symbol string is

s�s� � � � sk � sn�k�� � � � sn��� sn��� ���
��

for the largest possible integer k� This procedure prevents that a legal side branch

is followed by an illegal string� The automaton we obtain by this procedure can

then be minimalized�

We give a few examples how to use this procedure� Figure ���� a� shows the

path in the binary tree for the kneading sequence K � ��� with 
 � ��������� We
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�nd the following legal side branches of the path

� � 	��� � � � 


�� � 	���� � ���� � 


��� � 	����� � ����� � 


	���� � ���� � 


	��� � ��� � 


and the forbidden branches

���� � 	������ � ������ � 


����� � 	������� � ������� � 


������ � 	�������� � �������� � 


������� � 	��������� � ��������� � 


	�������� � �������� � 


	������� � ������� � 


	������ � ������ � 

���

The forbidden side branches is marked by a cross in �gure ����� The reconnection

of the legal branches to a node following ���
�� gives

� � 

�� � �

��� � �

and are drawn in �gure ���� b�� In �gure ���� b� we see that the node ������ has

the same in�nite future as the node ��� and we identify these two nodes and then

we have the �nite automaton of �gure �����

In �gure ���� the construction of the automaton for the kneading sequence

K � ������� is shown�

These rules except the �nal reduction of the graph are implemented on a com


puter and given a stable periodic orbit by its symbolic string it gives the automata�

On the computer the stable period n orbit loop is removed by letting also the string

s�s� � � � sn be forbidden� This procedure for constructing a Markov graph is easily

generalized to a construction of a n
ary tree where the forbidden strings are given

as a �nite list of strings� We than draw the paths of all forbidden strings in the

tree� Then all side branches are checked� not by ���
�� but with the list of forbid


den strings and the side branch is marked illegal if the string sisi�� � � � sn��� sn����

i � f�� � � � � ng is in the list� The reconnection of side branches is done by ���
��� A

�nite list of forbidden strings gives a �nite automaton�
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Figure ����� The construction of the automaton for kneading sequence K � ��������

In a� the forbidden side branches ends in a cross� and in b� the legal side branches are

reconnected to the graph�
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��� Topological entropy

The topological entropy h is a measure of the exponential growth of the number of

periodic orbits with the length� This is the simplest of the average values one can

�nd and it is the simplest application of the zeta
function formulation discussed in

chapter �� Let N�n� be the number of periodic orbits of length n� then

N�n� 
 ehn ������

in the limit n��� The number h can be obtained by calculating and counting pe


riodic orbits� but if we know the symbolic description of the map h can be obtained

in a much more e�ective way ���� �	�� ��� ����

The topological entropy is the negative logarithm of the leading �smallest and

real� eigenvalue of the characteristic polynomial of the Markov matrix h � � ln z�

This polynomial

p�z� � � � a�z � a�z
� � a�z

� � � � � � � ������

is obtained from the automaton by the following rules� ai is initially �� ai � ai � �

for each non self intersecting loop in the graph with i nodes� ai � ai � � for each

combination of non self intersecting loops that have no node in common and where

the sum of the nodes is i� The sign � is chosen when the number of loops in the

combination is even and the sign � if the number of loops is odd� This is applied

for each part of the graph that is recursive� that is the part of the graph where one

can get from any node in this part to any other node in the same part by some path�

Each recursive part of the graph gives a eigenvalue and the smallest real eigenvalue

gives the topological entropy�

h � � ln z� ������

The simplest example is the complete binary map where the symbolic description

of the repellor or the attractor is given by the automaton in �gure ����� The

automaton has two loops with length � and the loops can not be combined as they

have one node in common� This give the polynomial

p�z� � �� �z � �

and from this z � ��� and

h � ln �
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This result is of course easily obtained by just observe that since all combinations

of the two symbols � and � are legal and most strings are not a repetition of shorter

strings� then the number of periodic orbits grows as

N�n� 
 �n

The repellor in the period 
 resonance window in �gure ���� b� gives one length

� loop and one length � loop and topological entropy is then

�� z � z� � �

z �
� �

p
�

�

h � ln

�
�

� �
p

�

�

A more interesting example is to choose a parameter value a that numerically

gives a chaotic attractor and look at the convergence of h� If we choose a � 
�� in

the logistic map we �nd the kneading sequence

K � ������������������������������� � � �

and we may e�g� �nd the automaton describing the repellor of the period �� reso


nance close to the chaotic attractor� This gives a automaton with �� nodes and the

characteristic polynomial

p�z� � �� z� � z� � z� � z� � z� � z� � z� � z
 � z� � z��

�z�� � z�� � z�� � z�� � z�� � z�� � z�� � z�
 � z�� � z��

�z�� � z�� � z�� � z�� � z�� � z�� � z�� � z�


and solving p�z� � � gives the smallest real root

z � ��	�	�	��� � � �

The error can be estimated to be of order z�� � ���� because going from length ��

to a longer string typically for the unimodal map graphs or combination of loops

with �� and more nodes giving terms �z�� and of higher order in the polynomial�

Describing resonances of increasing length and with a � 
�� we �nd polynomials

with a better estimate for the topological entropy� For the closest stable period ��

orbit we �nd the topological entropy

h � � ln ��	�	�	�
����	�� � � �

� ln ������
�����	��� � � �

� ���	�����		���	� � � � �

����
�
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Figure ���
� The logarithm of the di
erence between the leading zero of the charac�

teristical polynomial and our best estimate as a function of the length for the logistic

map a � 
���
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Figure ����� The zeroes of the characteristical polynomial for the logistic map a � 
��

approximated up to length �� symbolic strings�
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We can �nd how fast this converges to our best estimate ����
�� In �gure

���
 is the logarithm of the di�erence between the zero of a polynomial and our

best estimate plotted as a function of the length of the stable periodic orbit� The

convergence is approximately linear with a slope of ����� � h�

We can �nd all real and complex zeroes of the characteristical polynomial and in

�gure ���� the zeroes of the polynomial obtained by including the forbidden strings

of length �� and less are plotted in the complex plane� The leading zero giving the

topological entropy is the point closest to the origin while most of the other zeroes

are close to the unit circle� This circle gives the radius of convergence�

All automatons for the unimodal map are simple because the automaton consists

only of one long path of nodes and pointers back from a node to an earlier node�



Chapter �

The n�modal map

Our motivation for studying multi�modal ��dimensional maps is both because these

maps are interesting chaotic systems and because as it will be shown below �chap�

ter ��� the multi�modal maps are the approximations for the general ��dimensional

folding maps	 The 
�nger print� of a n�modal map is the swallowtail bifurcation

structure in the parameter space and to describe the organization of the swallow�

tails is one main result in this chapter	 The swallowtails are also typical structures

in the ��dimensional folding maps and the methods used in this chapter will be

applied for folding maps in chapter �	 We will also study here how a change of

modality implies that the symbolic description may change for an unstable orbit

followed adiabatically in the parameter space	 This will also be the situation for

the folding maps and is the main di
culty in the de�nition of symbolic dynamics

as discussed in section �	�	

A one dimensional continuous map xt�� � f�xt� with n maximum and minimum

points is called the n�modal map	 This is a natural generalization of the study of

unimodal maps with bifurcations and kneading sequences as the unimodal maps

but with larger alphabets and more complicated bifurcations	 Bifurcation diagrams

for n�modal maps with n � � have not been systematically studied earlier	 In

chapter � we show that a restricted n�modal map gives the approximate description

of the H�enon map� and we conjecture that such approximations are applicable to

most folding �ows in three dimensions	

The complete unimodal repellor� �gure �	��� has at l�th level �l intervals remain�

ing in the interval ��� ��	 In a complete n�modal repellor a Cantor set with �n���l

intervals remaining at each level l� so a �n � ���ary alphabet labels uniquely the

points in the Cantor set	 For example �gure �	� shows the bimodal function

f�x� � x� � ax � b ��	��

��
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Figure �	�� The bimodal map ����� with

a � ��� and b � �� and the intervals

which have not escaped after � iteration�

Figure �	�� The automaton for the com�

plete 	
ary Cantor set repellor� all sym�

bol strings are legal�

with maximum at xc� � �
q
a��� and minimum at xc� �

q
a��� for parameter values

a � ��� and b � �	 The � intervals are labeled by the alphabet s � f�� �� �g and the

automaton graph in �gure �	� generates all admissible strings of the three symbols	

One example of a trimodal map is given by the function

f�x� � cx� � x� � ax � b ��	��

drawn in �gure �	� for a � ����� b � ��� and c � ����	 The repellor is here a

complete ��interval Cantor set	

We shall enumerate the n�modal map critical points� xc�� xc�� � � � xcn from left

to right	 The symbol corresponding to a point xt is

st �

����
���

� if xt � xc�

i if xci � xt � xc�i���

n if xt � xcn

��	��

For convenience we choose f ��x� � � for xt � xc�	 In that case f ��x� � � for st even

and f ��x� � � for st odd� and xci is a maximum if i is odd and a minimum if i is

even	 Choosing f ��x� � � for xt � xc� gives a map with slightly di�erent bifurcation

structure which can be studied by the same method	 As for the unimodal map� the

ordering of symbols has to be reversed when f ��x� � �� i�e� for st odd	 The well

ordered symbolic value of the point x� with future symbol string s�s�s� � � � is

� � ��w�w�w� � � � �
�X
t	�

wt

�n � ��t
��	��



��

Figure �	�� The 	
modal map ���� with

a � ����� b � ��� and c � ���� and the

remaining intervals after � iteration�
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where wt is given recursively by

w� � s�

p� �

��
�

� if s� even

�� if s� odd

wt �

��
�

st if pt�� � �

�n� st� if pt�� � ��

pt �

��
�

pt�� if st even

�pt�� if st odd

��	��

In the unimodal case is n � � and the algorithm ��	�� reduces to algorithm ��	���	

If f ��x� � � for xt � xc� we have the same algorithm but with the inverted values

of pt	

The n critical points xc�xc� � � � xcn yield n di�erent kneading sequences K�K� � � �Kn�

and n kneading values ���� � � � �n	 As for the unimodal map� the critical points

bound the extreme x values an orbit can have	 The i�th critical point xci restricts

the value f�x� can take on the interval xc�i��� � x � xc�i���	 For a point x between

two critical points� the value f�x� is smaller than the closest maximum point and

larger than the closest minimum point	

The admissibility �pruning� condition for orbit S is

�max
i �S� � �i for i odd

�min
i �S� � �i for i even

��	��

The index i on � restricts x� to the appropriate interval� s� � i � � or s� � i	 If

s� � � there is no explicit minimum restriction� and if s� � n there is no explicit

maximum �minimum� restriction if n is even �odd�	

One complication is that as the parameters vary a map may lose some of the

critical points	 A maximum and a minimum point xci and xc�i��� may merge�

reducing the function f�x� to have �n � �� critical points and making the map

�n � ���modal	 The symbol s � fi � �� i� i � �g are then indistinguishable and

a symbol i � � can be changed to i � � by smoothly changing parameters	 This

bifurcation is important because it implies that orbits change symbolic description

without becoming stable and this bifurcation is unavoidable in the description of

two�dimensional maps	 We will return to this in section �	� and in section �	�	�	

��� Bimodal maps

The simplest example of a multimodal map is the bimodal map	 The bifurcation

structure of real bimodal maps has been investigated by MacKay� Tresser� van
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Zeijts� Glass� Milnor� Fraser� Kapral and others ���� ��� ��� ��� ���� ���� ���� ����	

The complex bimodal map has also been studied by Branner� Douady� Hubbard and

Milnor ���� ��� ����	 Scaling relations for bifurcations in these maps are obtained

by MacKay and van Zeijts �����	 The bimodal bifurcation is a typical bifurcation

inside an Arnold tongue and a general phenomena observable in most dissipative

dynamical systems	 In �gures �	�� �	� and �	� we show the parameter regions where

some short orbits of the map ��	�� are stable and these are the typical bimodal

swallowtails	

If we scan the parameter space of a bimodal map by varying only one param�

eter then we would �nd a sequence of bifurcations and inverse bifurcations which

would be hard to make any sense of� while in a two dimension parameter space the

bifurcation structures can be explained	 A good way to represent bimodal maps is

to use the kneading values as the topological parameters or symbolic parameters

�see discussion below�	 In the topological parameter space ���� ��� the bifurcations

have a universal form common to all bimodal maps� in the same sense that the MSS

ordering in the unimodal � parameter is universal	

From �	� it follows that an orbit S is admissible in the bimodal map if

�max�S� � �� ��	��

�min�S� � �� ��	��

The area of the ���� ��� parameter plane for which a given orbit S exists is given

by the inequalities ��	�� and ��	��	

The shortest periodic orbits �� ��� �� and �� exist for the kneading values

� exists if �� � ��� � ��� and �� � ��� � ���

�� exists if �� � ������ � ��� and �� � ������ � ���

�� exists if �� � ���� � ��� and �� � ���� � ���

�� exists if �� � ������ � ��� and �� � ������ � ���

��	��

The regions in the topological parameter plane for which the periodic orbits �� ���

�� and �� exist are the rectangles drawn in �gure �	�	

This pattern� which we call a swallow tail� should be compared with the stable

period � orbit in the parameter plane �a� b� in �gure �	�	 The diagonal �� � �� ��

is a symmetry axis and corresponds to b � � in eq	 ��	��	

The area in ���� ��� for which the symbol string � is admissible corresponds

to the values of �� and �� for which there exists a �xed point between xc� and

xc�	 But in addition� the symbol string � describes the stable period � orbit that

bifurcates from the �xed point before it reaches the super stable value	 This period

� orbit may become super�stable if the left point in the orbit reaches the critical
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Figure �	�� The area in parameter plane

�a� b� of the bimodal map ����� where

period � orbits are stable together with

the curves corresponding to the �one

Ulam
 map�

Figure �	�� The areas in the topologi�

cal parameter space of the bimodal map

where the periodic orbits �� ��� �� and

�� exist�

Figure �	�� The area in the parameter

plane �a� b� of the bimodal map ����� for

which the period 	 orbits are stable�

Figure �	�� The areas in the topological

parameter space of the bimodal map for

which the period 	 orbits exist�
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Figure �	�� a� The area in the parameter plane �a� b� of the bimodal map ����� where

period � orbits are stable� b� A magni�cation showing the smallest period � swallow

tail�

Figure �	�� The areas in the topologi�

cal parameter space of the bimodal map

where the period � orbits exist�
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Figure �	��� The possible super�stable period � orbits when the symbolic description

of the orbit changes from � to a� �� b� �� c� ���

point xc� changing the symbols of the orbit to �� as in �gure �	�� a�� or if the right

point in the orbit reaches xc� changing the symbols to �� as in �gure �	�� b�� or if

both points in the orbit reach the two critical points simultaneously changing the

symbol string to �� as drawn in �gure �	�� c�	 Up to � di�erent stable orbits may

be described with the symbol string ��	 In �gure �	�� the curves in the parameter

space where the orbits are super�stable are drawn as dashed curves and these curves

will correspond topologically to the bifurcation lines in �gure �	�	

The �gures �	�� �	� and �	� may be interpreted in the following way	 A kneading

value � jumps from �a to �b when the attracting stable orbit passes through a

super stable point as showed in the unimodal map in �gure �	��	 Values in the

open interval h�a� �bi do not correspond to any kneading sequence� so this interval

is 
forbidden�	 In a smooth map we can identify this empty interval with the

parameter interval where a period n orbit goes from the super�stable point through a

period doubling bifurcation to the super�stable period �n orbit	 The period doubling

corresponds to one point in this interval	 The areas in parameter space where the

period �n orbit is stable have the same topological structure as the forbidden interval

areas	 In �gure �	� the forbidden areas are colored gray and we identify this area

with the black area in �gure �	�� the swallowtail	 This topological identi�cation

between structures in the real parameter space �a� b� and the kneading value space

���� ��� motivates us to call the space ���� ��� the topological parameter space	 Since

the values � are a representation of the symbolic dynamics we will also use the term

symbolic parameter space	

If one of the critical points iterates into the �xed point � all bifurcations take

place at the other critical point	 The lines of parameter values �a� b� where this hap�
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Figure �	��� A sketch of the curves in parameter space giving bifurcations �solid curve�

and super stable period � and period � orbits �dashed curve� in the bimodal map� The

symbol strings for various orbits are indicated�

pens are drawn in �gure �	�� we call this a 
one�Ulam� map case	 For parameter

values outside these Ulam curves at least one critical point iterates to in�nity� and

there is no swallowtail crossings� only non�crossing tails �codimension one bifurca�

tions�	 The one�Ulam curves and all parameter values beyond these curves map in

the topological parameter space into the two borders �� � � and �� � �	

����� Markov graphs

The construction of the automaton graph of the bimodal map is similar to the

unimodal case� the kneading sequences are drawn on a tree� forbidden branches

are crossed out� and the admissible branches are reconnected into a closed graph	

The bimodal case tree is more complicated than for the unimodal case tree� but

there are no new important conceptual features brought in by the generalization to

bimodal maps	

We work out one example� the case of two coexisting stable periodic orbits� with

the repellor described by a Markov partition and a �nite automaton graph	 Assume

that the orbits �� and ��� are stable	 From �gures �	� and �	� we see that at the

point ���� ��� � �������� ��������� the vertical line for �� crosses the horizontal line

for ���	 This implies that there exists a parameter space �a� b� region for which
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Figure �	��� The construction of the automaton graph for the bimodal map with

coexisting stable orbits �� and ����

both orbits are stable	 Comparing �gure �	� and �gure �	� we see that the two tails

where these orbits are stable indeed cross	 Figure �	�� shows the construction of the

corresponding pruned tree and the automaton	 The construction yields a transient

repellor and the two attracting cycles	 It misses the two loops � and � which is the

two isolated unstable �xed points� and which can be drawn in the automaton as

isolated transients before the transient repellor in �gure �	��	 These loops will not

contribute to calculations of average values like entropy �see below�	 Removing the

two attracting cycles ��� and �� yields the repellor automaton with the � loops

f�g� f��g� f��g� f���g� f���g ��	���

and the � two combinations of loops without a common node

f��� �g� f���� �g ��	���

The topological polynomial is then

p�z� � �� z � �z� � z� � z� ��	���
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with the smallest root and the topological entropy

z � ��������� h � ln ������� � �������� ��	���

slightly larger than for the complete unimodal map	

��� Trimodal maps

In the generalization from bimodal to trimodal maps some new phenomena appear	

Trimodal maps have bifurcations of co�dimension three and we have to describe a

rather complicated bifurcation structure in � dimensional parameter space	

The �rst important observation is that a map like ��	�� does not have three

critical points for all parameter values �a� b� c�	 A minimum and a maximum point

may merge� reducing the map to the unimodal case with a one�parameter bifurcation

structure	 Also the number of symbols changes from four symbols when the map

is trimodal to two symbols when it is unimodal	 This merging of critical points

could be avoided by a restriction on the parameters� but that would exclude us

from understanding the bifurcations that take place in maps of the H�enon type and

therefore is it necessary to handle this problem	

The parameter space �a� b� c� looks rather complicated� �gures �	��� �	�� and �	��

are scans of the �a� b� plane at di�erent constant c values� showing the parameter

regions where a �xed point or a periodic orbit is stable	 A simpler description of

the bifurcation structures can be obtained by using the kneading value topological

parameter space ���� ��� ���	 The bifurcation parameter values for the �xed points

and period � orbits are drawn as planes in this space in �gure �	��	 The map is

trimodal if �� � �� and �� � ��	 The border planes �� � �� and �� � �� are

drawn in the �gure� the trimodal bifurcations take place inside the skew�pyramidal

region in this space	 When the parameters of the function �a� b� c� change in such

a way that we cross one border plane� we move into a one�dimensional unimodal

parameter space and may reenter the three�dimensional parameter space again at

a di�erent point on a border plane	 When we enter the unimodal region we can go

through bifurcation of the MSS type and reenter at any point on the border planes

of the trimodal map	 The unimodal map will not have a negative Schwarzian close

to the trimodal case so the stability of orbits may be di�erent than for the logistic

map	

The planes giving the bifurcations of orbits are obtained by determining the

values �max
i �S�� i � f�� �� �g� for a given orbit and drawing the planes �i � �max

i �S�	

Table �	� gives the numerical values of �max
i for the orbits of length �� � and �	 Note
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Figure �	��� The bifurcation planes of �xed points in the trimodal map in the topological

parameter space ���� ��� ���� The �� axis is hidden behind the bifurcation planes�

that not all the orbits has all the three �max
i �values	 The conditions for an orbit to

be admissible in the trimodal map follows from ��	���

�max
� �S� � ��

�min
� �S� � ��

�max
� �S� � ���

��	���

If these � conditions yield a box in the region within the border planes �� � �� and

�� � ��� the orbit always disappears in a bifurcation before the map gets unimodal�

and the orbit can never change symbols without going through a super�stable value	

If the box is only partly con�ned within the border planes� then the orbit exists

and may be unstable also when the map is unimodal� and may change symbolic

description without ever getting stable	 The sign of the eigenvalue cannot change

as long as the orbit remains unstable� so the sum of symbols which are either � or

� has to remain odd or even	
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S �max
� S �min

� S �max
�

� ���

� �� � ��

� ��� � ���

� ��

�� ����� �� �����
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�� ����� �� �����

�� ����� �� ����� �� �����
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� S �min
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�

��� ������� ��� �������
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��� ������� ��� ������� ��� �������

��� ���� ��� ���� ��� ����

��� ������� ��� ������� ��� �������

��� ���� ��� ���� ��� ����

��� ������� ��� ������� ��� ��������

��� ���� ��� ���� ��� ����

��� ������� ��� �������

��� ���� ��� ����

��� ������� ��� ������� ��� �������

��� ���� ��� ���� ��� ����

��� ������� ��� ������� ��� �������

��� ���� ��� ���� ��� ����

��� ������� ��� ������� ��� �������

��� ���� ��� ���� ��� ����

��� ������� ��� ��������

��� ���� ��� ����

Table �	�� The �xed points� period � and period 	 orbits in the trimodal map with the

kneading values giving the topological bifurcation diagrams in �gures ���	� ����� ����

and �����
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Figure �	��� The area in parameter space �a� b� for the trimodal map where �xed points

are stable� a� c � ����� b� c � ����

����� Fixed points

In �gure �	�� the bifurcation diagram for the �xed points in ���� ��� ��� is drawn	

The point ����� ���� ���� corresponds to the complete trimodal repellor	 This point

is in �gure �	�� the corner closest to the viewer	 Going downwards from this corner

the �gure can be read as follows� at the horizontal plane marked � the �xed point

with symbolic description � becomes superstable and changes symbolic description

to �	 When �� decreases further� the two �xed points � disappear at the horizontal

plane marked � in �gure �	��	 The �xed point � disappears either at a plane with

constant �� or with constant ��	 If we let �� decrease� the �xed point � changes

symbolic description to � and the two �xed points � disappear at �� � �	 Another

possibility is that we let �� increase and then the �xed point � changes symbolic

description to � and the two �xed points � disappear at the vertical plane marked

� in �gure �	��	

If we try to follow a �xed point � while �� decreases or �� increases we can pass

into the unimodal map regime through the plane �� � ��� without any bifurcations

of the �xed point	 In �gure �	�� we see that it is possible to enter the trimodal

region at the plane �� � �� where the �xed point � exists but not the �xed point

�	 We may therefore change the symbolic description of the �xed point by smooth

parameter changes without ever making the �xed point stable	 Since the sign of the

derivative cannot change� the �xed point � can change only into �� and the �xed

point � only into �	

We now compare �gure �	�� with two scans of the parameter plane �a� b� with

c � ���� and a � ���� �gure �	�� a� and b�	 These scans should be thought of
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as topological equivalent to surfaces cutting through the symbolic parameter space

of �gure �	��	 In �gure �	�� symbols � and � indicates planes at which a tangent

bifurcation creates the �xed points � or �	 Symbols � and � indicate the planes where

the �xed point � or � becomes unstable	 The area indicated by f�� �g corresponds to

parameter values for which the map is unimodal� and the �xed point with negative

f ��x� does not have a unique symbol but as one moves into the trimodal region the

�xed point achieves either the symbolic description � or the symbolic description �	

For the area indicated by f�� �g the �xed point with positive f ��x� does not have

a unique symbol in the � letter alphabet� but may become either � or �	 Moving

in these two areas corresponds to move around the corners of the boxes � or � in

�gure �	��	 To get around the corners one has to cross a unimodal region and

consequently some symbols may change	

In the �a� b� plane all regions with a stable �xed point are connected� and this

can be read out of the picture of the topological parameter space� �gure �	��	 The

two horizontal planes � and � are associated with one tail of a stable �xed point	 As

�� increases in �gure �	��� this tail connects to the tail associated with the planes

for � and � with constant ��	 Decreasing �� in this tail gives the transition to the

tail associated with the region between the constant �� plane of � and the �� � �

line where � bifurcates	 We see that this last region crosses the �rst region of the

planes of � and �� and this is also the case in the �a� b� plane in �gure �	��	

Figure �	�� is a sketch of the �a� b� plane as in �gure �	�� but the sheets represent�

ing the di�erent orbits are drawn in three dimensions to make the cusp bifurcations

clearer	 In this �gure it is also clear that orbits may change symbols when moving

around one of the cusp singularities	

In �gure �	�� the function f�x� is drawn for a sequence of values for which the

�xed point change symbol from � to �	

����� Period � orbits

Figure �	�� shows the planes in the topological parameter plane where both the

�xed points and the period � orbits bifurcate	 This �gure is interpreted in a similar

way as �gure �	��	 We know from the bimodal map that period � orbits may exhibit

a swallowtail crossing� and we do �nd swallowtails in �gure �	��	 On the top plane�

�� � �� we �nd the same swallowtail crossing as in the bimodal plane in �gure �	�	

We adapt a convention to describe crossings such that fs�� s�g� fs�� s�g is equivalent

with the four symbol strings s�s�� s�s�� s�s� s�s� and the notation s�fs�� s�� s�g is

short for the three orbits s�s�� s�s� and s�s�	 The symbols of the orbits in this

crossing are f�� �gf�� �g �the orbits ��� �� ��� ��� as in the bimodal case� and the
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Figure �	��� Coexistence of �xed points in the �a� b� plane with constant c for the

trimodal map�
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Figure �	��� The function f�x� for di�erent parameter values in the region where a

�xed point changes symbol from � to �� c � ����� a� a � �� b � � b� a � ����� b � �

c� a � �� b � ��

Figure �	��� The bifurcation planes of period � orbits in the trimodal map in the

topological parameter space ���� ��� ����
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Figure �	��� The area in parameter

space �a� b� for the trimodal map where

period � orbits are stable� a� c � ���� b�

c � ���� c� c � ����

structure is the same� only the scale is slightly changed since we here use base � to

calculate �� and ��	

In �gure �	�� we �nd another swallowtail for �� � � which includes the orbits

f�� �gf�� �g	 The two swallowtail crosses are directly connected to each other by

having the tail �f�� �g in common	 The scan of the parameter plane �a� b� with

c � ��� in �gure �	�� a� shows these two swallowtail crosses and the common tail	

In �gure �	�� the label � indicates the plane where the �xed point � goes through

a period doubling	 The labels �� and �� indicate the tangent bifurcations which

create the two period � orbits� and labels ��� �� and �� indicate planes where the

respective period � orbits become unstable	

Figure �	�� b� shows that at slightly larger value of c the swallowtails crosses

get closer together	 The �gure also shows other cusp points that can be found in

the topological parameter space in �gure �	��� and we see how the di�erent tails are

connected	 Notice also that in the region of �gure �	�� where the �xed point changes
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symbolic description from � to � there is no period � orbit that change symbol	

When a �xed point becomes unstable close to an in�ection point� the bifurcation can

not be a period doubling bifurcation� but is an inverse bifurcation where the �xed

point becomes unstable by removing an unstable period � orbit	 In this case the

removed orbit is ��	 Figure �	�� shows such bifurcations at di�erent one�parameter

scans of the parameter space	 In �gure �	�� a� the �xed point changes symbol

without going through any bifurcations	 In �gure �	�� b� the �xed point becomes

stable in a bifurcation which creates the unstable period � orbit �� and the �xed

point changes symbols when it is stable but not superstable	 At a parameter scan

closer to the f�� �g cusp in �gure �	�� a� we get �gure �	�� c� where the �xed point

has a bifurcation with a stable period � orbit� which in turn was created in a tnagent

bifurcation together with the unstable period � orbit	 Finely� in �gure �	�� d�

below the f�� �g cusp all orbits change symbolic description only at superstable

points	 One may also �nd paths in parameter space where the bifurcations are not

symmetric� one has a �nite number of bifurcations� etc	 The important structure

of the cusp and the change of symbols are however described by these four �gures	

The only period � orbit existing in �gure �	�� a� is the orbit ��	 This orbit do

not change symbol here but at one of the two cusp bifurcations� either to �� at the

cusp f�� �� �g� middle�right at �gure �	�� b�� or to �� at the cusp �f�� �� �g to the

left in �gure �	�� b�	 Consequently a loop around the cusp the �xed point changes

the description from � to � but there is no change of any period � orbit	

����� Period � orbits

Period � orbits form a rather complicated structure in the trimodal map parameter

space� and without the topological parameter space bifurcation diagrams would it

be di
cult to have an overview of the bifurcations	 In �gure �	�� all bifurcation

planes corresponding to the values of �max
i listed in table �	� are drawn	 To simplify

the reading� the diagram is also drawn in �gure �	�� with the labels restricted to

the swallowtail crossings on the planes �� � �� �� � � and �� � �	

A general observation is that there are many orbits restricted by bifurcation

planes to the interior of the trimodal region	 Out of �� orbits there are � orbits

that only have two �i values giving only two sides of the box� and there are � orbits

which have three values of �i but with one corner outside the trimodal region	 �

orbits have the corner of the box in parameter space on the edge of the trimodal

region 	 Hence in all �� period � orbits cannot change the symbolic dynamics

description without getting superstable	 In contrast for the period � orbits only �

out of � orbits cannot change symbols� and all the �xed points may change symbols	
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Figure �	��� The bifurcation planes of period 	 orbits in the trimodal map in the

topological parameter space ���� ��� ���� each plane labeled by the symbols for the

period 	 orbit created at this parameter value�
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Figure �	��� The same as �gure ����� but labeled with the swallowtail crossings rather

than the individual period 	 orbits�
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For long orbits only a small fraction of the orbits can change symbols	 For long

symbol strings there are few orbits that do not have any symbols �i � �� or �i�

such that �i does not exist� or that �
min
� is larger than either �max

� or �max
� 	 This is

good news because there is relatively few long orbits that we have to worry about

whether we use the right symbolic description or not� but some very long orbits will

also have the possibility of changing symbolic dynamics without becoming stable	

The plots in �gure �	�� show some scans of the parameter plane �a� b� where the

period � orbits are stable	 The swallowtail crosses are labeled as �and should be

compared to� the topological swallowtail crosses in �gure �	��	 In �gure �	�� there

is a structure consisting of the six crosses �f�� �gf�� �g� �f�� �gf�� �g� f�� �g�f�� �g�

f�� �g�f�� �g� f�� �gf�� �g� and f�� �gf�� �g� that are connected by tails to each

other but not to any other crosses� and they all bifurcates inside the bifurcation

box of ���� inside the trimodal region	 All these orbits disappear before the map

becomes unimodal and they do not change any symbols by moving around a cusp

structure without getting superstable	 Figures �	�� a��f� show that increasing the

parameter c makes the �a� b� plane to a surface deeper and deeper in the topologi�

cal parameter space	 In �gure �	�� f� the surface cuts below the box ���� and no

structure from the six crosses remains	 Each of the boxes in the structure is con�

nected to a swallowtail cross in the three corners of the box	 If a box moves above

the �a� b� surface� these three crosses have to merge to one cross	 If the pruning

box of the orbit ��� in �gure �	�� moves above the �a� b� parameter plane� then

the three crosses �f�� �gf�� �g� f�� �g�f�� �g and f�� �gf�� �g� which have ��� as

the only common orbit must merge together	 This is exactly the bifurcation tak�

ing place in �gure �	�� as the value of c increases	 There are other possible ways

for the crossings to merge� but a ��dimensional parameter plane cannot have other

mergings of the bifurcation structure than those that can be obtained by moving a

surface in the ���� ��� ��� space	

��� Higher n�modal maps

For four�modal and higher n�modal maps it is di
cult to draw the n�dimensional

topological parameter space bifurcation diagrams� but we can still use symbols to

understand possible bifurcation structures	

A swallowtail crossing for a period m orbit in a n�modal map has the form

fs�� s��gs� � � � sj��fsj� s
�

jgsj�� � � � sm ��	���

where si� s
�

i � f�� �� � � � � ng and jsi � s�ij � � �neighbor symbols�	 A tail from this
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Figure �	��� The area in parameter space �a� b� for the trimodal map where period 	

orbits are stable� a� c � ������ b� c � ���� c� c � ���� d� c � ���� e� c � ���� f�

c � �����
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Figure �	��� The area in parameter

plane of map ������ with stable �xed

point�

Figure �	��� The area in parameter

plane of map ������ with stable period

� orbits�

crossing is

fs�� s��gs� � � � sj��sjsj�� � � � sm ��	���

and this tail connects the crossing to another swallowtail crossing

fs�� s��gs� � � � sk��fsk� s
�

kgsk�� � � � sm ��	���

where k �� j if both crossings exist	 By using such rules it is easy to �nd all con�

nected swallow tails� and the possible merging and disappearances of the crossings	

��� The � �� bimodal map

To complete the discussion of bimodal maps we can also �nd the bifurcation di�

agrams for the bimodal map with f ��x� � � for x � xc� and x � xc� and with

f ��x� � � for xc� � x � xc�� denoted � � �	 We denote the bimodal map ��	��

according to the sign of f ��x�� � � �	 We will here just present the bifurcation

diagrams and the numerical results from the map

f�x� � �x� � ax� b ��	���

as the results are very similar to the ��� bimodal map	 The kneading values ��

and �� yield a symbolic parameter plane� and bifurcations lines for periodic orbits of

length �� �� � and � are drawn in �gures �	��� �	�� and �	��	 The parameter regions

�a� b� with stable periodic orbits for the map ��	��� are drawn in �gures �	��� �	���

�	�� and �	��	 The line �� � � � �� corresponds to the line b � � in map ��	���



�� CHAPTER �� THE N�MODAL MAP

Figure �	��� The bifurcation lines of the

�xed points and period � orbit in the

symbolic parameter plane of the � � �

bimodal map

and at the point �� � �� �� � � is the point corresponding to the complete binary

repellor	 The line �� � �� is the bifurcation line where the two extremum points

merge together	

The period � and period � bifurcation diagrams are di�erent but of the same

structure as for the ��� bimodal map	 The period � orbits yield two swallowtails

and the period � orbits yield �ve swallowtails	

The bifurcations of the �xed points and the period � orbits yield a slightly

di�erent bifurcation structure than for the � � � bimodal map	 In the � � �

map the stable �xed point � and all the period � orbits existed only in the bimodal

regime� �� � ��	 For the � � � map the two stable �xed points � and � and the

period two orbit �� exist also outside the bimodal regime �� � ��	 This gives a

di�erent cusp structures similar to those examined in the trimodal map	



���� THE ��� BIMODAL MAP ��

Figure �	��� The area in parameter

plane of map ������ with stable period

	 orbits

Figure �	��� Bifurcation lines of the pe�

riod 	 orbit in the � �� bimodal map

Figure �	��� The area in parameter

plane of map ������ with stable period

� orbits

Figure �	��� Bifurcation lines of the pe�

riod � orbit in the � �� bimodal map
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Part II

Two dimensional maps

��





Chapter �

Two dimensional folding maps

The symbolic dynamics for the one dimensional maps has a solid mathematical

basis ����� ��	� ��
� ����� and most statements can be proven� Part I introduced

a new way to present bifurcations in a symbolic parameter space and gave some

examples of calculation of statistical averages by using this symbolic description�

When we want to study the symbolic dynamics and the bifurcations of two dimen


sional pruned maps� our basis is no longer mathematically proven theorems� but

conjectures and intuition� The intention with this work on the pruned horseshoe

maps is not to give rigorous proofs of the theory� but to show that the theory works

and gives several interesting results� e�g� a systematic bifurcation diagram of the

H�enon map which has not been obtained before�

To study the symbolic description of a pruned horseshoe like the H�enon map we

have to combine the symbolic description of the complete Smale horseshoe ����� and

the methods we used discussing the one dimensional n�modal maps� Using this we

can obtain bifurcation diagrams for not complete horseshoe maps and a description

of the non
wandering set� One way to understand the pruned horseshoe map is to

describe its pruning front as done by Cvitanovi�c� Gunaratne and Procaccia ��
��

An equivalent description consists of �nding a systematic approximation of the

horseshoe by one dimensional maps� The later approach is more convenient if we

want to �nd bifurcation diagrams but we discuss the close relation between the two

points of view� We will also use the pruning front technique to describe Hamiltonian

billiard systems� We will �rst discuss the horseshoe systems and the results obtained

by Smale ����� and discuss the ordering of symbols in di�erent horseshoe maps�

��
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Figure 
��� The Smale horseshoe map�

The function g maps the square Q into

the horseshoe�

Figure 
�	� The inverse mapping g�� of

the Smale horseshoe�

��� The Smale horseshoe

The simplest example of a structurally stable chaotic di�eomorphism is the horse


shoe map de�ned by Smale in ���� ���
�� Figure 
�� shows the construction of this

set as de�ned in ref� ������ Q is a square in R� drawn with solid lines in �gure 
���

mapped by the map g to the area bounded by the dashed lines� The map g is a

di�eomorphism on Q and maps the corners A� A�� B � B�� C � C � and D � D��

and g is a linear map on each component of g���g�Q� � Q�� We denote the inter


sections g�Q� � Q as Qk with k � f�� �g� The index k is chosen such that when

x � Q moves from the bottom to the top then g�x� run through Qk with increasing

k� Figure 
�	 shows the action of g�� on the square Q� The map g�� maps the

corners A� �A� B � �B� C � �C and D � �D� We let �Qk be the two intersections

g���Q� �Q such that g��Qk� � Qk�

We are interested in the subset � of Q where � is the non
wandering set of

Q� A point x � Q is a wandering point if there is a neighborhood U of x such

that
S
jmj�� g

�m��U� � U � �� and a point is called non
wandering if it is not a

wandering point� � is the union of all the non
wandering points� De�ne � to be

the intersection of all images and preimages of Q�

The following propositions are proved by Smale �����

Proposition I� The subset � of Q is compact� invariant under g� indecompos�

able and on �� g is topologically conjugate to the shift automorphism � � XS � XS�
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with the cardinality of S � 	�

Proposition II� For a perturbation g� of g� �� de�ned similarly is also compact

and invariant under g�� Then g� � �� � �� is also topologically conjugate to the shift

� � XS � XS�

From this follows that the non
wandering set of the Smale horseshoe can be

described by a binary symbolic dynamics� A point x � � is mapped into a bi


in�nite symbol string

� � � s��s��s� � s�s� � � � si � f�� �g �
���

by choosing

si � k if g�i��x� � Qk �
�	�

with k � f�� �g and i � Z� For horseshoe maps with n folding we generalize to

k � f�� �� � � � � ng� The iteration xt � xt�� � g�xt� is in the symbolic description

the shift

��� � � s��s��s� � s�s� � � �� � � � � s��s��s�s� � s� � � � �
�
�

This is similar to the shift in the unimodal one dimensional map� but in the one

dimension the past symbols are thrown away� Since the horseshoe is a di�eomor


phism we need to know both the future and the past�

In �gure 
�� we see that the interaction Q� is oriented the same way as Q� while

Q� is turned around and oriented opposite to Q� This gives the same ordering of

the future symbols as for the unimodal map with a maximum point� because the

change of orientation of Q� corresponds to the negative slope f ��x� � � for x � xc

in the unimodal map� The well ordered future symbols wi and the future symbolic

value � are obtained from ������

w� � s�

wt�� �

��
�

wt if st�� � �

�� wt if st�� � �

� � ��w�w�w� � � � �
�X
t��

wt

	t

�
���

This symbolic value � corresponds to the position of the coordinate xt in the vertical

direction in �gure 
��� The points xt � � closest to the line BD have � � ��� and

the points closest to the line AC have � � ����
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Figure 
�
� The image g����Q� obtained

by applying the Smale horseshoe map

twice�

Figure 
��� The image g����Q� obtained

by applying the Smale horseshoe map

three times�

Figures 
�
 and 
�� are the images obtained by applying the horseshoe map two

times and three times on Q� The intersections g����Q� � Q are � rectangles and

g����Q� �Q are � rectangles�

In �gure 
�� the square Q is drawn together with the 	� squares of �� �

g�����Q� � g����Q� and the 		 squares of �� � g�����Q� � g����Q�� The y�axis in

�gure 
�� is labeled by �s�s� and the x�axis by s��s�� and they give a unique la


beling of the 		 squares of ��� The n
th generation of the construction of the

non
wandering Cantor set gives 	�n squares of the set �n � g��n��Q� � g�n��Q��

From proposition II we know that this is also valid for a perturbation g� and the

	�n parts of the perturbed intersections ��
n are called rectangles�

The picture of the inverse map in �gure 
�	 shows that �Q� has the same orien


tation as Q while �Q� has opposite orientation� Well ordered symbols for the past

are then obtained as for the unimodal map with a maximum point � f ��x� � � for

x � xc and f ��x� � � for x � xc� and the symbolic value � for the past is obtained

by the algorithm

w� � s�

wt�� �

��
�

wt if st�� � �

�� wt if st�� � �

� � ��w�w��w�� � � � �
P�

t��
w��t

�t

� �
���

The value � increases along the horizontal position of xt in �gure 
��� The points
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Figure 
��� The square Q and

the sets �� and �� of the Smale

horseshoe and the labels �s�s� and

s��s���
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xt � � closest to the line AB have � � ��� and the points closest to the line CD

have � � ���� The symbolic coordinate ��� �� gives a position in the Cantor set of

�gure 
�� with the gaps removed� We call this coordinate the point in the symbol

plane for the phase space point x�

����� Smale horseshoe with re�ection

By adding a re�ection around the vertical axis before applying the horseshoe map g

we get the map �g showed in �gure 
�� and the inverse map �g�� drawn in �gure 
���

From the �gures we �nd that �Q� and �Q� are oriented as Q� and Q� and the

de�nition of the future symbolic value � is identical to the not re�ected horseshoe�

The inverse intersections � �Q� and � �Q� are oriented such that � �Q� is opposite to

Q while � �Q� has the same orientation as Q� This give an algorithm for the past

symbolic value � identical to the algorithm for a unimodal map with a minimum

point such that the well ordered symbols changes with st � ��

w� � s�

wt�� �

��
�

�� wt if st�� � �

wt if st�� � �

� � ��w�w��w�� � � � �
P�

t��
w��t

�t

� �
���

Figure 
��� shows the set �� and the labels on the squares�

Two and three applications of �g give the folding in �gures 
�� and 
���

The Smale horseshoe with and without re�ection is closely related and both may

be realized by the H�enon map�

The shift operation � on the symbols st in eq� �
�
� becomes more complicated

when acting on well ordered symbols wt� This type of shift operations are discussed

for one example by Troll in ref� ���
�� A shift operation shift the symbol string to

the left but will also change wt � �� wt if a symbol that changes the ordering are

moved from the future to the past symbolic description�

��� Variations of the Smale horseshoe

����� Once�folding maps

Smale showed that variations of the horseshoe map like �gures 
���� 
��
� 
��� and


�	� also yield non
wandering sets� The horseshoe in �gure 
��� is binary but the

orientation is di�erent than in �gure 
��� Both Q� and Q� are oriented the same

way as Q and the construction of well ordered symbols is therefore simpler� The
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Figure 
��� The Smale horseshoe map

with re�ection� The function �g maps the

square Q into the horseshoe�

Figure 
��� The inverse mapping �g�� of

the Smale horseshoe with re�ection�

symbols wt is constructed as for a one dimensional map with two branches� both

having f ��x� � � like the Bernoulli shift xt�� � 	xt mod ���� This gives simply

wt � st �
���

Figure 
��	 shows that the inverse map also has �Q� and
�Q� oriented the same way

as Q� and the well ordered symbols for the past are therefore given by the same

algorithm�

The same map but with a re�ection around the vertical axis gives �Q� and �Q�

oriented as Q while both � �Q� and
� �Q� is oriented opposite to Q and the algorithm

becomes

if t � � then wt � st

if t � � then wt �

��
�

st if t even

�� st if t odd

�
���

Figures 
��
 and 
��� show a horseshoe map and its inverse map where both

intersections change the orientation in future and in past� The well ordered symbols

and the symbolic values are obtained by

if t � � then wt �

��
�

st if t odd

�� st if t even

if t � � then wt �

��
�

st if t even

�� st if t odd

�
���
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Figure 
��� The image �g����Q� when ap�

plying the Smale horseshoe map with re�

�ection twice�

Figure 
��� The image �g����Q� when ap�

plying the Smale horseshoe map with re�

�ection three times�
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Figure 
���� The square Q and the

sets �� and �� of the Smale horse�

shoe with re�ection� and the labels

�s�s� and s��s���

Figure 
���� The once folding Smale

horseshoe map with di�erent folding�

Figure 
��	� The inverse mapping of the

Smale horseshoe in �gure �����
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Figure 
��
� A once folding Smale

horseshoe map with all symbols revers�

ing the ordering�

Figure 
���� The inverse mapping of the

Smale horseshoe in �gure �����

����� Twice�folding maps

Figure 
��� shows a twice
folding horseshoe map with three intersections g�Q��Q�

The intersections are enumerated in such a way that when x � Q moves from the

bottom to the top� then g�x� visits the intersections in the order� Q� � Q� � Q��

The intersections Q� and Q� have the same orientation as Q� while Q� is oriented

opposite to Q� The inverse map is drawn in �gure 
��� and the three intersections
�Q��

�Q�� and
�Q� have respectively the same� the opposite� and the same orientation

as Q�

The well de�ned future symbolic dynamics has the same ordering as a bimodal�

one
dimensional map with f ��x� � � for x � xc�� and x � xc� and with f ��x� � �

for xc� � x � xc�� From the symbols st de�ned as in �
�	� with k � f�� �� 	g we get
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Figure 
���� The twice folding Smale

horseshoe map with simple folding�

Figure 
���� The inverse mapping of the

Smale horseshoe in �gure ���	�

well ordered symbols wt from algorithm �	��� with n � 	

w� � s�

p� �

��
�

� if s� � � or s� � 	

�� if s� � �

wt �

��
�

st if pt�� � �

	� st if pt�� � ��

pt �

��
�

pt�� if st � � or st � 	

�pt�� if st � �

� � ��w�w�w� � � � �
�X
t��

wt


t

�
����
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Figure 
���� The twice folding Smale

horseshoe map with re�ection�

Figure 
���� The inverse mapping of the

Smale horseshoe in �gure ���
�

Figure 
���� The set �� for the horse�

shoe in �gure ���	 with symbols �s�s�

and s��s���

Figure 
�	�� The set �� for the horse�

shoe in �gure ���
 with symbols �s�s�

and s��s���
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The past well ordered symbols are obtained by a similar algorithm�

w� � s�

p� �

��
�

� if s� � � or s� � 	

�� if s� � �

wt �

��
�

st if pt�� � �

	� st if pt�� � ��

pt �

��
�

pt�� if st � � or st � 	

�pt�� if st � �

� � ��w�w��w�� � � � �
�X
t��

w�t


�t���

�
����

We can also add to this two fold map a re�ection� Applying a re�ection around

the vertical axis before stretching and folding gives the �gure 
���� and the inverse

mapping in �gure 
���� The well ordered future symbols are the same for the

vertically re�ected map as for the not re�ected map� The well ordered past symbols

are obtained by the algorithm

w� � s�

p� �

��
�

� if s� � � or s� � 	

�� if s� � �

wt �

��
�

st if pt�� � �

	� st if pt�� � ��

pt �

��
�
�pt�� if st � � or st � 	

pt�� if st � �

� � ��w�w��w�� � � � �
�X
t��

w�t


�t���

�
��	�

The sets �� � g�����Q� � g����Q� for the two twice
folding maps are drawn in

�gure 
��� and �gure 
�	� together with the symbols s��s�� and �s�s� labeling the


	 rectangles�

A more complicated twice folding map is shown in �gure 
�	� and its inverse

map in �gure 
�		� The labeling Qk is done as before� so that when x moves from

the bottom to the top� g�x� visits Qk in the order Q� � Q� � Q��

The future intersections Qk are oriented as in the map above� Q� and Q� ori


ented as Q� while Q� is oriented opposite to Q� The well ordered future symbols
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Figure 
�	�� The twice folding Smale

horseshoe map with more complicated

folding�

Figure 
�		� The inverse mapping of the

Smale horseshoe in �gure �����

are therefore obtained by the algorithm �
����� The intersections g���Q� � Q are

oriented with �Q� and
�Q� as Q while �Q� are oriented opposite to Q� This gives the

following algorithm for well ordered past symbols�

w� �

����
���

� if s� � �

� if s� � 	

	 if s� � �

p� �

��
�

� if s� � � or s� � 	

�� if s� � �

w�
t �

����
���

� if st � �

� if st � 	

	 if st � �

wt �

��
�

w�
t if pt�� � �

	� w�
t if pt�� � ��

pt �

��
�

pt�� if st � � or st � 	

�pt�� if st � �

� � ��w�w��w�� � � � �
�X
t��

wt


�t���

�
��
�

The well ordered symbols can be worked out for any horseshoe map like these

by observing weather the intersections are oriented as or opposite to Q and �ipping

the symbols if the symbols correspond to oppositely oriented rectangle�
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One example we will use later is an n
folding map with all future intersections

Q�� Q�� � � � � Qn oriented opposite to Q� This is the generalized folding of the once


folding map in �gure 
��
� The algorithm giving the well ordered symbols is

if t � � then wt �

��
�

st if t odd

n� st if t even

if t � � then wt �

��
�

st if t even

n� st if t odd

�
����



�� CHAPTER �� TWO DIMENSIONAL FOLDING MAPS



Chapter �

Pruned horseshoes

We will here discuss pruned horseshoe maps in two dimensions and we are going to

discuss the ordering of bifurcations in these systems� We are not going to give a pre�

cise de�nition of this class of maps� but we believe this class includes many systems

of interest in physics� Our motivation is the H�enon map� discussed in an enormous

number of articles ��� 	� 

� 
�� 
�� 	
� 	�� ��� �
� ��� 
��� 


� 
��� 
��� 
���� In

particular we develop further the approach initiated by the work of Cvitanovi�c�

Gunaratne and Procaccia ����� The complicated bifurcation structure in the pa�

rameter space �a� b� of the H�enon map has been noticed in several works �
��� 
���

and the most complete investigations on the bifurcation has been done by Mira

and coworkers ���� ��� ��� 
���� The book by Mira� ref� �
���� gives an impressing

amount of numerical results but the discussion in the book is di�cult to follow and

Mira does not use the same notation as most other authors use� We claim that

the methods we use apply to all maps �similar� to the H�enon map� and we give

some examples of a perturbation of the H�enon map and of other maps for which

the method works�

By an n�folding map we understand a map similar to a n�folding Smale horseshoe

map which may be perturbed in such a way that its non�wandering set is not a full

hyperbolic n� n�Cantor set in the phase space� Under one iteration the perturbed

horseshoe map should not fold any region of the phase space more than n times�

The simplest folding maps are the once�folding maps� of which the H�enon map is the

most well known� We may regard an n�folding map as the two�dimensional analogue

of the 
�dimensional n�modal map� The bifurcation that leads to loss of orbits has

to be similar to the bifurcations we �nd in the H�enon map� This excludes the

��disk system and other billiards that we discuss later� because in billiard systems

the bifurcations are not naturally organized in the same hierarchical structure�

We will construct here the bifurcation diagrams for the once�folding maps� and

��
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we will also describe how we can extend this description of the once�folding map to

the n�folding maps� and give an example for the ��folding map� This is an analogue

to our discussion of generalizing the unimodal method to n�modal 
�dimensional

maps�

To be able to discuss a pruned horseshoe map in symbolic dynamics language

we have to assume the following�

Conjecture� An incomplete horseshoe can be described by a subset of the sym�

bolic dynamics of the corresponding complete Smale horseshoe map�

This conjecture works for all the examples we discuss� and we do not know any

examples of once�folding systems that contradict it� An orbit may change symbols

when a parameter changes but this is a consequence of bifurcations and does not

contradict the conjecture� We will state below a conjecture on how to obtain a

unique symbolic dynamics given the pruned horseshoe map�

The horseshoes in �gures ��
 and ��� can be realized by the H�enon map

xt�� � 
� ax�t � yt

yt�� � bxt

�	�
�

or equivalent

xt�� � 
� ax�t � bxt�� �	�
�

A non�smooth tent map version of this is the Lozi map�

xt�� �

��
�


 � axt � yt if x � �


� axt � yt if x � �

yt�� � bxt

�	���

Grassberger and Kantz ��
� have conjectured that the H�enon map may be de�

scribed by binary symbols constructed by �nding the primary homoclinic tangencies

and use these to separate the nonwandering set into two regions denoted by the two

symbols� Cvitanovi�c� Gunaratne and Procaccia ���� have used such binary symbols

to construct a �pruning front��

A di�erent approach has been done by Biham and Wenzel� who constructed an

algorithm that should always �nd a periodic orbit given a symbol string �
�� 
���

This method starts with a guess for n values �x�� �x�� � � � � �xn�� of a given period n

orbit� If this was a solution we would have �t � �xt�� � �
� a�x�t � b�xt��� � �� with

� � t � n � 
 and �x� � �xn� �x�� � �xn��� The nonvanishing errors �t �� � in the

general case can be used to change the numbers �xt by the arti�cial dynamics

d�xt

d�
� st�t �	�	�
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where st � f�
� 
g is the symbolic description of an orbit� This method converges

to a period n orbit for most parameter values and symbol strings� We will discuss

in section 	�� why the method cannot always converge� At the moment we just

accept the numerical fact that this method often converges� and gives one possible

symbolic description of most periodic orbits�

We believe Grassberger�Kantz�s point of view that it is possible to �nd primary

homoclinic tangencies and to use these tangencies as the separation points between

di�erent symbols in the same way as we used critical points to de�ne symbols

in the 
�dimensional maps� Grassberger and Kantz found that it was not one

unique way to choose the primary tangencies and di�erent choices gave di�erent

possible separations with the same topological entropy� We avoid this ambiguity by

a conjecture stated in section ��
�
 on how to always have a unique set of primary

tangencies which are connected by a continuous partition line�

��� Bifurcations

����� Stable and unstable manifolds at bifurcation points

To describe the bifurcations we have to investigate the manifolds of the map� When

discussing bifurcations in 
�dimensional maps� pictures of the type in �gure 	�
 are

usually drawn� These pictures illustrate a homoclinic tangency bifurcation and are

used when proving the results of Gavrilov and Silikov ��	� and of Newhouse �
����

see ref� �
���� In �gure 	�
 b� the unstable and the stable manifolds are tangent

at a point a �nite distance from the hyperbolic point measured along the mani�

folds� This is a bifurcation analogue to the 
�dimensional map bifurcation where

the critical point maps into the �xed point or into an unstable periodic orbit� In


�dimensional maps this may be a band merging bifurcation� a crisis bifurcation or a

chaotic attractor� This bifurcation where the unstable and the stable manifolds are

tangent to each other is not the analogous case of the 
�dimensional tangent bifur�

cation creating a periodic orbit� but there is a bifurcation creating a periodic orbit

arbitrarily close to the bifurcation in �gure 	�
 b�� The picture to draw studying

this bifurcation is the drawing in �gure 	�
�

In �gure 	�
 a� the unstable manifold becomes folded and the turning point

converges to a point in a periodic orbit� The stable manifold of a hyperbolic point

does not get arbitrarily close to the periodic orbit at a �nite distance from the

hyperbolic point measured along the manifold� We are therefore not especially

interested in the stable manifold when studying the bifurcation creating a stable

periodic orbit� A useful drawing is �gure 	�
 b� where we have plotted the unstable
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Figure 	�
� A bifurcation where the stable and unstable manifold create a homoclinic

point�

Figure 	�
� a� The two manifolds close to a bifurcation creating a period n orbit� b�

The n�th return map of the unstable manifold close to a bifurcation creating a period

n orbit�
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Figure 	��� The period doubling bifurcation of a periodic orbit�

manifold in the space �xt� xt�n� where n is the length of the periodic orbit created

at the bifurcation� In this space the unstable manifold converges to a curve which

is tangent to the diagonal xt�n � xt� The bifurcation is therefore well described by

a 
�dimensional map of the unstable manifold�

The period doubling bifurcation is illustrated in �gure 	��� This is a local bifur�

cation of the periodic orbit and no information of this bifurcation can be obtained

by the stable manifold of the hyperbolic point� This stable manifold is never close to

the periodic orbit bifurcating inside the basin of attraction� The periodic doubling

bifurcation can also be studied by a 
�dimensional map of the unstable manifold�

To be able to apply the symbolic description we use the union of the unstable and

stable manifolds for all points in the non�wandering set� We include the manifolds

of all hyperbolic orbits� also of an orbit just having a period doubling bifurcation

as in �gure 	�� b��

The homoclinic tangency in �gure 	�
 b� is the point when the unstable manifold

�turns back�� We de�ne a turning point or a turnback to be a point on the unstable

manifold where the closest fold of the stable manifold is parallel to the unstable

manifold� By this de�nition we have a turning point in all the three �gures 	�
 a�

	�
 b� 	�
 c�� but only in �gures 	�
 b� do we know that we have a homoclinic

tangency� If there is a homoclinic tangency in the other �gures this point is identical

to the turning point� A turning point may be inside the basin of attraction of a

stable periodic orbit� We also use the term turnback for the non�smooth map like

the Lozi�map for a point on the unstable manifold where the unstable manifold has

a kink�

The turnbacks in the horseshoe maps play the same role as the critical points
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in a 
�dimensional map when we study the bifurcations of the map�

There is always at least one turnback close to a stable orbit� The folds of the

unstable manifold have a Cantor set structure and each fold has a turnback which

can give a stable periodic orbit� This imply that the parameter space is in�nite and

we can obtain a map with any number of stable orbits existing simultaneously �
����

The bifurcations take place in an in�nite dimensional parameter space which seems

to be a hopeless system to describe� There are however two observations that sim�

plify the bifurcation description� First� if a turning point gives a stable periodic

orbit then the basin of attraction covers all the turnbacks in a neighborhood re�

ducing other possible bifurcations close to this� Second� for the horseshoes there

is a natural ordering or hierarchical organization of the folds allowing a systematic

approximation scheme of the in�nite dimensional parameter space� This is not true

for all systems� e�g� billiard systems can not be described in this way�

����� One�dimensional approximation

The �rst approximation we make is to consider the horseshoe with n folds to be

an n�modal 
�dimensional map xt � f�xt��� with n parameters� The topological

structure of the bifurcations can be described by the kneading sequences of the

critical points �turning points� and we can draw a symbolic parameter space� The

bifurcation diagrams are given in chapter 
� This unimodal description of the system

is a necessary starting point� but not a remarkable result� In a realization of the

pruned once�folding horseshoe e�g� the H�enon map� the unimodal bifurcations are

not enough to explain the main features of the bifurcation curves in a parameter

plane� �a� b�� scan� One way to illustrate this approximation is to regard the image

obtained by the Smale horseshoe map g�Q� as a line instead of a band� The line

is then a 
�dimensional function with a slope depending on the orientation of Qk�

This is equivalent to squeezing all the folds in the unstable manifold together to

one curve� This is realized in the H�enon map in the limit b� ��

The second approximation is obtained by �nding the second iterated of the

horseshoe map� g��Q�� and make a 
�dimensional map where the intersections

g��Q� � Q correspond to monotone sections in a 
�dimensional map� If we look

at the once�folding map in �gures ��� and ��� we see that if we approximate the

band g��Q� with a curve this gives a trimodal map with two maximum and one

minimum point� The minimum point is however the image of the bending point of

g�Q� and is not an independent critical point� This gives a two parameter map with

two maximum points as the critical points of interest� The natural choice of the


�dimensional map is a combination of two unimodal map with two critical points
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x�c and x
�
c where both are maximum points� The kneading sequences from these two

critical points give the two dimensional symbolic parameter space� The minimum

point has as its only function that if it is as high as one of the maximum points the

number of critical points decreases in the way we have discussed for trimodal maps

in section 
�
� This kind of bifurcation makes it possible for an orbit in the two

dimensional map to change symbolic description without getting stable by moving

around a cusp as illustrated in the trimodal 
�dimensional map� The height of the

minimum point described in symbols is found by a shift in the kneading sequence of

x�c or x
�
c � We then get two values for the minimum point and we have to be careful

when discussing this minimum point�

The third approximation is obtained by simplifying g����Q� by choosing a line

for each intersection g����Q� � Q� For the once�folding map in �gures ��	 and ���

we get a � modal map with 	 independent critical points and we can describe this

by four unimodal maps� Again only the kneading sequence of the maximum points

are critical points of interest in the once�folding horseshoe� The minimum points

are images of the maximum points in the �rst and second approximation� The

parameter space is four dimensional� and we construct the topological parameter

space from the kneading sequences of the four critical points x��c � x
��
c � x

��
c and x��c �

The n�th approximation of the once�folding map is now obtained by considering

g�n��Q� to be a 
�dimensional map consisting of 
n�� unimodal maps� The 
n��

maximum points x������c � x������c � x������c � � � � � x������c are the critical points of interest

and the kneading sequence of these points give the topological parameter space�

The maximum points correspond to the primary turnbacks� while the minimum

points correspond to turnbacks that are not primary�

The two�folding map in �gure ��
� is approximated the same way� The �rst

approximation gives a bimodal map with a maximum point xc� and a minimum

point xc� and the bifurcation diagrams discussed in section 
�
� The second ap�

proximation gives two bimodal maps with the six critical points x�c�� x
�
c�� x

�
c�� x

�
c�

x�c� and x�c�� The other extremum points are images of the extremum points in the

�rst approximation and corresponds to turnbacks that are not primary� The n�th

approximation gives 	�n�� bimodal maps with 
 	 �n�� independent critical points�

and a 
 	 �n�� dimensional parameter space�

A m�folding map have in the n�th approximation m 	 �m � 
�n�� independent

critical points� and a m 	 �m � 
�n�� dimensional parameter space�
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��� Unimodal approximation

The �rst approximation gives exactly the MSS ordering of periodic orbits as we

have discussed in chapter 
 for the once�folding map� This is the ordering we �nd

for the H�enon map and the Lozi map in the limit b� ��

��� Bimodal approximation

The second approximation gives a bimodal map with a two dimensional parameter

plane� The topological parameter plane is di�erent from the bimodal three�symbol

plane discussed in section 
�
� and we can describe this topological bifurcation plane

by using the restrictions we �nd on the binary symbols�

The two unimodal maps f��xt� and f��xt� corresponds to the two folds in g
����Q�

and each fold is the image of one of the two parts of g�Q� � Q� Q� and Q�� From

the �gures ��
 and ��� we �nd that for the Smale horseshoe without any re ection

Q� maps into the outer fold and Q� maps into the inner fold� The drawings of the

Smale horseshoe with re ections� �gures ��� and ���� show that in this case Q� maps

into the inner fold and Q� maps into the outer fold� The inner fold has a maximum

point that are smaller than the maximum point of the outer fold which imply� for

not re ected maps x�c � x�c� and for re ected maps x�c � x�c � The function of the


�dimensional map applied to a point xt is f��xt� if xt�� is in Q� which is equivalent

to that st�� � �� The function applied to the point xt is f��xt� if xt�� is in Q� that

is if st�� � 
�

The bimodal map is

xt�� � fst��
�xt� �	���

We can now �nd all periodic orbits of a given length and �nd the topological

values �s�S� of all cyclic permutations of the orbits�

����� Kneading values of short orbits

The �xed point � has s�� � � and the only kneading value is ����� � �� This orbit

exists when

�� � �max
� ��� � � �	���

The �xed point 
 has s�� � 
 and kneading value is ���
� � ��
� � 
�� and it

exists for symbolic parameter values

�� � �max
� �
� � ��
� � 
�� �	���
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The period 
 orbit 
� has two cyclic permutations� The point x�� with symbolic

description s�s� � 
� has s� � s� � � and s�� � s� � 
 giving the kneading value

���
�� � ��

�� � 	��� The second point in the period 
 orbit� x��� is on map �

since s�� � � and the kneading value is ����
� � ���

� � 
��� This orbit exists

for the symbolic parameter values

�� � �max
� �
�� � ���

� � 
�� �	���

�� � �max
� �
�� � ��

�� � 	�� �	���

There are two period � orbits with the symbolic strings s�s�s�� 
�� and 
�
� Here

we have that s�� � s� describes which map the point is on� The orbit 
�� has the

following symbolic values� ���
��� � ��


��� � ���� ����
�� � ���


�� � 	���

�����
� � ����


� � 
��� The two values of interest are �max
� �
��� � ��� and

�max
� �
��� � 	��� The symbolic parameters where � 
�� exists is

�� � �max
� �
��� � ��


��� � ��� �	�
��

�� � �max
� �
��� � ���


�� � 	�� �	�

�

The second orbit has the three symbolic values� ���
�
� � ��

� � ���� ���

�� �

��
�� � 	��� ����

� � ���
� � 
��� and the orbit exists for symbolic parameter

values

�� � �max
� �
�
� � ��

� � ��� �	�

�

�� � �max
� �
�
� � ��
�� � 	�� �	�
��

There are three period 	 orbits 
���� 
��
 and 
�

� The maximum kneading

values and the symbolic parameter values where these orbits exist are

�� � �max
� �
���� � ��



���� � 
��
� �	�
	�

�� � �max
� �
���� � ����



�� � 	�
� �	�
��

�� � �max
� �
��
� � ��


� � 
	�
� �	�
��

�� � �max
� �
��
� � ���
�� � 	�
� �	�
��

�� � �max
� �
�

� � ��
��
�

� � 
��
� �	�
��

�� � �max
� �
�

� � ��

�
��
� � 
	�
�� �	�
��

All these orbits of length 
� 
� � and 	 are drawn in �gure 	�	� Here we see

which of the two maps the points in the orbit lies on�

The curves for these bifurcations in the topological parameter plane is drawn in

�gure 	��� This �gure gives the description of a parameter space assuming that only

the bimodal approximation is important and that the map has two maximum points�
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Figure 	�	� The the periodic orbits of length �� �� � and 	 in the bimodal approximation

for the once�folding map� a�� c�� e�� g�� i�� k� and m� shows once�folding maps with

re
ection �b � ��� the others without re
ection �b � ���
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Figure 	��� The bifurcations of the periodic orbits of length �� �� � and 	 in the

topological parameter space of the bimodal approximation for the once�folding map�
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Figure 	��� The bifurcation curves of the stable periodic orbits with period �� �� � and

	 in the parameter space of the H�enon map�

This �gure can be compared with a two parameter scan of di�erent once�folding

maps� The relation between the topological parameter space ���� ��� and a real

parameter space �a� b� is as for the 
�dimensional maps� The structure of bifurcation

curves is the same for the two spaces� but metric properties like smoothness and

scaling are di�erent� Figure 	�� shows the areas in the �a� b� plane for the H�enon

map where the periodic orbits of period 
� 
� � and 	 are stable� When comparing

the drawings we should remember that the diagonal �� � �� corresponds to b � �

in the H�enon map� a positive parameter value b to the triangle �� � �� which is the

horseshoe with re ection� and a negative parameter value b corresponds the triangle

�� � �� which is the horseshoe map without a re ection� The corner �� � �� � 
��

in the topological parameter plane corresponds to the complete Smale horseshoe

which is realized by the H�enon map for b � � with a � 
 and and for b �� � with a

su�ciently large �
����

The structure in the two �gures is similar� For b � � �gure 	�� shows that

the bifurcation curves for the period � orbits crosses the period 
 orbit bifurcation

curves� The bifurcation curves for the period 	 orbits 
��� and 
��
 crosses both the

bifurcation lines for the period 
 and the period � orbits� For b � � the bifurcation

curves are similar but for the H�enon map the period 	 orbits 
��� and 
��
 crosses



���� BIMODAL APPROXIMATION ��

Figure 	��� The bifurcation curves of the periodic orbits with period �� �� � and 	 in

the parameter space of the H�enon map calculated by using the complex Biham�Wenzel

method�

the period � curves for a larger value of a� This is not the case in �gure 	��� We show

later that there is another bifurcation of the period 	 orbit that will be explained

in the next order of approximation�

This is actually better than one could expect� because in drawing �gure 	�� we

ignored the possibility that a maximum point of the 
�dimensional approximation

could disappear in a bifurcation together with the minimum point� This bifurcation

of critical points actually makes it impossible that the period 
 orbit 
� and the

period 	 orbit 
�

 bifurcate by decreasing �� and that the orbits 
��� 
�
� 
���

and 
��
 bifurcate by decreasing ���

The bifurcation of the critical points has taken place if the iteration of the

maximum point gives a point larger than the minimum point� A periodic orbit can

therefore not be pruned on map � �
� if the kneading value �max
� ��max

� � is smaller

than the kneading value of the once shifted symbol sequence� The value of the

shifted sequence 	�S� is larger than the value of the original sequence S if the value

��S� is ���� � ��S� � ��
��

� � �max
i �S� �� ��
� � 
�� �	�
��
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From the kneading values of the period 
 orbit in eq� �	��� and �	��� we �nd

that the orbit 
� only can be pruned by ���

The period � orbits have kneading values given by eq� �	�
�� ! �	�
�� and can

only be pruned by �� and not by ���

The period 	 orbits 
��� and 
��
 can as for the period � orbits only be pruned

by ��� while the orbit 
�

 is pruned by �� but not by �� as the orbit 
��

The exact description of the change from two to one maximum point in the


�dimensional approximation is more complicated than the argument above� The

following problem is a result of our approximation and is not present in the real

horseshoe map� The two fold approximation have one minimum point which is the

image of the maximum point of the one fold approximation� The problem in this

statement is that we mix two di�erent orders of approximation when we describe

the minimum point� The symbolic description of the minimum point of the two

fold approximation is then obtained by a shift operation on the maximum point of

the one fold approximation� What we have used as the rule in eq� �	�
�� is to use

the shifted lower maximum point in the two fold approximation as the minimum

point� This is a restrictive chose such that the topological description may forbid

structures that exists in the horseshoe� This may explain qualitatively that the

H�enon bifurcation plane in �gure 	�� shows similar structures as the topological

parameter plane in �gure 	�� also for �� � 
�� and �� � 
���

By using the method of Biham and Wenzel we can also �nd bifurcation lines for

the orbits given their symbolic description� This diagram is given in �gure 	��� By

comparing �gure 	�� and �gure 	�� we �nd that they are almost identical except

that the bifurcation curve for 
�

 in �gure 	�� close to b � 
 change direction and

hit the bifurcation curves for 
��� and 
��
 at a � �� b � 
�

The bifurcations in the once�folding tent map �the Lozi map� �	��� is drawn in

�gure 	��� The bifurcation lines are a bit di�erent than for the H�enon map� but

the overall structure is as the topological parameter plane predicts� In the same

way as the bifurcation curves for the H�enon map calculated by the Biham�Wenzel

method� the period 	 orbits 
��� and 
��
 for large positive b values get above the

bifurcation lines of the period � orbits 
�� and 
�
 and collide with the period 	

orbit 
�

 line at b � 
� This we show later is a result of a trimodal bifurcation

and is explained at the next level of approximation� A typical bifurcation in the

Lozi map is that all period doublings take place at one parameter value as for the


�dimensional tent map� One exception we �nd here is that for b � � the bifurcation

lines for the orbits 
� and 
�

 split� and therefore the period 
 orbit is stable in a

triangle in the parameter plane in �gure 	���
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Figure 	��� The bifurcations of the periodic orbits �� �� � and 	 in the parameter space

of the Lozi map�
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����� Period � orbits

The period � orbit gives the simplest example of the swallowtail cross in the bimodal

approximation of the once�folding map� The six di�erent period � orbits exist for

the following topological parameter values�

�� � �max
� �
����� � ��




����� �	�

�

�� � �max
� �
����� � �����




�� �	�

�

�� � �max
� �
���
� � ��



� �	�
��

�� � �max
� �
���
� � ����
�� �	�
	�

�� � �max
� �
��

� � ��
�


�
��� �	�
��

�� � �max
� �
��

� � ��


�
���
� �	�
��

�� � �max
� �
��
�� � ��

��� �	�
��

�� � �max
� �
��
�� � ��


�� �	�
��

�� � �max
� �
�

�� � ��

��
��

� �	�
��

�� � �max
� �
�

�� � ��

�

��
�� �	����

�� � �max
� �
�


� � ��
�

� �	��
�

�� � �max
� �
�


� � ��

�
�� �	��
�

The bifurcation diagram is drawn in �gures 	�� and 	�
��

The �rst two orbits can not be pruned by �� from the inequalities �	�

� and

�	�
	� because the critical point on map 
 disappear before one obtain the pruning

value in the bimodal approximation� As for the period � orbits� a shift of the

symbols gives a larger symbolic value�

The other four period � orbits can be pruned by both �� and ���

By choosing 
i � f�� 
g for i � 
 and i � 
 the string 
�
�

� gives the symbolic

description of these four orbits which will have a bifurcation in a swallowtail cross�

This is a bifurcation we know from the simple bimodal maps in section 
�
� Figure

	�
� shows the cross in the symbol plane where the gray area is the symbolic values

that can not be obtained from kneading sequences of the critical points� This

topological swallowtail cross can be compared with our numerical examples of the

pruned horseshoe�

Figures 	�

 and 	�

 show the bifurcation lines of the H�enon map and the Lozi

map� The area with stable period � orbits in �gure 	�

 a� is the typical swallowtail

with the same geometrical structure as in �gures 
�	� 
�� and 
��� We expect the

scaling of the period doubling of the crosses to be the same as for a bimodal one�

dimensional map� MacKay and van Zeijts �
	
� showed that the swallowtail crossing
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Figure 	��� The bifurcation lines of

all period 
 orbits in the symbol plane

���� ����

Figure 	�
�� The bifurcation lines of the

period 
 orbits giving a binary swallow

tail in the symbol plane ���� ����

Figure 	�

� The swallowtail of period 
 orbits in the parameter plane �a� b� for the

H�enon map� a� Areas with stable period 
 orbit� b� Bifurcation lines calculated with

the complex Biham�Wenzel method�
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Figure 	�

� The swallowtail of period 
 orbits in the parameter plane �a� b� for the

Lozi map�
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Figure 	�
�� The bifurcation lines of period �� orbits bifurcating from the period 


swallowtail in the symbol plane ���� ����
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Figure 	�
	� The period �� orbits from

the period doubling bifurcation of the pe�

riod 
 orbits in the parameter plane �a� b�

for the H�enon map�

Figure 	�
�� The period �� orbits from

the period doubling bifurcation of the pe�

riod 
 orbits in the parameter plane �a� b�

for the Lozi map�

scales with a spectrum of exponents� where the exponent changes with the path one

follows in the renormalization of the parameter plane� Figure 	�
	 shows the period


� swallowtails from the period doubling of the period � swallowtail of the H�enon

map�

The period 
� swallowtails are drawn in the symbolic parameter plane in �g�

ure 	�
�� This is� using MSS terminology �
	��� the harmonics of the period �

swallowtail orbits� The symbolic description is obtained by repeating twice the

given cyclic permutation of the � symbols and change the last symbol� The scaling

of crossings is di�erent in this plane from the normal parameter plane�

Figure 	�

 b� shows the period � swallowtail crossing obtained by using the

complex Biham Wenzel method� This method gives the tails and the crossing of

the swallowtail� In the tails the method converges for both the stable and the

unstable orbit up to practically the same bifurcation value� Inside the crossing

however does the BW method not converge to the stable orbit� This is the region

where a stable orbit in a one�dimensional map changes symbolic description in a

rather complicated way sketched in �gure 
�

 for the bimodal map� The BW

method does not converge in this region while it converges without problems to the

stable orbit in the tails where the symbols for an orbit in the one�dimensional map

is more simple� The BW method �nds here all the unstable orbits that exist�

The period � swallowtail crossing for the Lozi map in �gure 	�

 is a crossing of

bifurcation lines instead of a window structure in the �a� b� plane� Apart from this�

the structure is the same as for the H�enon map� The crossing and all the period
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Figure 	�
�� The stable period 
 orbit

and the stable and unstable manifolds for

the H�enon map�

a� a � 
�	��� b � ��
��

b� a � 
 �� b � � 
��
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doubled swallow tail crossings of the Lozi map bifurcates at one singular parameter

point a � 
���� � � �� b � ����� � � �� and there is no scaling� Figure 	�
� shows the

period 
� orbits from the period doubling of the crossing�

For values of b less than the parameter of the period � swallow tail crossing the

bifurcation takes place close to the critical point of the fold f��x�� For larger values

of b the critical point on the fold f��x� is responsible for the bifurcations� This is the

description in the one dimensional bimodal approximation and that the description

is valid in the H�enon map is illustrated in the �gures 	�
� a�� b�� c�� d� and e��

These �gures show the stable period � orbit� the unstable manifold and parts of the

stable manifold at parameter values in the di�erent tails and in the middle of the

crossing� The �gures 	�
� c� and d� are below the cross and have one point in the

stable orbit close to a turning point on the outer fold� In �gure a� and b� the orbits

have a point close to a turning point on the inner fold of the unstable manifold�

When identifying the outer folds with f��x� and the inner folds with f��x� this is

consistent with the one�dimensional approximation� In �gure 	�
� e� the orbit is

close to both the two turning points�

To further illustrate that the bifurcation is well described by a bimodal one

dimensional map� we can plot the unstable manifold in the space �xt� xt���� This

way to investigate the orbits are discussed in section 	�����

����� Period � orbits

The bifurcation diagram of the period � orbits is similar to the period � orbit

bifurcation diagram but has � more orbits� One period � orbit is 
��
�
 which is

the period doubling of the period � orbit� Two orbits� 
�



 and 
�


� are stable

windows in the two chaotic bands� The other � orbits have a structure very similar

to the period � orbits� The two orbits 
����� and 
����
 give bifurcations similar

to the orbits 
�k
� k � 	� The four orbits 
��
�

� give a swallowtail structure

similar to the period � swallowtail 
�
�

� and this swallowtail in the symbol plane

is drawn in �gure 	�
��

����� Longer periodic orbits

We can also plot the bifurcation plane for longer periodic orbits� To make the

pictures readable only the orbits giving swallowtails are drawn� Figure 	�
� give

the period � swallowtails� 
���
�

� and 
�
�



�� Figure 	�
� shows the pe�

riod � swallowtails� 
����
�

�� 
��
�
�

�� 
��
�



�� 
�
�
�


� and 
��

�
�
��

where the last swallowtail is below the diagonal and exists for maps with positive
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Figure 	�
�� The bifurcation lines of the period � orbits giving a binary swallow tail in

the symbol plane ���� ����





� CHAPTER �� PRUNED HORSESHOES

Figure 	�
�� The bifurcation lines of the period � orbits giving binary swallow tails in

the symbol plane ���� ����
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Figure 	�
�� The bifurcation lines of the period � orbits giving binary swallow tails in

the symbol plane ���� ����

jJj �b � � for the H�enon and Lozi maps�� Figure 	�
� shows the period � swallow�

tails� 
�����
�

�� 
���
�
�

�� 
��
�
��

�� 
��
�
�


�� 
�
�


�

�� 
�
�
�



��


�
�
�
�

�� 
�
�





�� 
��


�
�
� and 
���

�
�
� where the two last exist for

positive jJj�

����� Generic bimodal swallowtails

The most characteristic structure in the bifurcation diagrams in �gure 	��� 	�
��

	�
�� 	�
� and 	�
� is the swallowtail crosses� A cross in the bimodal approximation

always has two tails crossing the diagonal �� � �� which corresponds to b � � in

the H�enon map� Two windows in the logistic map are then connected at some point

for b �� � and we can give the generic symbolic description of which two windows

in a unimodal map that are connected in the bimodal approximation�

From the one dimensional theory we know that a window in the logistic map has

a stable period n orbit with symbolic description S � s�s� 	 	 	 sn where this string

is the cyclic permutation giving the largest symbolic value �max
i �S� � ��s�s� 	 	 	 sn��






 CHAPTER �� PRUNED HORSESHOES

Figure 	�
�� The bifurcation lines of the period � orbits giving binary swallow tails in

the symbol plane ���� ����
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The value of sn changes when the orbit goes through the super�stable point� From

the creation of the orbit until the super�stable point� the value of sn is such that

the number of symbol 
�s in the string is even� Above the super�stable point sn

changes such that the number of 
�s in the string is odd� This because the slope is

�
 when an orbit is created and �
 when it becomes unstable� At the parameter

value where the orbit is created either an orbit of length n�
 becomes unstable in

a period doubling or an unstable period n orbit is created in a tangent bifurcation�

This unstable orbit has the same symbolic description as the stable orbit before

the super�stable orbit� that is an even number or 
�s� These two orbits can then be

described by the string s�s� 	 	 	 sn��
� with 
� � f�� 
g�

The following result states which windows in the unimodal map are connected

by a swallowtail cross in the bimodal approximation�

Proposition � Let S � s�s� 	 	 	 sn��
 and S � � s��s
�

� 	 	 	 s
�

n��
� 
 � f�� 
g be the

symbolic description of the orbits in two windows of the unimodal map� These two

windows are the tails from the same bimodal swallowtail cross in a once�folding map

if and only if

sj � s�j for j � f
� 
� � � � � k � 
� k � 
� � � � � n� 
g

sk � 
� s�k
sk�� � 
� sn��

�max
sn��

�S� � ��s�s� 	 	 	 sn��
�

�max
sn��

�S �� � ��s��s
�

� 	 	 	 s
�

n��
�

�max
��sn��

�S� � ��sk��sk�� � � � sn��
s�s� 	 	 	 sk�

�max
��sn��

�S �� � ��s�k��s
�

k�� � � � s
�

n��
s
�

�s
�

� 	 	 	 s
�

k�

�	����

A slightly di�erent way to state this is

Proposition � A bimodal swallowtail of the once�folding map has the symbolic

description

S � s�s� 	 	 	 sm�
�sm��sm�	 � � � sn��

� �	��	�

with

�max
� �S� � ��s�s� 	 	 	 sm�
�sm��sm�	 � � � sn��

��

�max
� �S� � ��sm��sm�	 � � � sn��

�s�s� 	 	 	 sm�
��

�	����

The crossing is in the map with re�ection �b � � for H�enon� if �max�S� � �max
� �S�

and the crossing is in the map without re�ection �b � � for H�enon� if �max�S� �

�max
� �S�

As a short notation we write A�
�B

� � s�s� 	 	 	 sm�
�sm��sm�	 � � � sn��

�
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����� Symbols of period doublings of swallowtails

Each period n swallowtail crossing A�
�B

� has a period doubling structure� The

two stable orbits have a period doubling and become the outer bounds of two

new swallowtail crossings with period 
n orbits� In �gure 	�
� the two period 
�

swallowtail crossings and the stable period � orbits bifurcation lines are drawn in

the symbol plane� The period n swallowtail bifurcates into 
k swallowtails of length


kn giving a family of swallowtails�

The symbolic description of an orbit in the unimodal period doubling bifurcation

is obtained by repeating the shorter symbol sequence twice and change the last

symbol �a harmonics�� This symbol corresponds to the point close to the critical

point�

For the swallowtail crossings we take the symbolic string of the stable orbit and

write this string twice

A�
�B

�A�
��B


�

� �	����

with 
�� � 
� and 
�� � 
�� We now have two points close to critical points� By

changing 
�� from 
� to �
 � 
�� we make a point in an orbit crossing the critical

point on map 
� x�c � This gives the symbolic description of one new stable orbit�

When we change 
�� from 
� to �
 � 
�� this corresponds to moving a point in an

orbit across the point x�c and we get the symbolic description of the other stable

orbit� Changing both 
�� and 

�

� gives the unstable orbit in the middle of the swallow

tail�

With the two choices of 
� and 
� that give the two stable period n orbits� this

is the symbolic description of the � new orbits in the two period 
n swallowtail

crosses�

����	 Bimodal MSS ordering

The ordering of orbits along the parameter of the unimodal map follows the Metropo�

lis�Stein�Stein �MSS� ordering� In ref� �
	�� MSS gave a table �table I� with the

ordering of the periodic orbits of length � and shorter� We can now rewrite this

table and include the ordering of both folds in our bimodal approximation of the

once�folding map� In table 	�
 we give this table and we use here both the MSS

notation and the notation we use�

MSS uses the symbols R and L for a point to the right or left of the critical point�

This is identical to 
 and � in our notation� but they only write the �rst n�
 symbols

for a period n orbit given in the column Pi in table 	�
� They discuss unimodal

maps and the last symbol only distinguishes between the stable and the unstable
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i ki Pi Si �max
��i Si �max

��i
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 R 
� �

��
�� 
�
�
�� �

��


��

���
�� 
�


�
 �

�
��
��
�

�

 	 RLR 
�

 �

�
��
�
� � RLR� 
�



 �

�
�
��
�
�
	 � RLR	 
�



� �

�
�

��
�
��
� � RLR� 
�

� �

�

��
��
� � RLR�LR 
�

�

 �

�

�
��
��
�
� � RL 
�� �


���
� � RL�RL 
��
�
 �


��
���

�
� � RL�RLR 
��
�
� �


��

���

��

� � RL�R 
��

 �


�
���
�


 � RL�R� 
��



 �


�
�
���
�
�


 � RL�R� 
��

� �


�

���
��

� � RL�R�L 
��

�� �


�


���
���

	 	 RL� 
��� �



����

� � RL�RL 
���
�
 �



��
����

�

� � RL�R 
���

 �



�
����
�

� � RL�R� 
���

� �



�

����
��

� � RL� 
���� �




�����

� � RL	R 
����

 �




�
�����
�

� � RL	 
����� �





������


 � RL� 
������ �






�������

Table 	�
� The Metropolis�Stein�Stein ordering extended to a two fold description of

the once�folding map�
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orbit born at the same parameter value� As we also discuss bifurcations where

orbits bifurcates together with other partners we have to include all n symbols� In

table 	�
 we have chosen to let the last symbol be the symbol � or 
 such that the

symbol string has an odd number of 
�s and this is the description of the orbit that

is stable for some parameter values in a smooth map�

A number i is used by MSS to identify the di�erent orbits and we have in

table 	�
 introduced a notation i� which is the same orbit as i but with the cyclic

rotation giving the bifurcation on the other fold� The length of the orbit is denoted

ki by MSS�

The way the MSS table for the unimodal map is used is that the ordering in

the table is the same as the ordering at the parameter axis in a unimodal map�

The extended MSS table has two columns with respectivally �max
��i and �max

��i and

this give two di�erent orderings� The ordering in column �max
��i gives the ordering

of the orbits bifurcating at map 
 when map � has �� � 
� The other column �max
��i

gives the ordering of the orbits bifurcating at map � when map 
 has �� � 
� This

is a table description of the bifurcations along the two lines �� � 
 and �� � 
 in

the symbolic parameter plane� A swallowtail bifurcation in the symbolic parameter

plane imply that the ordering is di�erent in the two columns in table 	�
� We �nd

that the two orbits in the period � swallowtail crossing is i � � and i � 
� which

according to �max
��i is ordered with i � � before i � 
� but according to the �max

��i

value i � 
�� comes before i � �� and the orbits has to cross each other at some

point in the parameter space�

This table may be helpfull for people aquanted with the MSS theory� but the

drawings of bifurcation lines in the symbolic parameter space gives more information

and we prefer to use this�

����
 The n�th return plot

To study the bifurcation of a period n orbit in a one dimensional map we often

plot the n�th iterate of the map f � In the space �x� f �n�� the period n orbit is a

�xed point and by �nding when f �n� crosses the diagonal we �nd the bifurcations

of the map� In a once�folding two dimensional map we can try to apply the same

technique� but in this case we do not have one function f�xt� but a fractal manifold

which gives xt�� as a function f�xt� that also depends on xt���

The chaotic attractor for a � 
��� b � ��
	 is drawn in the two planes �xt� xt���

and �xt� xt��� in �gure 	�

 a� and b�� These parameter values are between the

tails of the period � swallowtail in �gure 	�

 where all the four orbits in the family


�
�

� exist� We then know that 
� of the points where one of the lines in the
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Figure 	�

� The chaotic attractor plotted in �xt� xt��� and �xt� xt��� with parameters

a � 
�� b � ��
	�

fractal in �gure 	�

 a� crosses the diagonal� are points in period � orbits� A period

� orbit is � �xed points in this plot� The 
� �xed points are on di�erent folds and

most of the crossings do not correspond to real �xed point� The �xed point are

the points where the lines of the fractal crosses the diagonal x � y � z in a three

dimensional plot �xt� xt��� xt���� and the picture in �xt� xt��� is only a projection

of this space� We can not show the exact bifurcations in this two dimensional plot

but the picture is useful as a qualitative description of the bifurcation�

Instead of trying to �nd the exact curves of the chaotic attractor� we draw a

small segment of the unstable manifold of the �xed point 
 which gives one single

curve in the �xt� xt��� plot� This gives an acceptable qualitative description of the

bifurcation� In �gures 	�

 a�� b� and c� this curve is drawn together with the

�xed points corresponding to period � orbits in the H�enon map� We have drawn

one of the �ve points for each orbit with markers of di�erent shapes� The markers

for the di�erent orbits are 
 for 
�


� � for 
�

�� � for 
��
� and � for 
��

�

Figure 	�

 b� has parameter values a � 
�� b � �
	 which are between the inner tails

of the swallowtail crossing in �gure 	�

 and all four period � orbits exist� Letting

b increase or decrease one crosses tails from the swallowtail crossing and two orbits

get pruned� Figures 	�

 a� and c� show that the pruning of the two orbits follows

from the di�erent possible changes of the f �n� curve� The two minimum points in

�gure 	�

 have the same height and are controlled by one parameter while the

second parameter controls the height of the maximum point�

These �gures shows how we can obtain qualitative information of bifurcations

by a simple return map and for the H�enon map we �nd that this information is
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Figure 	�

� The �fth return map of

a segment of the unstable manifold and

points in the period 
 orbit� a � 
��� a�

b � ��

�� b� b � ��
	 and c� b � ��
��
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Figure 	�
�� The attractor of the Lorenz model projected at the �x� y� plane� 	 � 
��

b � ���� a� r � 
����� b� r � 
�����

consistent with the detailed analysis based on the symbolic dynamics�

����� The n�th map of the Lorenz model

To illustrate the n�th iterated map on a more complicated system� we have calcu�

lated return maps also for the Lorenz system ���� 
��� 
���� The Lorenz system is

given by the �rst�order di�erential equations

"x � �	x � 	y

"y � �xz � rx� y

"z � xy � bz

�	����

The bifurcations of this map have often been studied keeping the parameters 	 and

b �xed to the values 	 � 
� and b � ���� and changing the parameter r ��
� 
����

This gives parameter windows with a stable periodic orbit� and a simple return plot

yields qualitative information on what kind of bifurcation structure these windows

belongs to in a higher dimensional parameter space�

In the largest window on the r axis is the orbit drawn in �gure 	�
� a� stable�

The �gure is the projection of the orbit to the �x� y� space� When the parameter

r increases from this value� r � 
����� the orbit will disappear� while for smaller

values of r the orbit becomes unstable� Figure 	�
� b� shows a segment of the

chaotic attractor for r � 
����� These plots of the orbit in the �x� y� plane do not

give much information of which kind of approximate one dimensional map the orbit

locally experiences� To �nd this we take as a Poincar�e map the xt values where the

orbit crosses the x�axis from a positive to a negative value of y� In this Poincar�e
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Figure 	�
	� The third return map �xt� xt��� of the Lorenz model� 	 � 
�� b � 
����

a� r � 
���� and the whole Poincar�e plane� b� a magni�cation of a� with the same

parameter values� c� r � 
	���� d� r � 
�����

map the orbit in �gure 	�
� a� is a period � orbit and we choose to plot the orbits

in the plane �xt� xt��� where the period � orbit is a �xed point� The time index t

is here the integer counting intersections with the Poincar�e plane and not the time

in the di�erential equations �	�����

Points of a chaotic orbit in the Lorenz system are plotted in �xt� xt��� in �g�

ure 	�
	� In �gure 	�
	 a� all points are plotted for parameter r � 
����� and the

structure down and left in this plot is magni�ed in �gure 	�
	 b�� We �nd here pic�

tures which are similar to the bimodal bifurcation pictures for the period � orbit in

the H�enon map� �gure 	�

� The points in �gure 	�
	 b� strongly suggest a bimodal

map were there is two independent critical points� The two minimum points seems

to be of the same height which excludes a three modal map bifurcation from being
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important� By increasing r to 
	���� �gure 	�
	 c�� we �nd a typical bimodal map

which here is restricted to a band �analog to the chaotic band before the period �

crisis bifurcation in the logistic map�� Increasing the parameter further� we obtain

�gure 	�
	 d� for r � 
����� where the orbit does not exist and the structure is very

similar a tangent bifurcation in a one dimensional map� There seems to have been

a transition to a locally unimodal map here�

From these �gures it is not di�cult to predict that any two dimensional scan

of the parameter space has to give a bimodal swallowtail as the bifurcation of this

orbit� and that the line with 	 � 
� and b � ��� is close to but not exactly in

the middle of the swallow tail crossing since the �function� �gure 	�
	 c� is slightly

asymmetric around the �xed point� We expect that with further investigations of

this kind and better understanding of the symbols of the system one can construct

the bifurcations in a topological parameter space also for the Lorenz system� A

simple comparison of the symbolic description of stable windows in the Lorenz map

and a cubic map has been done by Hao Bai�lin �
����

We belive that such a numerical procedure can be useful for understanding the

bifurcation structure for many low dimensional chaotic systems and may be useful

in �nding a symbolic description� Further investigations is necessary to test how

useful this method is in describing bifurcations and for the understanding of the

structure of the non�wandering set of the systems�
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��� Four unimodal maps approximation

The two�fold description cannot explain all swallowtails observed in the H�enon

map �
���� To explain other structures we have to approximate the H�enon map

with 	 unimodal maps which we refer to as a second order approximation� The four

maps approximation reproduces all the swallowtails we found by the bimodal map

approximation as a special case� but it also yields more complicated structures� We

know from section 
�
 that a general trimodal one dimensional map already yields

rather complicated diagrams like �gure 
�
�� and we can hardly expect to be able

to draw the complete bifurcation diagram for this special four�modal map� We

can however trace out some subspaces of the 	 dimensional topological parameter

space and use these to explain the bifurcations found in numerical experiments�

The four�modal map has co�dimension 	 and all the possible bifurcation structures

in the four dimensional parameter space cannot be realized in the H�enon map that

has only 
 parameters� It should in principle be possible to construct a H�enon like

map with 	 parameters that realized all possible bifurcations� We show below that

when we add one new parameter c with a x	 term to the H�enon function� we obtain

bifurcations not existing in the H�enon� These are other possible realizations of the

bifurcations in the four�dimensional symbolic parameter space�

This variant of the H�enon map is the map

xt�� � 
� ax�t � cx	t � bxt�� �	����

For c � � this is a once�folding map� If c � � the map is three�folding but for

�
 �� c � � most of the bifurcations are described by the bifurcation diagrams of

the once�folding map�

An additional term with a fourth parameter yields further bifurcation struc�

ture �not investigated here�� A good choice of four parameters should reproduce

all bifurcations predicted by the four�dimensional topological parameter space and

also other smaller bifurcation structures in addition to this� A �fth independent

parameter in the map cannot yield further bifurcations described by the four dimen�

sional symbolic parameter space� but any new bifurcations obtained here belongs

to a higher order in the one dimensional map approximations� The bifurcations

we �nd in the H�enon map parameter plane should be topological equivalent to a 


dimensional cut through the 	 dimensional symbolic parameter space�

Let us denote the four unimodal maps by 
�� ��� �
 and 

� Point xt in the

non�wandering set with symbolic description � � � st��st��st��stst��st��st�� � � � lies on

the map st��st�� and the ordering of the 	 maps in the phase space follows from

the folding of the horseshoe� Each map has a critical point with an associated
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�

topological parameter �s�s obtained by the kneading sequence of the critical point�

The ordering of the maps and the values �s�s is found by applying the horseshoe

map three times on a rectangle in the �xt� xt��� space� as shown in �gures ��	 and

��� and we �nd that the ordering for b � � is

��� � ��� � ��� � ��� �	����

and for b � �

��� � ��� � ��� � ��� �	�	��

From our experience with the trimodal maps we expect to �nd many swallowtail

crossings that sometimes combine together into a large complicated crossing� and

cusp bifurcations with two tails such that an orbit can change symbolic dynamics

without becoming stable�

����� Period � swallowtails

An example of a cusp bifurcation where the modality of the approximation changes

from 	 to 
 is given in �gure 	�
� �cf� �gure ���
 in Mira �
����� The ordinary

swallowtail cross in �gure 	�
� a� is the bimodal cross from the symbolic parameter

plane in �gure 	�
�� The tail 


��
 from this cross bifurcates into a cusp similar to

one of the cusp in �gure 
�
	� In the isolated window to the left in �gure 	�
� a� the

symbolic dynamics of the stable orbit changes without any visible trace in the �a� b�

plane� This implies� as pointed out in ref� �
��� that an unstable orbit can change

symbolic dynamics moving adiabatically along a loop in the parameter plane�

The bimodal swallowtail is described by �gure 	�
�� and we can also describe

other structures in the symbolic space ����� ���� ���� ����� From �gure 	�
� a� we

�nd that the two tails from the bimodal swallowtail that do not cross the b � �

axis� 


��
 and 
�
��
� bifurcate along the ��� axis since s��s�� � s	s� � ���

The second tail from the simple swallow and the uppermost part of the isolated

window bifurcate along the ��� axis� In �gure 	�
� the bifurcation lines of these

orbits are drawn� The unstable orbit 


��
 is common for two tails� with the

usual associated cusp structure� At this cusp point we have drawn a dashed line to

indicate that this cusp is at a point where the four modal map changes into a two

modal map� To understand that this is a topological feature we have to consider in

detail the maximum and minimum points in the four modal map�

The Biham�Wenzel method gives the bifurcation lines for the di�erent symbol

strings drawn in �gure 	�
�� We �nd by comparing the �gures that the symbolic

description of the two tails from the simple cusp in �gure 	�
� b� has symbolic
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Figure 	�
�� The bifurcation of the period � orbits in the H�enon map in the parameter

space �a� b�� a� The stable windows� b� The simple cusp magni�ed� c� The simple

stable window starting as 
�



 when b � ��
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�

Figure 	�
�� The bifurcation of the period � orbits in the H�enon map calculated with

the complex Biham�Wenzel method�

description 


��
 and 



�
� Along the 



�
 tail the two orbits are close to

the maximum point of the map 
�� the lowest map in the 	 modal approximation

�	����� The iterate of this maximum point is the minimum point connecting the

maps �� and �
� The symbolic description of this minimum point is the shifted

symbol string of the symbolic description of the maximum point on map 
��

	�



�
� � 


�

 �	�	
�

The tail 


��
 has the two orbits close to the maximum point of the map ��� At the

point where the two tails meet we �nd that the unstable orbit 	�



��� � 


��


is common for the two tails and we have a cusp bifurcation� Note that the symbolic

description of the point on this unstable orbit close to the minimum point is 


��
�

and at the same time the symbolic description of the maximum point is also 


��
�

This means that this cusp point is a bifurcation point where the maximum point

of the map �� merges with the minimum point on the same map and the critical

point of map �� disappears� Also the minimum point disappear and since this is

an image of the maximum point on map 
� then also the independent critical point

on map 
� disappears�
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Figure 	�
�� The bifurcation lines of some period � orbits in the sub�plane ����� ����

of the topological parameter plane�
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Proposition � At the parameter values �b � �� where the kneading sequences from

the two maps 		 and 
	 satisfy

K�� � 	�K��� �	�	
�

there is a bifurcation from a four�modal to a two�modal map�

We divide the isolated cusp bifurcations into two types� type 
 where the stable

orbit exists around the singular point and type 
 where the parameter values with

a stable orbit is a cusp ending in the singular point� With this de�nition we have

the following proposition�

Proposition � If K�� is a periodic string� and K�� � 	�K��� then there is a cusp

bifurcation of an periodic orbit in the parameter space� If the number of symbols


 in the repeating string is even then it is a cusp of type 
� and if the number of

symbol 
 in the repeating string is odd then it is a cusp of type ��

For the period � example considered here we have

K�� � 



��



��



�� � � � �	�	��

K�� � 


��



��



��
 � � � � 	�K��� �	�		�

when we have the topological parameter values

��� � ��
�
��� �	�	��

��� � ��
�


� �	�	��

The number of 
�s in this periodic orbit is even and we have a cusp of type 
� with a

stable orbit surrounding the cusp point in the parameter space �a� b�� The two types

are illustrated by the �xed point bifurcation in the trimodal map in section 
�
�

The bifurcation of the period � orbits in the Lozi map is drawn in �gure 	�
��

In this map there are no cusp bifurcation and one crossing is on the b � 
 line�

For b � � �det J � �� we have the same propositions with the strings K�� �

	�K����

The bifurcation lines for the Lozi map is drawn in �gure 	�
�� Because the

manifolds are piecewise linear this map has not any cusp bifurcations� We �nd in

this �gure that the Lozi map does not have the bimodal swallowtail but a four�modal

swallowtail crossing 
�
�


� in the ����� ���� plane�
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Figure 	�
�� The bifurcation lines for period � orbits in the Lozi map�

����� Period � orbit cusp bifurcation

The period 	 orbits 
���� 
��
 and 
�

 have a type 
 cusp bifurcation in the

symbolic parameter space ����� ���� in �gure 	�
�� The unstable orbit 
��
 is the

common orbit in the two tails� This cusp is exactly on the line b � 
� It was

showed by Mira �
��� that this is because there is a symmetry in the symbol string


��
 ��self�adjoint cycle��� In the n�modal map approximation is it not obvious

why this cusp is on the area preserving line� but this symmetry is visible in the

symbol plane ��� �� and we return to this question in section ��	� The bifurcation

lines for the Lozi map is given in �gure 	��� and �gure 	��
 shows the bifurcation

lines in the H�enon map� The Biham�Wenzel method in �gure 	��
 b� converges the

same way for this cusp as for the cusps in the dissipative region� For b � 
 the tail

consists of an orbit unstable in two directions and by iterating backward the orbit

is an attractor� The bifurcation diagram is sketched in �gure 	��
 a�� There is also

additional structures close to this cusp� cf� Mira �
����

����� Bifurcation of period 
 orbits

Another example of bifurcations in the H�enon map that is explained by the four�

modal approximation is the bifurcation structure in �gure 	��
� This structure has

a complexity comparable to the period � orbits in the trimodal map in �gure 
�

�

Instead of trying to draw a complete four dimensional topological parameter space�

we �nd the symbolic description of the structures and show that this is possible
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Figure 	�
�� The bifurcation of the or�

bits 
���� 
��
 and 
�

 in the symbolic

parameter plane ����� �����

Figure 	���� The bifurcation curves of

period 	 orbits in the Lozi map�

Figure 	��
� The bifurcation curves of the period 	 orbits in the H�enon map� b�

Bifurcation curves from the BW�method�
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Figure 	��
� The parameter values with stable period � orbits in the H�enon map in the

parameter space �a� b��

bifurcations in a two dimensional subspaces of the symbolic symbol space� We then

perturb the H�enon map with a cx	 term� and show the transitions to other possible

bifurcations in the parameter plane as c varies�

In �gure 	��
 there is one window which is a simple almost vertical strip in the

left side of the plot� This is the period � orbit 
�


�
� originating from the period

doubling family of the �xed point� This orbit is bifurcating along the ��� axis in

the symbolic parameter space and is not connected with the other structure in the

�gure and we will not discuss this any more�

In �gure 	��� the bifurcation lines found by the complex Biham�Wenzel method

is drawn in the �a� b� parameter plane� We assume that when these bifurcation lines

coincide with the tails of stable orbits in �gure 	��
 this is the correct symbolic
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Figure 	���� The bifurcation of the period � orbits in the H�enon map in the parameter

space �a� b� calculated with the complex Biham�Wenzel method�
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Figure 	��	� The bifurcation lines of some period � orbits in the sub�planes of the

topological parameter plane and the corresponding structure in the real parameter space�

a� ����� ���� b� ����� ���� c� ����� ����
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description of the orbit� In �gure 	��� the bifurcation curves are labeled and the

double curves that corresponds to a tail are labeled s�s�s�s	s�s
s�
� This is the

cyclic permutation where the two orbits have one di�erent symbol in the end of the

string and the two orbits in the tail are pruned on map s
s�� All the swallowtail

crossings are bifurcations in a two dimensional symbolic parameter plane and in

�gure 	��	 three pictures show these crosses in three di�erent symbolic parameter

planes� Notice that the symbol strings given in the �gure have the cyclic rotation

giving the largest value �s�s�� If there was a cyclic permutation of an orbit giving a

larger �s�s� then this cyclic permutation would give the correct bifurcation structure�

Figure 	��	 a� shows that the simple cusp of type 
 is a bifurcation in the plane

����� ���� of the three orbits 


�
��
� 


�
��� and 



�
�
� In agreement with

proposition 	 one shift of the symbol string on map 
� with an odd number of 
�s

give the symbol string on map ��




�
��
 � 	�



�
���� �	�	��

The �gure 	��	 b� shows that the three orbits 
���



� 
���


� and 


�
��


bifurcates in a swallowtail crossing in the plane ����� ����� We �nd that the orbits

do not bifurcate along ��� and the bifurcation can therefore not be a cusp where

the modality of the map changes�

In �gure 	��	 c� we �nd that the third cross is the bifurcation of the orbits


��



�� 
��




 and 





�
 in the ����� ���� plane� There is no bifurcations

giving a cusp and reducing the number of critical point in this plane� From this

�gure we �nd that the three tails 
�





� 
��




 and 
���



 bifurcates along

the ��� axis and these tails will not cross each other� Figure 	��	 c� also shows that

the two tails 



�
�
 and 





�
 both bifurcates along ��� and the tails never

cross each other�

We �nd in the �a� b� plane in �gure 	��� the tail 





�
 below the tail 


�
��
�

In the symbolic parameter plane we do not �nd that this is necessary as the �rst

tail bifurcates along ��� and the second along ����

To further test the symbolic parameter description we numerically investigate

the perturbed H�enon map �	����� The �gures 	��� a� ! f� show how the bifurcation

structure for the period � orbits changes when c changes from ����� to ������ We

describe the two extremum cases and some important transitions in the structures�

Figure 	��� a� for c � ���� shows that the tail 
�





 has become disconnected

from the other structure� the cusp of type 
 has not changed while the remaining

structure has turned into a bimodal swallowtail crossing and a cusp of type 
� These

structures are drawn in the symbolic parameter plane in �gure 	���� In 	��� a� the

two simple cusps are drawn� Both bifurcates in the plane ����� ���� as proposition 	
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Figure 	���� The parameter values giving stable period � orbits in the perturbed H�enon

map �	���� in the parameter space �a� b� with di�erent values of c� a� c � ����� b�

c � ���
� c� c � ����
 d� c � ����
�� e� c � ����
� f� c � ������
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Figure 	���� Bifurcation lines of some period � orbits in the sub�planes of the topological

parameter plane and the corresponding structure in the real parameter space for the

perturbed H�enon map with c � ����� a� ����� ���� b� ���� ���
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Figure 	���� Bifurcation lines of some period � orbits in the sub�plane ����� ���� of

the topological parameter plane and the corresponding structure in the real parameter

space for the perturbed H�enon map with c � ������

predict� The swallowtail in �gure 	��� b� is one of the bimodal swallowtails in

�gure 	�
� bifurcating in the bimodal parameter plane ���� ���� This example shows

that not all the bimodal bifurcation structure can be found in the H�enon map� but

when adding new parameters to the map we can �nd the swallowtails predicted by

the bimodal approximation�

We have a di�erent bifurcations structure in �gure 	��� f�� For c � ����� the

structure has changed into one simple band and one ordinary swallow tail� This

structure is drawn in the topological parameter plane ����� ���� in �gure 	���� The

simple band is the tail 
���



� The swallowtail looks like the bimodal swallow�

tails we found in the bimodal approximation but this is not a bimodal structure

because the tail 



�
�
 is the cyclic permutation giving �max
�� but not the cyclic

permutation giving �max
� � In �gure 	��� we �nd that the map for c � ����� indeed

is three�folding� but that the period � orbit we study here is in the once�folding part

of the manifolds�

There is an interesting transition of the bifurcations from �gure 	��� d� �c �

���
�� to �gure 	��� e� �c � ���
�� In the H�enon map �c � �� there is a tail




�
��
 connecting two cusp bifurcations� When c decreases this tail merge into

a loop and �nally disappear� From �gure 	��
 it is not easy to guess that this

is a possible transition� However from the BW calculations in �gure 	��� we have

some bifurcation structures indicating this possibility� A bifurcation line of the orbit


�




� is going in an arc from the tail 
�





 to the tail 



�
�
 exactly as the
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Figure 	���� The stable period � orbit and the manifolds in the cusp in �gure 	��
 a�

with parameters a � ������� b � ��	���� c � �����
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Figure 	���� The stable period � orbit and the manifolds in the swallowtail cross in

�gure 	��
 f� with parameters a � 
�
�� b � ��	��� c � ������

bifurcation line at the back of the swallowtail in �gure 	��� f�� In �gure 	��
 there is

a loop consisting of the tail 


�
��
 and the curves 
���



 and 
�




�� If we

ignore this loop then we �nd the following� the four tails 
�
�




� goes into the

bifurcation structure� from down right comes the tail 
���



 and to the top left

leaves the two curves 
���


� and 
���



� The only di�erence is that the two

orbits 
���



 have split up in the left top corner� At the bifurcation point where

the loop disappears all three tail 
���



� 


�
��
 and 



�
�
 go together at

one point and then the stable point is close to the turning�point of the three maps


�� �� and 

�

��� Biham�Wenzel method

After using the method suggested by Biham and Wenzel �BW� to make bifurcations

diagrams it is of interest to look closer at this method and its convergence properties�

In earlier investigations �
�� 
�� ��� this method has been used numerically as a

tool to �nd periodic orbits in the H�enon map� It has been showed by Grassberger

et� al ���� that this method fails in certain cases while Biham and Wenzel �
�� have

replied that that these cases can be solved by introducing some numerical tricks

as changing the method slightly or choosing starting points in a special way etc�

After the better understanding of symbolic dynamics given here and the study of

the convergence of the BW method as a function of the �a� b� plane is it useful to

discuss the method again� The motivation of Biham and Wenzel was a Hamiltonian
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formalism� but we �nd this irrelevant and we will not discuss this argument�

Biham and Wenzel have suggested one method �nding only real solutions and

a more complicated method which also �nds complex solutions for a �possibly�

complex H�enon map� Biham and Wenzel uses the convention of the H�enon map

xt�� � a� x�t � bxt�� �	�	��

which is turned into the map we use by changing x � x�a while the parameters a

and b are the same�

The real BW method to �nd a period n orbit works as follows �
��� Choose xi

for i � f
� 
� � � � � ng to be random numbers and let x� � xn and xn�� � x�� Let

then the values xi evolve with time according to the di�erential equation

"xi � siFi� i � 
� � � � � n �	�	��

with

si � f�
� 
g

and

Fi � �xi�� � a� x�i � bxi�� �	����

The �force� Fi is just a rewriting of the H�enon map �	�	�� which is equal � if the

values xi are the points in a period n orbit of the H�enon map� The periodic orbits we

are interested in are one possible solution of eq� �	�	�� and it is not very surprising

that this kind of method may work� What is interesting is that the choice of values si

gives a symbolic dynamics and that this symbolic dynamics with s � �
� s � � in

most cases is the same symbolic dynamics as the Smale horseshoe type of symbols�

Biham and Wenzel also have extended this method to a complex version which

can include complex parameters and gives the complex periodic orbits when the real

orbits do not exist �
��� By using real parameters this method gives the real and

the imaginary solutions of periodic orbit if the method converges� The advantage

with this method is that we can check whether we did not get the real periodic

orbit because the orbit was imaginary or because the method failed to converge�

Let all the variables in the equations above become complex numbers with zi �

xi� iyi where z� � zn and zn�� � z�� and Fi � fi� i
i� A � a� i� and B � b� i��

The di�erential equation we choose as before to be

"zi � ciFi� i � 
� � � � � n �	��
�

with

Fi � �zi�� � A� z�i �Bzi�� �	��
�
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but here we choose

ci � si � i sgn�yi�

with si � f�
� 
g the symbols as in the real case� The introduction of the i sgn�yi�

terms seems to be just ad hoc but numerical experiments show that this term is

necessary to get a convergence to the complex solutions�

Writing the di�erential equations as two real equations give

"xi � si ��xi�� � a� x�i � y�i � bxi�� � �yi���

�sgn�yi� ��yi�� � �� 
xiyi � �xi�� � byi���
�	����

and

"yi � si ��yi�� � �� 
xiyi � �xi�� � byi���

�sgn�yi� ��xi�� � a� x�i � y�i � bxi�� � �yi���
�	��	�

These equations with � � � � � have we used to �nd the bifurcation lines in

the parameter space integrated with a fourth�order Runge�Kutta method�

Figure 	�� shows that for the short orbits of length 
� 
 and � the bifurcation

lines the BW method gives is the same lines as the bifurcation lines where these

orbits start to exist�

In the swallowtail in �gure 	�

 the BW does not converge to the stable orbit in

the center of the cross� In this region the stable orbit in a one dimensional bimodal

map changes symbolic dynamics in a complicated way� The BW method solves this

problem of choosing the right symbolic description by not converging at all�

More interesting is the bifurcation curves close to the simple cusp as in �g�

ure 	�
�� On the back of the cusp the BW does not converge to the unstable orbit�

It is natural to relate this to the change of modality on the back side of the cusp�

As one adiabatically changes the parameters and follows the unstable orbit one ob�

serve that the orbit start with one symbolic description and then has to change to

an other symbolic description� In the area where there is a smaller modality of the

map there is no obvious reason why one or the other of the symbol string should

make the BW converge� Assume that the BW arti�cial dynamics makes the points

move in one direction away from the turning point and the direction is determined

by the symbol� then it is a reasonable guess that it does not converge when the

turning point vanishes�

The numeric indicate that that the BW method in this case converges for parts

of the parameter space where the map has lost its turning point� In �gure 	�	�

the curves where BW losses convergence for the period � and � orbits are drawn

together with the dashed curve where the fold � � � 
�



 looses its turning point�
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Figure 	�	�� Border curves where the complex Biham�Wenzel method fails to converge

for period � and � orbits� The dashed curve is the bifurcation line where the fold

� � � 
�



 looses its turning point�

This dashed curve is obtained simply by looking at pictures of the stable and the

unstable manifold and judge by eye if the fold has a primary turning point or not�

When the parameters get closer to the lines where the BW method fails� then the

convergence of the BW method gets slower and slower� In the area where it fails to

converge it also fails if we starts close to the correct solution� The periodic orbit can

be found by a Newton algorithm and followed adiabatically through the parameter

plane where it exists as done in ref� �
����

In ref �
�� Biham and Wenzel discuss the convergence of the period � orbit


���


� for parameters a � 
�� and b � ���	� They �nd that the method converges

to a limit circle and not to a periodic orbit but that when one multiply the left side

of eq� �	��	� with a number larger than 
�	� such that the x and y values do not

converge with the same speed then the method converges to the right solution�

They use this example as an argument that the method will converge with small

adjustments�

We have in �gure 	��� plotted the curve where the method does not converge

any more for the orbit 
���


�� For the parameter b � ���	 we �nd the bifurcation

line at a � 
��
�� which imply that the method does not converge to the orbit for

a � 
�� but this parameter is very close to the convergence region� These parameters

are above a cusp in �gure 	��
� We correctly �nd that by increasing the relative size
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of eq� �	��	� compared to eq� �	���� we obtain a converging method for a � 
���

The value of a where the method stops converging decreases but it reach a minimum

value at approximately a � ����� when we choose �	��	� to be around � times as

large as �	���� and then a increases again for larger ratios� This numerical trick

seems to be able to move the bifurcation line slightly� but not enough to prevent

that in a large area the method fails to converge�

The dashed line in �gure 	�	� represents the most important of the bifurcations

reducing the modality of the map� There are similar lines arbitraryly close to the

b � � line and therefore we conjecture that for any parameter value of the pruned

H�enon map� the BW method will fail to �nd all periodic orbits existing� The orbits

it fails to �nd are those which are above a cusp bifurcation and therefore do not

have a unique symbolic description even in a one dimensional map�

��� Twice�folding maps

The twice�folding horseshoe map has parameter space of higher dimension than the

once�folding map and a bifurcation structure that is more di�cult to draw in a

symbolic parameter space� We will only discuss a few examples of bifurcations and

show that that these are consistent with the symbolic parameter space description�

The map we choose for illustrating the twice�folding bifurcations is

xt�� � x�t � axt � b� Bxt�� �	����

Instead of adding a cubic term to the H�enon map we choose to use the cubic map in

section 
�
 and add a term Bxt�� to this� As for the H�enon map this map reduces

to a one dimensional map for B � � and the bifurcations of the map B � � is

discussed in section 
�
� The bifurcations we �nd in section 
�
 can be considered a

�rst order approximation valid for small values of B and some of these bifurcations

are shown in �gures 
�	� 
�� and 
��� This is bifurcations in a two dimensional

parameter space�

The second approximation gives three bimodal maps with the topological pa�

rameters given by the � kneading values of the � independent extremum points in

the approximation� The ordering of the kneading values depends only on the sign

of B� As for the H�enon map we �nd that for B � � the horseshoe is orientation

reversing and

��map � � ��map � � ��map � �	����

��map � � ��map � � ��map � �	����
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	�

For the orientation preserving case B � � we have

��map � � ��map � � ��map � �	����

��map � � ��map � � ��map � �	����

One interesting new bifurcation structure is the bifurcations of the period �

orbits� In the parameter space �a� B� for b � � we �nd that the two tails 

f�� 
g

and 

f�� 
g cross each other when B increases and that the tail 

f�� 
g has a cusp

bifurcation of type 
 �see page 

�� shown in �gure 	�	
� The stable orbit in the

cusp is drawn in �gure 	�	
 together with the stable and the unstable manifolds�

and the stable orbit in the other tail in �gure 	�	
 is drawn in �gure 	�	� together

with the unstable manifold�

The cusp has the two tails 

f�� 
g and �
f
� 
g� where the stable orbit 

� is

the common orbit� This kind of structure is familiar from the H�enon map param�

eter spaces� We can �nd the bifurcation diagram in a universal two dimensional

symbolic symbol plane drawn in �gure 	�		 a�� This is the bifurcation plane with

the two symbolic parameters ��map � and ��map �� The symbolic parameter subspace

���map �� �
�
map �� has the structure in �gure 	�		 when all other values of � is constant

and when ��map � is su�ciently large� 
 � ��map � �� ��map � As for the once�folding

map� the common orbit is in this case related in the two tails by a single shift

of symbols� A generalization of proposition 	 to the twice�folded map is straight

forward�

The �rst order approximation predicts that these two orbits bifurcate in an ordi�

nary swallowtail bifurcation� This bifurcation is showed in the ordinary parameter

space and the topological parameter space in �gures 
�� and 
��� We can numeri�

cally study the transition from this swallowtail to the isolated cusp in �gure 	�		

by following the bifurcations in the �a� b� plane as B increases�

At B � ��

 �gure 	�	� shows that the two tails 

f�� 
g and 

f�� 
g are closer

in the parameter space� but topologically there is still a connected swallowtail with

the tails ordered as for B � �� At B � ��
� �gure 	�	�� the two tails have changed

order� such that 

f�� 
g is to the left of 

f�� 
g and the crossing is broken up

into one cusp and one tail� This tail is thicker close to the cusp because there the

unstable manifold bends less sharp here�

The sketch of bifurcation lines in �gure 	�		 b� is drawn as expected from a

Biham�Wenzel type algorithm� In the area above the cusp the unstable period �

orbit has to change its symbolic description and it does not have a de�nite descrip�

tion in a � letter alphabet� We expect that if we could construct an algorithm of

this type it would fail to converge in this area�




		 CHAPTER �� PRUNED HORSESHOES

Figure 	�	
� The area in parameter space �a� B� of the twice�folding map b � � where

period � orbits are stable�

Figure 	�	
� The stable and the unstable

manifolds and the stable period � orbit



� in the cusp bifurcation a � 
����

b � �� B � ��
��

Figure 	�	�� The unstable manifold and

the stable period � orbit 


 a � 
���

b � �� B � ��
	���
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Figure 	�		� a� Bifurcation lines for period � orbits in a two dimensional subspace

���map �� �
�
map �� of the symbolic parameter space of the twice�folding map� b� A sketch

of bifurcation lines in the parameter space �a� B��

Figure 	�	�� The area in parameter space

�a� b� of the twice�folding map B � ��



where period � orbits are stable�

Figure 	�	�� The area in parameter

space �a� b� of the twice�folding map

B � ��
 where period � orbits are stable�
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Figure 	�	�� The area in parameter

space �a� b� of the twice�folding map

B � ��
 where period 	 orbits are stable�

Figure 	�	�� The unstable manifold and

the stable period 	 orbit in the cusp of

�gure 	�	� a � 
���� b � ��
��� B �

��
�

A di�erent example of the breakup of the swallowtail is given by the period

	 orbit swallowtail cross 

f
� 
g� f�� 
g� In the B � � limit this is an ordinary

swallow tail shown in �gure 
��� When B increases� this tail splits up� but in a

di�erent way than in the period � example above� In this case the inner part of the

crossing becomes disconnected� and we get a cusp bifurcation of the type where the

unstable orbit is the common orbit in the two tails� This does not require crossing of

tails� �gure 	�	� shows the bifurcation structure in the plane �a� b� for B � ��
� The

manifolds and the stable orbit in the isolated cusp are drawn in �gure 	�	�� The

cusp is isolated if the symbolic value ��map � is su�ciently larger than ��map � which

in ordinary parameters means that B is su�ciently large� The symbolic parameter

plane ���map �� �
�
map�� gives this cusp bifurcation with the two tails 


f�� 
g and

�

f
� 
g�

The structures we �nd numerically for this model all �ts into the description

with a symbolic parameter space organized hierarchically with approximations with


 parameters� � parameters� 
� parameters� etc� We conjecture that the symbolic

parameter space describes all bifurcations in this map�



Chapter �

Pruning front for the H�enon map

Our starting point� the pruning front picture of the once�folding map as de�ned

by Cvitanovi�c� Gunaratne and Procaccia ���	 is in many ways equivalent to the

multi�modal map picture
 Assuming the pruning front description is correct� then

this picture gives all admissible orbits of the map
 Discrete approximations to the

pruning front may be given as n�modal one�dimensional maps� and we show how

one can describe the di�erent n�modal bifurcations using the approximate pruning

front
 We will argue that the procedure we propose for de�ning a partition yields a

unique partition for a pruned horseshoe map
 The question of one unique partition

is di�cult and the discussion here should be regarded as the �rst step towards a

rigorous treatment of this problem


��� Symbol plane

The pruning front conjectured in ref
 ���	 is de�ned in a two dimensional symbol

plane 
�� �� � 
��� �	� ��� �	�
 While ref
 ���	 uses coordinates 
xt� yt� and 
�� ��� we

prefer to use coordinates 
xt� xt��� and 
�� �� because they simplify the comparison

with the n�modal discussion
 The coordinate � is de�ned in 
�
��� and coordinate

� is de�ned in 
�
�� for a Smale horseshoe without re�ection 
b � � in the H�enon

map�� and in 
�
�� for the Smale horseshoe with re�ection 
b � � in the H�enon

map�


For the full Smale horseshoe the Cantor set in 
xt� xt��� is mapped uniquely by

the rules above into the the symbol plane� preserving the phase�space topological

ordering
 We will now use this symbol plane to also describe the pruned horseshoe

map


���
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��� Primary turning points

The main problem in the de�nition of the pruned horseshoe symbol plane is the

choice of the symbol st corresponding to a phase space point 
xt� xt��� for the given

parameters


In the n�th one�dimensional approximation of the once�folding map we chose

the symbols st � � if xt lies to the left of the critical point and st � � if xt lies to

the right
 The critical point is the the point where dxt���dxt � � and an important

question is how many critical points we have for a given approximation and how

this number changes
 The complete horseshoe map has �n critical points but it may

be less critical points in the pruned horseshoe


We found that in the three�modal one�dimensional map in section �
� we had

a bifurcation changing the modality from three to one
 In the three�dimensional

symbolic parameter space this bifurcation happens at two planes drawn in the

�gures �
��� �
�� and �
��
 In �gure �
�� a� and c� the function has three critical

points and orbits are described by a four letter alphabet while in �gure �
�� b�

the map is unimodal and a two letter alphabet describes all orbits
 The typical

bifurcation of periodic orbits are the cusp bifurcations discussed in section �
�


The bifurcation changing modality creates di�culties when we want a complete

description of all the bifurcations in one�dimensional map given by a polynomial of

degree n


For the four�modal approximation of the H�enon map discussed in section �
� we

found a bifurcation from a four�modal map to a bimodal map for kneading sequences

given in proposition �
 The border of the four�modal symbolic parameter space is a

three�dimensional space which in a two�dimensional parameter space like 
a� b� for

the H�enon map� is a curve sketched in �gure �
��
 This give the cusp bifurcations

we found numerically for the H�enon map
 Any higher modal approximation to the

once�folding map has bifurcations decreasing the modality of the map


To understand this changing of modality seems to be essential when we want to

describe the pruned once�folding map by symbolic dynamics in an exact description


In the H�enon map there can be no critical points in the strict one�dimensional

map sense since det J � b is constant� and no derivative vanishes for b �� �
 Here

the points that play a role similar to the critical points of one�dimensional maps

are the turning points of the unstable manifold WU � de�ned as points where the

stable manifold W S and the unstable manifolds WU are parallel
 If the attractor

is chaotic then the turning points are identical to the homoclinic tangencies of W S

and WU 
 If there are stable periodic orbit some turning points are in the basin of

attraction
 If the map is a repellor then some turning points are in the basin of
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Figure �
�� The Grassberger�Kantz partition line for the H�enon map for parameters a�

a � ���� b � ���� b� a � ���� b � ����� From ref� �	
��

attraction of in�nity


Grassberger and Kantz ���	 have proposed that the �primary� homoclinic tan�

gencies 
turning points� generate a partition of the H�enon map
 One of the images

or preimages of a turning point has to be chosen as the primary turning point�

according to Grassberger� Kantz and Moening ���	 this choice is �� � � of course ar�

bitrary� as all 
pre��images are equally good candidates�


We shall introduce here a prescription for determining which 
pre��images of the

turning points that should be taken as primary and we believe this prescription is

unambiguous


In �gure �
� the Grassberger�Kantz partition of the H�enon map is plotted for

H�enon parameters a � ���� b � ���� and for the parameters a � ���� b � ����
 In

ref
 ���	 Grassberger� Kantz and Moening compare their partition to the partition

obtained by the symbols of periodic orbits found using the real version of the Biham�

Wenzel 
BW� method 
�
���
 They �nd that their choice and the BW method give

the same partition for � ���� b � ���� while for a � ���� b � ���� they get a di�erent

partition drawn in �gure �
�
 The two partitions give the same entropy and the

di�erent symbols can be translated into each other by a �nite set of substitution

rules up to the given accuracy
 However� we shall now argue that a partition

di�erent from both these two are preferable for reasons given below
 This partition

is indicated in �gure �
�
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Figure �
�� The partition line for the

H�enon map for parameters a � ����

b � ���� calculated by the BW�method�

From ref� �	���

Figure �
�� The partition line for the

H�enon map for parameters a � ����

b � ����� constructed by the algorithm

proposed here�

����� Bifurcations of turning points

We de�ne a primary turning point 
PTP� for the complete smooth Smale horseshoe

map to be a point on one fold of WU 
the unstable manifold� at the point where

this fold of WU is parallel to the closest fold of W S 
the stable manifold� and the

point has to be in the primary bent region of the horseshoe� in g
Q� close to to

middle of g
Q� above Q in �gure �
�
 For non�smooth maps like the Lozi map a

PTP is at the point on WU where the fold turns
 In the Lozi map this is the line

xt � �


Each fold in the complete Smale horseshoe has one PTP� and each PTP has an

in�nite number of images and preimages that are turning points 
TP� which are not

primary
 All the images of a PTP are below Q in �gure �
�� while the preimages of

a PTP are in Q


We choose some physical realization of the complete Smale horseshoe� e
g
 the

H�enon map� and then change smoothly the parameters
 The number of TPs and

folds in the H�enon map may be less than in the complete horseshoe
 The folds

changes smoothly with the parameters and we can study the bifurcation removing

a TP
 The bifurcation creating 
or removing� a tangency between two given folds

of WU and W S is much studied in mathematical literature and is very important
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Figure �
�� A partition of the once�folding map under a bifurcation of TPs that gives

a discontinuous partition line�

in proving the Newhouse phenomena ����� ���	 and in proving that a subset of the

non�wandering set is given by a complete horseshoe
 In these discussions the turning

point exists both before and after the bifurcation and the bifurcation creating a TP

is a di�erent and much less studied bifurcation ����� ���	
 We want to use PTPs as

the partition giving symbolic dynamics
 To understand how the symbolic dynamics

change when we smoothly change the parameters we have to examine the bifurcation

of TPs


A simple way to describe the bifurcations appears to be to claim that when

one PTP vanish this does not a�ect any other PTP
 This is illustrated with the

bifurcation sketched in �gure �
�� the thin lines are folds of W S� the thick lines are

folds of WU and the dashed line is the partition line
 The partition line we have

in �gure �
� b� through the three remaining PTPs are not continuous through the

whole WU 
 The partition line goes into one fold and has to continue outside this

fold
 In the limit b � � for the H�enon map this partition does not approach a

simple line through the critical point of the parabola
 This is also not consistent

with choosing x � � as the partition line for the Lozi map


We �nd it necessary to choose a di�erent and more complicated way to describe

the partition line under a bifurcation of a PTP


Assume that the fold A of WU in �gure �
� a� has three TPs labeled �� � and

� where TP no � is a PTP and that after n iterations of these folds of WU and

W S we have the folds in B where TP � and TP � are PTPs
 The partition line

is drawn through TP � in A and TP � and TP � in B
 As we change parameters
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Figure �
�� Bifurcation of the primary turning points of the once�folding map�

the two TPs � and � move closer and in �gure �
� b� the two points disappears

in of �ip bifurcation
 When only TP � is left in �gure �
� c�� we choose to draw

the partition line through TP � at fold A of WU and not through TP � at fold

B
 At the bifurcation point we change which image of turning point � we consider

primary from the point on fold B to the point on fold A which is its n�th preimage�

We claim that this is a general picture of the bifurcations of TPs and state the

following conjecture


Conjecture � If there is a bifurcation where a TP disappears then there is always

two TPs merging together and one can always �nd a �pre��image A where one of

the TPs is primary� One can also �nd a �pre��image B where the second of the

two TPs is primary and where the fold of W S has a third TP which is primary in

B� After the bifurcation the third TP is primary in A and not in B� This gives a

continuous partition line and the partition is uniquely changing moving through the

parameter space for all TPs that exist all along this path�

That the partition line will be continuous follows because each folded part of

WU have either two PTPs or no PTPs and the folds of WU is not dense in the

phase space so two PTPs on neighbor folds of WU can be connected by a curve


We have not managed to proof that the partition is unique when moving along

di�erent paths in the in�nite dimensional parameter space but the example below

suggests that this is the case
 At the in�ection point there may be created more

than two TPs but it will be an even number of points and we can let two and two

of the TPs bifurcate together
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Figure �
�� The bifurcation of primary


solid lines� and not primary 
dashed

lines� turning points as a function of a

parameter�

The bifurcation in �gure �
� is sketched as a function of a parameter in �gure �
�

with the same labeling of the turning points


In �gure �
� we show one numerical example for the H�enon map of this type of

bifurcation
 In this example fold B of WU is above fold A in the phase space and

fold B is the �rd iterated of A such that the folding of B is modest
 In �gure �
� a�

the down�most fold has the three TPs as in �gure �
� a� fold A
 In �gure �
� b� a

part of the uppermost foliation of �gure �
� a� is magni�ed and we �nd the fold B

which also has three turning points
 The �gures �
� c� and �
� d� show the manifolds

at parameter values close to the bifurcation and in �gures �
� e� and �
� f� there is

only one PTP on the folds we are looking at
 The partition line has jumped where

it crosses fold A
 Fold B is here on the right side of the partition line


The most important bifurcation of this type is the one illustrated in �gure �
� a�

which give the bifurcation of the folds � � � ���s and � � � ���s
 This is the bifurcation

giving the cusp structure in the examples of chapter �
 We follow the same principle

in this case� the bent fold B moves to the left of the partition line and the partition

line on fold � � � ��s jumps
 This gives a partition which is not the one chosen by

Grassberger and Kantz or the one the BW�method gives for parameters a � ����

b � ����
 Instead it gives the one we indicated in �gure �
�


Figure �
� b� illustrates a variation of the same bifurcation
 In �gure �
� we

assumed thatWU is dense in the phase space such that the bifurcation is happening

when the two turning points � and � are close in the phase space
 This bifurcation

may take place inside a basin of attraction
 We are only interested in describing the

non�wandering set and therefore is the bifurcation drawn in �gure �
� b� of more

interest than the point where the folding vanishes
 In �gure �
� b� the bifurcation

is where the fold of WU is tangent to the fold of W S on the border of the basin of

attraction
 In �gure �
� b� the turning points � and � is in the basin of attraction of

� and the of interest bifurcation takes place when also the turning point � moves

out in the basin of attraction of �
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Figure �
�� Bifurcation of the primary turning points of the H�enon map map� a� and

b� a � ���� b � ���� c� and d� a � ������ b � ���� e� and f� a � ������ b � ����� b��

d� and f� are magni�cations�
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Figure �
�� Bifurcation of a primary turning points of the H�enon map map� a� a � ����

b � ������ b� a � ���� b � ��������

We examine some possible bifurcations in �gure �
� to show how the mecha�

nism of changing PTPs works in more complicated cases� and to investigate the

uniqueness of the partition
 Figure �
� a� and b� shows the same bifurcation as

�gure �
�
 The only di�erences is that we have drawn WU as a straight line in A

and we have added a new iteration C of the manifolds
 In C none of the TPs are

primary
 In �gure �
� c� there are � TPs and by pruning TP � and TP � from

�gure �
� c� we get �gure �
� b�
 Notice that before the bifurcation TP � and TP �

are primary in image C and TP � is primary in image B
 The bifurcation changes

TP � from being primary in C in �gure �
� c� to be primary in B in �gure �
� b�
 In

�gure �
� d� there are � TPs
 The two TPs � and � can bifurcate together and we

then after the bifurcation have the picture in �gure �
� c�
 We have here a rather

complicated foliation but in the bifurcation from �gure �
� d� to �gure �
� c� we

are only interested in the fold with TP �� TP � and TP �
 In �gure �
� d� TP �

is primary in B and TP � and TP � are primary in C
 At the bifurcation TP �

has to change from being primary in C to be primary in B which is the case in

�gure �
� c�
 These pictures describe a parameter path taking us from �gure �
� d�

to �gure �
� a� through three bifurcations of turning points


The �gures �
� e� and f� show steps along another possible path in the parameter

space changing �gure �
� d� into �gure �
� a�
 Instead of removing TP � and TP �

from �gure �
� d� we can remove TP � and TP � in a bifurcation
 This give

�gure �
� e� and change TP � from being primary in C to be primary in A
 From

�gure �
� � we can have a bifurcation removing TP � and TP � giving �gure �
� f�
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Figure �
�� Di�erent bifurcations of TPs in the once�folding map�
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and we �nd that this change TP � from being primary in B to be primary in A
 The

�gure �
� f� can be compared with �gure �
� b� since both have three TPs but they

are di�erent since one TPs is di�erent and the TPs are primary on di�erent folds


By letting TP � and TP � in �gure �
� f� bifurcate together we obtain �gure �
� a�

again and TP � will again be primary in A


The path d��c��b��a� changed TP � from being primary in C to be primary

in A
 The path d��e��f��a� also changed TP to be primary in A
 If the last path

had given A primary in B or C this would have contradicted the uniqueness of the

conjecture


One bifurcation which can make the discussion more complicated is if one fold

outside a second fold looses its PTP
 This is unlikely to happen but if this happens

we have to include more iterations of the innermost fold such that the PTPs on

this folds jumps
 In our example this would be the case if � and � bifurcated in

�gure �
� d�


Independent investigation has been done by Giovannini and Politi ���	
 They

have used a numerical method to investigate bifurcations of the PTP in the H�enon

map and they use the point where the curvature is largest to de�ne a PTP
 They �nd

that the PTP can jump when changing parameters in the way discussed here
 They

also discuss the case where the period � orbit changes symbolic description presented

in ref
 ����	 and they conclude that the de�nition of which turning points that

are primary is ambiguous and propose a pragmatic trial�and�error procedure
 We

suggest here that the de�nition of the primary turning points in the Smale horseshoe

and the procedure to change the primary point each time there is a bifurcation

gives a rigorous and unambiguous de�nition of all primary turning points
 This

procedure may however not be so useful in numerical studies but the principle may

be combined with a numerical method like the one of Giovannini and Politi


A consequence of our de�nition is that not only Does a PTP have a possibility

to jump but it will jump each time the fold of WU moves through a fold of WS


Because the turning points are bent sharply after some iterations for jbj not too

close to �� most of these jumps are very small and not numerically detectable
 This

makes a discussion of an adiabatically change of a PTP more di�cult


��� Pruning front

Running a long orbit and plotting the 
�� �� points for each iteration gives the

�gure �
�� using the partition of Grassberger and Kantz a � ���� b � ���
 The

white region in the symbol plane is the symbolic values which no points in the
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Figure �
��� The chaotic orbit for a � ���� b � ��� plotted in the symbol plane�

chaotic attractor gives and these are the symbolic plane representation of the non

existing orbits in the non�wandering set
 We call this the forbidden regions of the

symbol plane
 Cvitanovi�c et al
 conjectured that in a plot like this 
they plotted the

unstable periodic orbits� the primary forbidden region is limited by the symbolic

values 
�� �� for the primary turning points
 All forbidden regions are the primary

forbidden region or a 
pre��image of this primary region
 The border line is called

the pruning front by Cvitanovi�c et al
 ���	� and we also call the primary forbidden

region in the symbol plane the primary pruned region


In general is the pruning front a complicated monotone staircase curve but we

can �rst investigate a simple example where the pruning front is an exact description

of the non�wandering set


����� Period �

In �gure �
�� the stable and the unstable manifolds are plotted for the parameter

values a � ����� b � ����
 This are parameters inside the swallowtail crossing in

�gure �
�� where the period � orbit is stable and in the two unimodal maps ap�

proximations the orbit has two points close to the two critical points
 In �gure �
��

we �nd all turning points inside the basin of attraction for the period � orbit
 This

imply that the repellor is a hyperbolic set� a complete Smale horseshoe with a com�
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Figure �
��� The stable and unstable manifolds and the stable period � orbit for a �

����� b � �����

plicated folding
 The repellor is plotted in the 
xt� xt��� plane in �gure �
�� and

in the symbolic plane 
�� �� in �gure �
��
 We choose symbols according the the

partition line indicated in �gure �
��
 We want to describe the repellor and any

partition curve crossing the unstable manifold in this basin of attraction gives the

same symbolic dynamics for the repellor


The symbolic strings which give the pruning front is the description of the

unstable period � orbit
 In �gure �
�� we have also plotted symbolic values for the

four period � orbits� � for ������ � for ������ � for ����� and � for �����
 We

have plotted 
�� �� only for the two cyclic permutations giving 	max
� and 	max

� 
 In

�gure �
�� we �nd that the values of � 
� 	� for the orbit ����� gives the two

maximum values the points of the repellor has
 We have here an exact pruning

front which is

� � ������� for � � 
�� ���� � 
���� ��

� � ������� for � � 
���� ����

�
��

In the symbolic parameter plane for the bimodal approximation this is the point



�� 
�� � 
�������� �������� and the approximation is exact in this case
 This is

the point in the corner of the swallowtail in the symbolic parameter plane in �gure

�
��


In �gure �
�� we have plotted the forbidden region and some of its images

obtained by the shift operation
 We �nd that the pruning front maps into the

pruning front under iterations in the future which imply a �nite markov partition


This is a consequence of that the pruning front is on periodic orbits
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Figure �
��� The repellor plotted in

phase space 
xt� xt��� with the parti�

tion line de�ning symbols for a � �����

b � �����

Figure �
��� The repellor plotted in the symbol plane for parameters in the period �

swallow tail crossing� The markers are � � ������ � ������ � ����� and � ������
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Figure �
��� The primary forbidden region and its images�
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In fact in this special case where we have a swallowtail crossing we only need

one pruning front to describe the repellor because the step with the largest value

� � ������� maps onto the smaller value in the region above the non�wandering set

as showed in the forth iteration in �gure �
��
 The jump of the turning point here

only a�ects the stable orbit which we know has to change symbolic description


In other cases where a two step pruning front is exact� like the stable period �

and stable period � orbit for parameters a � ���������� b � ��������� discussed in

ref
 ���	 the front cannot be reduced to a one step front


We can now use the two step pruning front to describe the bifurcation giving

the period � swallowtail
 The assumption we do is to assume that the pruning front

only has two steps for all parameter values
 If both steps have the same � value

and we let it decrease from �
�� the pruning front passes through the markers in

�gure �
�� in the order ������ ������ ����� and �����
 These bifurcations give

the two windows ����� and �����
 Let then � for the step � � 
�� ���� � 
���� ��

decrease while � for � � 
���� ���� is �xed at �
�
 Then the pruning front passes

the markers in the symbol plane in the order ������ ������ ����� and ����� and

this is the two windows ����� and �����
 When we let both steps in the pruning

front decrease we obtain the situation in �gure �
��
 This is the same result as we

obtained in the discussion with the approximation of a bimodal map
 The bimodal

approximation is identical to approximation the pruning front with two steps


����� � modal approximation

We can now easily see the connection between the multi�modal map description

and the pruning front
 The symbolic past of the point x� that is used to determine

the value � is the same symbols that we used to determine which map a point was

on in the bimodal� four�modal� eight�modal� etc
 approximation
 In the bimodal

approximation a point xt is on map � if st�� � � which corresponds to that � �


�� ���� � 
���� ��
 A point on map � has st�� � � and therefore � � 
���� ����


The two map approximation then corresponds to a pruning front with only two

values� � � 
� in the intervals � � 
�� ���� � 
���� �� and � � 
� in the interval

� � 
���� ����


In a similar way a four�modal approximation correspond to approximate the

exact pruning front with the values�

� � 
�� for � � 
�� ���� � 
���� ��

� � 
�� for � � 
���� ���� � 
���� ����

� � 
�� for � � 
���� ���� � 
���� ����

� � 
�� for � � 
���� ����



���� PRUNING FRONT ���

Figure �
��� A chaotic orbit plotted in

symbol space de�ned by the partition line

in �gure ��� for a � ���� b � �����

Figure �
��� The pruning front plotted

together with a chaotic orbit in the sym�

bol space for a � ���� b � ����

The generalization to any �n partition in � works the same way


����� Pruning front for a � ���� b � ����

We can construct the pruning front for the chaotic attractor with parameters a �

���� b � ����
 We use the partition in �gure �
� which we believe is the unique

partition following the role given above
 The chaotic orbit gives the points in the

symbol plane plotted in �gure �
��


To construct the pruning front up to a given resolution we have numerically

found the primary turning points of the �� or less folds of the unstable manifold

that are described by the symbol strings s��s��s��s��s��
 The symbol s� tells

whether the point on the fold is to the right or to the left of the primary tangency

and it does not distinguish between di�erent folds
 The symbol string specify a

part of the foliation of the unstable manifold and we choose the primary tangency

on the the fold with largest future symbolic value �


We �nd that the following � folds have a primary tangency�

����s�� ����s�� ����s�� ����s�� ����s�� ����s�� ����s�� ����s�� 
�
��

while the other � folds do not have any primary tangencies
 The primary tan�

gency points give respectively the future symbolic values �� �
������� �
�������

�
������� �
������� �
������� �
������� �
������� �
������
 The symbol string

s��s��s��s��s�� gives �
� intervals on the � axis of length ���
 For �� of these inter�

vals which have a primary tangency point we draw the pruning front line and draw
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the forbidden region as a gray rectangle above the pruning front line in �gure �
��


The white strips in �gure �
�� is from the �� intervals on � which do not have a

primary tangency
 We do not need a pruning front here because this part of the

region is pruned by an image of one of the gray regions
 If we want the primary

pruned region to be a connected region we can include the white regions above the

largest of the two � values of the neighboring part of the pruning front


Since the homoclinic tangencies are ordered along the manifolds and the symbol

plane has the same ordering as the manifold structure then it follows that the prun�

ing front is monotonously increasing from � � ��� when � increases or decreases


��� Pruning front for the jbj � � limit

In the limit of an area preserving map� assuming the symbolic description of orbits

is still valid� we have a symmetry between the pruning front and the preimage of

the pruning front


The backward iteration of the H�enon map 
�
�� is

xt�� � 	
�

b

�	 ax�

t
	 xt��� 
�
��

If b � 	� we have

xt�� � �	 ax�
t
	 xt�� 
�
��

This map is the same backward in time as forward in time and interchanging the

horizontal and the vertical axis in the phase space plane leaves the non�wandering

set unchanged
 The non�wandering set and the manifolds are symmetric with re�

spect to the diagonal xt�� � xt
 In symbol plane this imply that the points in the

non�wandering set are symmetric around the diagonal � � �
 The pruning front is

then also symmetric with its preimage
 One can think of this preimage as a pruning

front of the stable manifold which in this case have to be identical to the pruning

front of the unstable manifold


If b � � we have

xt�� � �	 ax�
t
� xt�� 
�
��

The sign in front of xt�� has changed and this implies that a point in the non�

wandering set is symmetric to a point re�ected both around the diagonal and the

xt�� axis and this gives xt�� � 	xt as a symmetry line
 In the symbol plane the

symmetry line is � � � 	 �
 The pruning front is symmetric to its preimage with

respect to � � � 	 � when b � �
 This preimage may be regarded as the pruning

front of the stable manifold
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The pruning front is exactly symmetric to its preimage
 An approximation of

the pruning front with constant � for intervals of � of length ���n��	 is in a general

case not symmetric with its preimage because the values of � will not be equal

m � ���n��	 with � 
 m 
 ��n��	
 We can however by using the symmetry identify

the cusp bifurcations in a n�approximation which will be at the b � � or b � 	�

line


We can study the isolated cusp bifurcations in the ��fold approximation of the

once�folding map
 At the bimodal cusp bifurcation 
codimension �� one period k

orbit has two points at the exact pruning front and also two points at the approx�

imated pruning font
 We call the cyclic permutations of the symbol string giving


��� S� and the permutations giving 
��� S �
 The cusp can be on the b � 	� line if

�
S� � �
���
S ���

�
S� � �
���
S ���

�
S �� � �
���
S��

�
S �� � �
���
S��


�
��

and on the b � � line if

�
S� � �	 �
���
S ���

�
S� � �	 �
���
S ���

�
S �� � �	 �
���
S��

�
S �� � �	 �
���
S��


�
��

where ��� is the inverse shift operation of the symbol string� corresponding to a

map once backward in time
 This imply that all points in the symbol plane are

symmetric to each other with respect to a symmetry line
 These symmetric orbits

are called the self�adjoint orbits by Mira ����	


The period � orbit ���� gives a cusp for the topological parameter values 
�� �

	
����� � ������ and 
�� � 	
����� � ������
 For the two cyclic permutations

S � ���� and S � ���� we �nd

�
����� � ������ � �	 ������ � �	 �
����� � �	 �
���
������

�
����� � ������ � �	 ������ � �	 �
����� � �	 �
���
������

�
����� � ������ � �	 ������ � �	 �
����� � �	 �
���
������

�
����� � ������ � �	 ������ � �	 �
����� � �	 �
���
������


�
��

This is the symmetry relation in 
�
�� and this cusp is numerically found to be on

the b � � axis� �gure �
��
 Several examples of cusps on the jbj � � lines are given

by Mira ����	
 Codimension � bifurcations in other approximations have a similar

symmetry
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Figure �
��� The stable and unstable

manifolds and the partition lines 
dashed

lines� for the twice�folding map� a �

����� b � ��� and c � �����

Codimension � and higher bifurcations may also be centered on the jbj � � line if

there are three or more points on the pruning front which have a symmetry around

one of the symmetry lines
 We do not expect to �nd a bifurcation of this type in

the H�enon map since the H�enon map only has two parameters
 As we have seen for

the period � orbit crossings may a codimension � bifurcation structure be revealed

in the H�enon map by adding a second parameter


��� Pruning fronts for the twice�folding map

We can also construct the pruning fronts for a n�folding two dimensional map


Each region close to the critical points of the one dimensional map has a partition

line through the primary turning points
 This give n independent pruning fronts

describing the system
 We show a numerical example of the pruning front for the

twice�folding map 
�
���


The stable and the unstable manifolds are drawn in �gure �
�� for the map


�
��� with a � ����� b � ��� and B � ����
 Two partition curves are drawn with

dashed lines through the primary turning points in �gure �
��
 Also for this twice�

folding map we use the rule for changing the partition line de�ned above for the

H�enon map
 The di�erence from the H�enon map to this map is that here the folds

A and B in �gure �
� can go through two di�erent partition lines
 The bifurcation

of the turning points take place in the same way and the de�nition of which of the

turning points that are primary changes the same way as above
 By starting with

a complete Smale horseshoe we conjecture that there is a unique partition line
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Figure �
��� The repellor plotted in the

symbol plane for a � ����� b � ��� and

c � �����

Figure �
��� The repellor and the two

pruning fronts plotted in the symbol

plane for a � ����� b � ��� and c �

�����

This map is a pruned version of the �ipped twice folded Smale horseshoe in

�gure �
��� and the well ordered symbols and the symbolic values 
�� �� are given

in eqs
 
�
��� and 
�
���
 The repellor is drawn in the symbol plane in �gure �
��


We can construct the pruning front by �nding the primary turning points� calcu�

late the symbolic description of these and draw the two primary pruned regions


In �gure �
�� the pruning front and the forbidden region is drawn together with

the repellor
 The two pruning fronts are independent of each other and the two

forbidden regions are quite di�erent in this example
 We have here chosen to draw

the connected primary pruned region


��� Lozi map

The piecewise linear Lozi map 
�
�� has a stable manifoldW S and an unstable man�

ifoldWU which also are piecewise linear and are drawn in �gure �
�� for parameter

values a � ���� b � ��� and for a � ���� and b � ���
 The analysis of this map is

simpler than the H�enon map because WU has all the primary turning points on the

line x � � and the symbolic description of a point 
xt� xt��� is given by the sign of

xt��
 The pruning front for the Lozi map was also given by Cvitanovi�c� Gunaratne

and Procaccia in ref
 ���	
 The partition and the pruning in the Lozi map has also

been studied in detail by D�Alessandro� Isola and Politi ��	


A bifurcation of a primary turning point of the Lozi map is sketched in �g�
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Figure �
��� The stable and unstable manifolds for the Lozi map� a� a � ���� b � ����

b� a � ����� b � ����

ure �
��
 The three points bifurcates together and a jump of the primary turning

point is �
 We can not have an isolated cusp in the Lozi map and an orbit does not

change symbolic dynamics in a loop in parameter space
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Figure �
��� The bifurcations of primary turning points in the Lozi map�
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Part III

Billiards

���





���

A large class of mechanical systems is called billiards in the chaos literature� The

billiards considered here are ��dimensional dynamical systems consisting of a point

particle bouncing elastically o� the billiard walls� The motion between collisions is

either a free motion with constant velocity or an other simple motion for example

a fall in a constant gravitational �eld�

We shall here present a general method to describe these systems with symbolic

dynamics� We show on a number of examples that we can construct a well ordered

symbol plane and a pruning front in this symbol plane� The method gives systematic

approximate Markov partitions and approximate zeta functions that we expect to

have better convergence than what can be obtained by expansions obtained by

a simple numerical searches for periodic orbits� There are at present no other

methods for describing the admissible orbits	 except exhaustive numerical search

for all periodic orbits up to a given length�

Some billiards	 for example the ��disk system can easily be identi�ed with a

Smale horseshoe for some parameter values	 and a well�ordered symbol plane can

be established� In other cases	 like the stadium and the wedge billiard there is no

direct correspondence to a simple horseshoe	 but the idea of keeping the ordering

by �nding which symbols preserve or reverse the ordering still applies�

In the billiards we consider here there are no stable orbits� The bifurcations

take place with the stable and the unstable manifolds crossing at a �nite angle� The

limiting orbits are singular orbits	 analog to the orbits from the critical point of the

tent map� Billiards are important as a test of the pruning front idea of Cvitanovi
c

et�al� ���
	 as the pruning front are here exact and not resting on conjectures	 as is

the case for the H
enon map and the smooth potentials we study in chapter ���



���



Chapter �

Symbolic dynamics of billiards

Our goal is to �nd a way to describe the orbits in the billiard systems by applying

symbolic dynamics� This will be di�erent than the methods applied by Sinai and

others which proof for some billiards the existence of a countable Markov partition�

As our �rst step we will de�ne a covering symbolic description of the system	 which is

exact in one limit of parameters	 or symbols which always give a unique description

of orbits existing but which also describe orbits not existing in the system� In

the case of billiards that give a complete Smale horseshoe non�wandering set	 the

de�nition of symbols is straightforward� In other systems �nding a good symbolic

description may be more di�cult	 but we outline a general method for approaching

this problem�

The second important step	 necessary for determining the symbolic strings cor�

responding to admissible orbits is to determine a symbolic representation of orbits

which has an orientation topologically faithful to the orientation of the foliation of

stable and unstable manifolds in the phase space� This is necessary because the

mechanism giving forbidden orbits re�ects this ordering in the phase space� This

is the case for all examples given here and we conjecture that this is	 if not always

true	 at least typical for most systems�

There is unfortunately no general theory for construction of symbolic dynamics

for an arbitrary dynamical system� For each new system one has to think before

de�ning the symbols� However	 for simple billiard systems it seems that giving

one symbol for each bounce o� the di�erent dispersive walls	 and two symbols

for focusing walls� one for clockwise and one for counterclockwise bounces su�ces�

Fictitious straight walls introduced to reduce the dynamics to a fundamental domain

can also be given one symbol each� If there are other forces in the system	 like gravity

or rotation	 other de�nitions of the symbols may be required�

A correctly ordered symbol alphabet is obtained from the �rst alphabet by

���
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investigating how the symbolic description of the orbit changes when we change one

of the phase space variables� If the non�wandering set in some limit of parameters

is a complete Smale horseshoe then we de�ne the new symbols from one of the

alphabets introduced in chapter �� at each level of the Cantor set such symbols

increase as we scan across the vertical strips and the horizontal strips� If there is no

limit in which the billiard is a complete horseshoe	 we de�ne well ordered symbols by

using the same method of ordering the vertical and horizontal strips in phase space�

In general the strips are overlapping and not complete	 and strips corresponding to

some symbol string may not exist� We �rst assume the strips are complete	 then

construct the well ordered symbols and �nally remove from the symbol plane the

parts of the strips that do not exist in phase space� Examples of such systems are

the stadium �section ���� and the wedge billiard �section �����

��� ��disk

The simplest example of a billiard is the � disk system� The � disk system consists

a point particle moving freely on a ��dimensional plane and bouncing elastically o�

the walls of � disks placed in the plane� We will mostly work with the symmetric

system where the � disks have the same radius	 and the same distance between any

two disks� In this system we set the radius to be � and choose the parameter r to be

the distance between the centers of the disks� This system is studied by Eckhardt

and Cvitanovi
c ���	 ��
	 Gaspard and Rice ���	 ��
 and others�

We choose the bounce of the particle o� one disk to be our Poincar
e map� The

��dimensional position along the edge of the disk x	 and the angle �	 between the

normal vector of the wall and the direction of the outgoing velocity are variables

su�cient to uniquely specify an orbit� In the symmetric � disks system the three

disks yield the same Poincar
e map� For some con�gurations of the � disks system

this two dimensional Poincar
e map gives a once folding complete horseshoe with

two vertical and two horizontal strips ordered as in �gure ����� In the symmetric

system this con�guration is obtained by choosing the distance between the disks

su�ciently large�

The two horseshoe strips are constructed as follows� we choose to observe the

particle when it bounces o� the disk that we denote no� �� The other disks are

enumerated counterclockwise as no� � and no� �� If the particle bounces out from

point x then there are two intervals of the angle � which give a new bounce in one

of the other two disks� In �gure ��� we draw the outgoing angles� Doing this for

all x�values gives two strips sketched in �gure ��� a�� This is the �rst generation in
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Figure ���� a� The � disk system and the phase space variables� b� Orbits of di�erent

angles bouncing into the next disk�

the construction of the forward Cantor set which corresponds to the vertical strips

in the horseshoe map in �gure ����� We use Smale�s horseshoe notation and call

these two strips g�Q� �Q� The strips are limited to the region

���� � x � ����� ���� � � � ��� �����

An angle j�j � ��� would correspond to a particle penetrating the disk� If x is less

than ���� or larger than ���� one can not reach either of the other disks�

The two strips are given symbolic description by recording the labels of the two

disks that the particle has bounced o�� This gives the two symbolic strings

f��� ��g� �����

In �gure ��� a� the lower strip is �� and the upper strip is ���

The next generation in this Cantor set of strips	 g����Q� � Q	 is obtained by

�nding all points in �x� �� for which the outgoing particle reaches at least two disks�

In �gure ��� b� we have drawn the orbits from disk � that �rst bounce o� disk �	

and then reach either disk � or �� This are two intervals of angles strictly inside

the interval giving one bounce o� disk �� In the phase space this gives four strips

strictly inside the two �rst strips	 �gure ��� b�	 with the symbolic descriptions

f���� ���� ���� ���g �����

ordered from the lowermost strip to the uppermost strip� The third level of the

Cantor set	 �gure ��� c�	 gives eight strips and their symbolic description from the

lowermost to the uppermost is

f����� ����� ����� ����� ����� ����� ����� ����g �����
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Figure ���� Sketch of the strips in the

phase space of the ��disk system which

correspond to a point bouncing in the

system at least a� once� b� twice� c� three

times�

In this way we construct the forward Cantor set of lines as the union of all orbits

that continue to bounce between the disks forever� Each line in the Cantor set has

a unique label

s�s�s�s� � � � �����

where si � f�� �� �g� Since this is a binary Cantor set	 a three letter alphabet is

larger than necessary� A two letter alphabet description can be obtained by choosing

the letter vi � � if the bounce is counterclockwise	 that is if si��si � �� or �� or ��	

and choosing the letter vi � � if the bounce is clockwise si��si � �� or �� or ���

We can state this as the algorithm

v�i � si � si��

if v�t � � then vt � v�t � � �����

else vt � v�t � �
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In the case of a symmetric system one does not need to remember the starting

disk� This two letter alphabet vi � f�� �g is then the alphabet corresponding to the

alphabet used in the Smale horseshoe� A time iteration of this orbit corresponds to

a simple shift in the symbol sequence�

Because of the dispersive mirror re�ection at each disk both strips change the

orientation both forward and backward in time as in �gures ���� and ����� We

will below discuss the di�erent change in orientation for bounces o� dispersing or

focusing walls� We then obtain well ordered symbols by the algorithm �����

wt �

��
� vt if t odd � �

�� vt if t even � �

wt �

��
� vt if t even � �

�� vt if t odd � �

�����

The strips in �gure ��� c� are also labeled by the symbol strings w�w�w� and we

�nd that from the lowermost to the uppermost they are ordered as

f���� ���� ���� ���� ���� ���� ���� ���g �����

A symbolic value

	 � ��w�w�w� � � � �
�X
t��

wt

�t
�����

then increases along any curve that monotonously crosses the lines in the Cantor

set	 exactly as a well ordered forward symbolic value should do�

The backward iteration is found by �nding the orbits that arrived at the point

�x� ��� Some of these orbits have been bouncing o� one of the other two disks

before reaching the point �x� ��	 and this gives the two strips corresponding to the

backward iteration of the Smale horseshoe g�����Q��Q� These are the vertical strips
in the horseshoe picture� Since we know that the incoming angle is the negative of

the outgoing angle �time reversal invariance� we obtain the strips g�����Q� � Q by

re�ecting the strips g�Q��Q around the x�axis� These strips and the four rectangles

g�Q� � g�����Q� are sketched in �gure ��� a��

The two backward strips g�����Q� � Q have the symbolic description s��s� �
f��� ��g� In the same way as for the future symbols we de�ne vi as the symbol

giving either a clockwise or an anticlockwise bounce� The well ordered symbol wi

is also given by ����� and we de�ne the symbolic value for the past to be


 � ��w�w��w�� � � � �
�X
t��

w��t

�t
������
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Figure ���� Sketch of the points in the phase space of the � disk system which corre�

spond to an orbit bouncing both in the future and past at least a� once� b� twice�

Figure ���� The fundamental domain of the � disk system�

This value 
 gives the correct ordering of the backward strips and the symbolic

value plane �	� 
� represents all points in the non�wandering set ordered the same

way as in the phase space� In �gure ��� b� the values for the �� rectangles of

g����Q� � g�����Q� are drawn and we �nd that the 	�axis is a curve going down left

in �x� �� and the 
�axis is a curve going up left in �x� ���

If the � disk system is symmetric then the �	� 
� plane is the same for all three

disks� Time symmetry implies that �	� 
� is equal �
� 	�	 and the phase space �x� ��

symmetry around the line x � ��� implies that �
� 	� is equal ��� 	� �� 
�� One

may study the dynamics in the fundamental domain	 a ��th of the original system	

see �gure ����

If the � disk system is not symmetric	 then the pruning may look di�erent in

the symbolic planes of the di�erent orbits	 and is not necessarily symmetric�



���� ��DISK ���

Figure ���� Sketch of the points in the phase space of the � disk system giving an orbit

bouncing in the future and past at lest a� once� b� twice�

��� ��disk

The system with a particle bouncing between � disks gives a Cantor set in a way

very similar to the � disk system	 but with � strips in each generation of the Cantor

set	 like the three folding Smale horseshoe� If we have a symmetric four disk system

with su�ciently separated disks	 then the non�wandering set is the the same	 as in

the complete three folding Smale horseshoe� The orientation changes for all three

folds in the horseshoe�

We enumerate the disks anticlockwise	 si � f�� �� �� �g	 and obtain the well

ordered symbols wi � f�� �� �g by the algorithm

vt � st � st�� ������

if vt � � then vt � vt � �

wt �

��
� vt � � if t odd

�� vt if t even

The symbolic values for the future and past are base � numbers given as

	 � ��w�w�w� � � � �
�X
t��

wt

�t
������


 � ��w�w��w�� � � � �
�X
t��

w��t

�t
������

A sketch of the �rst generation of the Cantor set in the phase space with the symbols

wi is drawn in �gure ���� For the symmetric ��disk system	 another convenient

choice of a symbolic alphabet are the three discrete group operations C�	 �x and �y

���
� The relationship between the group operations denoted gi � fC�� �x� �yg and
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the well ordered symbols wi � f�� �� �g is given by the algorithm

vi �

����
���

� if gi � �x

� if gi � C�

� if gi � �y

������

ri �

��
� ri � � if gi � C�

ri else

wi �

��
� vi if ri odd

�� vi if ri even

The symbols gi can be obtained from wi by

g�i �

����
���

�x if wi � �

C� if wi � �

�y if wi � �

������

ri �

��
� ri � � if wi � �

ri else

gi �

����������
���������

C� if g�i � C�

�x if g�i � �x and rt is even

�x if g�i � �y and rt is odd

�y if g�i � �x and rt is odd

�y if g�i � �y and rt is even

��� N�disk systems

Assume the system consists of N disks� If the disks are well separated	 the non�

wandering set is a Cantor set of the Smale horseshoe type	 with one symbol for

bouncing into each of the other disks� This symbolic description can be turned into

a well ordered alphabet as we have done it for the � and � disk systems	 but the

algorithm translating from the alphabet st of enumerated disks to the well ordered

alphabet wt can become rather complicated� We show this algorithm for a few

N �disk systems with special symmetry�

����� Symbolic dynamics for N disks on a circle

LetN equal disks have the center of each disk on a large circle	 and let r	 the distance

between centers of neighbor disks on the large circle	 be large� Then ��
� consists of

�N��� strips in the phase space� The well ordered symbols wt � f�� �� � � � � � �N���g
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Figure ���� The con	guration space of the 
�� disk system�

are constructed from the anticlockwise enumeration of the disks st � f�� �� � � � � Ng
using the algorithm

v � st � st�� ������

if vt � � then vt � vt �N

wt �

��
� vt � � if t odd

N � vt � � if t even

When N � � this is the same algorithm as �����	 and for N � � this is the algorithm

������� From wt we construct base �N��� symbolic coordinates 	 � ��w�w�w� � � � �P
�

t�� wt��N���t and 
 � ��w�w��w�� � � � �
P
�

t�� w��t��N���t where � � 	� 
 � ��

����� N disks with a center disk

Let the billiard be a con�guration of N disks on a large circle as in the billiard

above and in addition one disk in the center of this large circle� The radius of each

disks is �	 and the distance between two neighbor disks is r� The disks on the circle

is enumerated anticlockwise from � to N 	and a bounce o� the disk in the center is

given the symbol �N � ��� Figure ��� shows this con�guration with N � �� If the

number of disks on the large circle is even	 then	 because of the disk in the center	

a point particle can not bounce between two disks opposite to each other on the

large circle� From the �N � �� symbols of the disks	 we get �N � �� well ordered

symbols	 and ��
� �� g�Q� �Q� consists of �N � �� strips in the phase space� With

N �even� disks on the large circle and the center disk with symbol �N � ��	 the
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algorithm de�ning the well ordered symbols wt � f�� �� � � � � � �N � ��g is
if st � �N � �� then wt � �N � ����

else if st�� �� �N � �� then

vt � st � st��

if vt � � then vt � vt �N

wt �

��
� vt � � if t odd

N � vt � � if t even

else if st�� � �N � �� then

vt � st � st��

if vt � ��N � ���� then vt � vt �N

if vt � �N � ���� then vt � vt �N

wt �

��
� �N � ���� � vt if t odd

�N � ����� vt if t even

������

	 � ��w�w�w� � � � �
�X
t��

wt

�N � ��t
������


 � ��w�w��w�� � � � �
�X
t��

w��t

�N � ��t
������

The con�guration with N � � can be looked at as a �rst step toward a de�

scription of the Lorentz gas ����	 ���
	 a triangular lattice with a hard disk in each

lattice point and a point particle scattering in the lattice�

If the number of disks N on the large circle is odd and the disks are su�ciently

separated	 a point particle can reach all other disks after bouncing o� one disk� The

algorithm giving the symbols wt � f�� �� � � � � � �N � ��g is
if st � �N � �� then wt � �N � ����

else if st�� �� �N � �� then

vt � st � st��

if vt � � then vt � vt �N

wt �

��
� vt � � if t odd

N � vt � � if t even

if wt � �N � ���� then wt � wt � �

else if st�� � �N � �� then

vt � st � st��

if vt � ��N � ���� then vt � vt �N

if vt � �N � ���� then vt � vt �N

wt �

��
� �N � ���� � vt if t odd

�N � ����� vt if t even

������
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Figure ���� The wedge billiard� a� The whole domain� b� The fundamental domain�

��� Wedge billiard� or Two Bouncing Balls

The next example is another type of a billiard system	 which has two mechanical

realizations both described by the same mathematics� We �rst describe the physics

of the two problems and how they are related to each other�

����� Wedge billiard

One realization is given by a point particle with a mass m moving in a plane with

constant gravitation	 and bouncing o� two symmetrically tilted planes	 �gure ��� a��

This system was introduced and studied numerically by Lehtihet and Miller ����
�

The system can be reduced to the the fundamental domain billiard in �gure ��� b�

with a vertical wall replacing one of the tilted walls� Two orbits which are symmetric

to each other with respect to the y�axis in the full domain are mapped into the

same orbit in the fundamental domain	 and correspondingly a single orbit in the

fundamental domain can correspond to two full space orbits� A periodic orbits in

the fundamental domain is mapped into only one orbit in the full domain if this

orbit is symmetric with respect to the y�axis in the full domain�

The Hamiltonian for this system is

H �
�

�

�
p�x � p�y

�
� y� x � �� y � x cot�� ������

At the collision with the tilted wall the perpendicular component of the momentum

switches direction�

Lehtihet and Miller����
 have shown that this �ow can be turned into a map

as follows� Let �er be the unity vector pointing from the tip of the wedge to the

position of the ball	 and �e� be the unity tangent vector orthogonal to �er� Let �v be
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the velocity of the ball� The map T is given by �x and y are respectively the radial

and the tangential components of the velocity vector��

if �xt � �yt�
� cos� 
 � y�t sin

� 
 � �

T� �

��
� xt�� � xt � �yt

yt�� � yt

else

T� �

��
� xt�� � yt � xt � yt��

yt�� �
q
� � ���yt � xt�� � y�t

� � � ��tan� �
���tan� ���

�

������

The map T� corresponds to two consecutive bounces o� the inclined plane	 while

map T� describes the particle bouncing from the inclined plane to the vertical wall

and then back again to the inclined plane� The time reversal amounts to reversing

the velocity component parallel to the plane of re�ection	 x� �x�

T��
i � ���Ti� � �

�
�	 �� �

� �



�� � ������

The phase space is manifestly symmetric under re�ection across the y�axis�

����� Two Bouncing Balls

A second problem that gives rise to the same dynamical system is the system of two

balls moving along a vertical line in constant gravitational �eld� The upper ball	

no� �	 has mass m� and bounces elastically o� the ball below� The ball underneath	

no� �	 with mass m�	 bounces o� the �oor and o� the ball above� Figure ��� a�

shows the the system	 and motion in time is sketched in �gure ��� b��

The Hamiltonian for the motion between the bounces is

H �
p��
�m�

�
p��
�m�

�m�q� �m�q� ������

When ball no� � bounces elastically o� the �oor we have

v� � �v� ������

and at an elastic bounce between ball no� � and ball no� �

v� � 	v� � ��� 	�v�

v� � �� � 	�v� � 	v�
������

where 	 � �m� �m����m� �m���
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Figure ���� a� The two bouncing balls system in one dimension� b� The position of the

balls as a function of time�

It was showed by Wojtkowsky ����
 that this system has nonzero Lyapunov

exponents for almost every starting point� He also showed that the linear change

of variables

x� �
p
m�m��q� � q��

x� � m�q� �m�q�

px� �

s
m�

m�

p� �
s
m�

m�

p�

px� � p� � p�

with masses normalized to m� �m� � �	 yields the Hamiltonian

H �
�

�
�px� � px�� � x� ������

in the con�guration space

x� � �

x� � x�
tan 


�
m�

m�

x�

which is identical to the wedge billiard ������ in the fundamental domain�

This problem was �rst studied by Wojtkowski ����
	 and he also studied a gen�

eralizations of this problem to a problem with n bouncing balls in one dimension�

Chernov ���
 showed how Wojtkowski�s proof of the local instability can be turned

into a proof that this is an ergodic system for m� � m�� A Galilei version of this

problem can be done as a simple experimental demonstration of chaotic vs� inte�

grable motion� An air pressure rail which exists in all physics teaching labs may

be tilted a few degrees and with two wagons of di�erent mass	 stable and chaotic

motion may be demonstrated�



��� CHAPTER �� SYMBOLIC DYNAMICS OF BILLIARDS

Figure ���� Di�erent orbits in the wedge billiard� a� 
 � ��� b� 
 � ����� c� 
 � ���

d� 
 � ��� e� 
 � ��� f� 
 � ���
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����� Numerical simulations

Simple numerical explorations revel a �rst picture of the dynamics of the system� We

use the map ������ for numerical work� A few numerically obtained trajectories are

shown in �gure ��� for di�erent values of the parameter 
� Lehtihet and Miller ����


have observed that for � � � there exist stable periodic orbits surrounded by KAM

torii	 and these bifurcate in a complicated way as the parameter changes� In the

two ball system 
 � �� corresponds to the upper ball has a larger mass m� � m��

Close to 
 � ��� these stable orbits organize into a Farey�tree like structure

visible in �gure ��� b�� We explain below why this happens	 and how it is expressed

in symbolic dynamics as a tree construction of the admissible symbols�

In the limit of 
 � �� the �xed point and the KAM tory around it dominates the

whole phase space� in the limit of a very narrow wedge there exists a stable orbit

of period � bouncing back and forth between the two walls� The other orbits are

bouncing back and forth between the two walls and rotate around the short periodic

orbit in the phase space� In the two ball picture this periodic orbit corresponds to

the upper ball bouncing once o� the ball below between each time this ball bounces

o� the �oor�

The �wide� wedge billiard has an angle 
 between ��� and ���	 which in the

two ball system corresponds to the lower ball has a larger mass	 m� � m�� In

�gure ��� a� the parameter 
 � ��� and there are no stable islands anywhere in the

phase space� Changing the parameter results in no visible di�erence when plotting

a chaotic orbit in the phase space� The orbit does change	 but the the Poincar
e

map only shows uniform ergodic distribution of trajectory points� Wojtkowski ����


showed for the two ball system	 that form� � m� almost all points have one positive

Liapunov exponent	 and Chernov ���
 used this to prove the ergodicity of the system

for these parameter values� He actually showed this for a more general system with

not necessarily constant gravitation V �q� � gq but with a force directed downward

V ��q� � � not increasing with the height	 V ���q� � ��

The proof ensures that for m� � m� the stable and unstable manifolds are never

parallel� A picture of the manifolds is obtained by iterating a short line segment

along the unstable eigenvector of the �xed point �� In �gure ���� a line of length

����� starting at the �xed point is drawn	 together with a number of iterations of

the line� The same curves re�ected across the y�axis trace out the stable manifold

of the �xed point� As expected	 the unstable and stable manifolds are nowhere

parallel� However	 in the limit 
 � ���� the stable and unstable manifolds become

horizontal and tangent to each other	 as expected	 since for 
 � ��� the system is

integrable	 and all orbits are marginally stable�



��� CHAPTER �� SYMBOLIC DYNAMICS OF BILLIARDS

Figure ����� The stable and the unstable manifolds of the 	xed point in the wedge

billiard� a� 
 � ��� b� 
 � ��� c� 
 � ��� d� 
 � ���
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����� Symbolic dynamics

The discontinuity in the map ������ suggests a natural way to de�ne symbolic

dynamics� Szeredi and Goodings ����	 ���
 denote a bounce of the ball from the

tilted wall directly back to the tilted wall by the symbol T � The bounce from the

tilted wall into the vertical wall and then back to the tilted wall they denote by

V � We prefer to use � for their symbol T 	 and � for their symbol V � Using the

map ������	 we assign symbol � when the iteration is obtained by using map T�	

and symbol � when the iteration is according to map T�� Szeredi and Goodings

have tested this symbolic dynamics numerically and found that for the completely

chaotic wedge billiard ��� � 
 � ��� this symbolic alphabet assigns a unique symbol

string to each physically realized periodic orbit� They also found a lot of pruning	

i�e� that many symbol strings did correspond to admissible orbits�

In the two ball system the same symbolic dynamics is obtained by assigning

symbol � to be a bounce of ball no� � o� the �oor and then back to the �oor

without hitting the ball no� �� The symbol � is assigned to the case where ball

no� � bounces o� the �oor	 bounces into ball no� �	 and then returns back to the

�oor� As long as m� � m�	 the two balls cannot collide more than once between

two consecutive bounces o� the �oor�

The well ordered symbols for the map are determined by how the orientation

changes under the maps T� and T�� There is no limit of parameter values where

the map is a complete horseshoe� instead we study the foliation of its stable and

unstable manifolds� The map T� corresponds to a simple linear shear	 with change in

orientation� The map T� reverses the orientation in both the stable and the unstable

directions� The �xed point � has two negative eigenvalues for all parameter values

m� � m�� The manifolds in �gure ���� in the part of the phase space on which T�

acts are reversed after one iteration�

A map with manifolds that have the same orientation under T� but where both

manifolds are reversed under T� gives the same ordering of symbols as the once fold�

ing horseshoe without any re�ection� The well ordered symbols are then obtained

by the algorithms ������ and ������

We will show below that there is always pruning in this system	 so we cannot

draw a complete cantor set for any parameter values�

��	 Stadium Billiard

One of the best known challenges in nonlinear dynamics is the problem of the

description of the Bunimovich stadium billiard ���
� The stadium and a segment
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Figure ����� The stadium billiard and an orbit in this billiard�

of a typical orbit are drawn in �gure ����� The system is a point particle moving

freely inside and bouncing o� the walls that consist of two semi�circles connected

by two straight lines� We set the radius of the two semi�circles equal to � without

any loss of generality� The length of the straight lines is the only parameter in the

system	 and we set it to �a� Bunimovich ���
 proved that this system has a positive

Liapunov exponent almost everywhere and that it is ergodic� There is a line of

marginally stable cycles	 orbits bouncing up and down between the two straight

lines	 while all other orbits are unstable�

The symbolic dynamics of the stadium is more complicated than in the systems

studied above� The use of both straight walls and focusing walls as the border gives

a more complicated algorithm for the well ordered symbols� Also	 as in the wedge

billiard	 we cannot �nd a complete Smale horseshoe at any parameter values� But

we show here that in the limit of in�nity long straight walls there exist a Markov

partition with a good choice of symbols�

The most interesting work on the symbolic dynamics of the stadium done so far

is the article by Biham and Kvale ���
� They introduce a symbolic dynamics that we

shall mostly follow here	 and apply this �nding numerically periodic orbits� They

also discuss pruning of orbits and show how one may �nd a periodic orbit for each

symbol string and check whether it is pruned The new results presented here are�

implementation of the parameter independent �or �geometrical� ���
� pruning roles

as a transition matrix	 the topological entropy determined exactly in the a � �
limit	 and the description of parameter dependent �or �dynamical� ���
� pruning

rules by a pruning front�
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����� Phase space

A natural Poincar
e map for the stadium is 
	 the position of a bounce o� the wall

and �	 the outgoing angle of the particle� Since the system is ergodic a long chaotic

orbit should visit arbitrarily close to all points in the phase space� Even so there are

structures in the phase space that cannot be seen in a plot of the Poincar
e map of

one chaotic orbit� The structure of stable and unstable manifolds can be illustrated

by iterating a short line segment along the unstable direction of the period � orbit

at �
� ��� The structure is similar to the �gures for the other billiard systems with

pruning� the stable and the unstable manifolds have tent�like turning points instead

of homoclinic tangencies	 similar to the Lozi map	 �gure ����� We will return to

this below in order to describe the pruning� In �gure ��� we sketch how a line is

folded in order to yield the tent like structure in �gure �����

����� Symbolic dynamics

As for the disk billiards	 it is necessary to have di�erent symbols for the di�erent

parts of the wall� However	 as noticed by Biham and Kvale is also necessary to

have some distinction between a clockwise and an anticlockwise bounce in the semi�

circular part� Otherwise would we not be able to distinguish between two orbits

such as the two drawn in �gures ���� a� and b�� The �rst guess is to give one symbol

to each straight line and for a bounce in the semi�circle to distinguish between if

it is the right or the left semi�circle and if it is a clockwise or anticlockwise bounce

with respect to the center of the semi�circle� This gives a six letter alphabet which

we believe is covering such that any admissible orbit in the billiard has a unique

symbol string as its symbolic description	 and no other orbits are described by the

same symbol string but there will be symbol strings which do not correspond to any

orbit� We show below that this alphabet has the unpleasant feature that with it

there seems to be no way to �nd a �nite Markov graph of the stadium	 even in the

a�� limit� Figure ���� shows the de�nition of this alphabet sat � f�� �� �� �� �� �g��
sat � � a bounce o� the bottom line�

sat � � a bounce o� the upper line�

sat � � a clockwise bounce o� the left semi�circle�

sat � � an anticlockwise bounce o� the left semi�circle�

sat � � an anticlockwise bounce o� the right semi�circle�

sat � � an clockwise bounce o� the right semi�circle�

Orbits that go through the center of the semi�circle have to be treated specially	

but for the moment we give these orbits both the symbol for a clockwise and an
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Figure ����� The unstable manifold of the periodic orbit at �
� �� � ��� �� in the

stadium billiard with 
 the position on the semi�circle and � the outgoing angle for a�

a � ��� b� a � ��� c� a � ���� d� Stable and unstable manifold for a � ����
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Figure ����� Two di�erent period � orbits illustrating the necessity of distinguishing

clockwise and anticlockwise bounces� a� sa�s
a
�s

a
�s

a
	 � ����� b� sa�s

a
�s

a
�s

a
	 � �����

Figure ����� The symbols sat in the sta�

dium�

Figure ����� The Biham�Kvale symbols

sbt �

anticlockwise bounce	 and keep in mind that such orbits are double counted�

The alphabet introduced by Biham and Kvale ���
 is a small modi�cation of this

alphabet which remove the degeneracy counting orbits through the center� They

use a � letter alphabet sbt � f�� �� �� �� �� �g as above	 but if an orbit bounces only

once in a semi�circle then they denote it by the same symbol independent of whether

it bounced clockwise or anticlockwise� They choose to let a single bounce that had

symbol sat � � still has the symbol sbt � � while a single bounce with sat � � is

renamed to sbt � �� A single bounce that had symbol sat � � still has the symbol

sbt � �	 while a single bounce with sat � � is renamed to sbt � �� Figure ����

illustrates the alphabet sbt �

Instead of working with symbols denoting each bounce as above we introduce

symbols which describe how a bounce changes the path� This reduces the number

of symbols to �� In this alphabet will some orbits with the same length and stability

be described by the same symbol string� An important observation is that a single
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Figure ����� The symbols sct in the stadium�

bounce should not distinguish between clockwise and anticlockwise� We de�ne a

new alphabet sct as follows�

sct � � if the bounce is the �rst bounce in a semi�circle	

sct � � if the bounce is clockwise in a semi�circle and not the �rst bounce in the

semi�circle	

sct � � if the bounce is anticlockwise in a semi�circle and not the �rst bounce in

the semi�circle	

sct � � if the bounce is either in the bottom line in the direction to the right or

if it is a bounce in the top line going to the left	

sct � � if the bounce is either in the bottom line in the direction to the left or if

it is a bounce in the top line going to the right�

These symbols are illustrated in �gure �����

To determine the well ordered symbols for the stadium we have to observe

how the symbols change as we move a point in the phase space� The symbols sat
can be changed into well ordered symbols by observing the change in symbols in

�gure ����� The �gure shows how the next symbol change under monotone increase

of the outgoing angle	 starting with one of the � symbols� From the �gure ���� a�

we �nd that starting at the bottom line with symbol sat � � gives for 
 � ����
symbol sat�� � � because the next bounce is a clockwise bounce in the right semi�

circle� When 
 increases then at some point the particle goes through the center

of the right semi�circle and the symbol changes to sat�� � �� The value where it

changes depends on the position and on the parameter� For even larger values of


 the particle hits the top straight line and then the next symbol is sat�� � �� For

some value 
 � � the particle starts to hit the left semi�circle bouncing clockwise

giving sat�� � �� Finally for some larger value of 
 the particle moves through

the center of the left semi�circle and for angles larger than this up to ��� the
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�� �

Table ���� Construction of the well ordered alphabet in the stadium billiard from the

symbols sat � The well ordered symbols wa
t are constructed by choosing wa

t � vat when

the number of 
�s and ��s �bouncing in a straight lines� in the symbol string sb� � � � s
b
t��

is odd and choosing wa
t � �� vat when the number is even�

next symbol is sat�� � �� The ordering of the two symbols combination with the

�rst symbol � is then� f��� ��� ��� ��� ��g and we rename these combinations to be

respectively va � f�� �� �� �� �g� The de�nition of the symbol vat for the other two

symbol combinations is given in table ���� Symbols vat are analogue to symbols st

for the Smale horseshoes and the symbols vt of the disk billiards� These symbols

are correctly ordered for one bounce but not globally�
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Figure ����� Construction of the well ordered symbols from symbols sa� see table 
���
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Figure ����� Construction of the well ordered symbols from symbols sb� see table 
���
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Table ���� Construction of the well ordered alphabet in the stadium billiard from symbols

sbt � The well ordered symbols wb
t are constructed by choosing wb

t � vbt when the number

of 
�s and ��s �bounces o� straight lines� in the symbol string sb� � � � s
b
t�� is odd and

choosing wb
t � �� vbt when the number is even�
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Figure ����� Orientation change for a bounce o�� a� a convex� b� a concave wall�

In order to construct well ordered symbols we have to know how the manifolds

�ip at a bounce� A bounce in a focusing �convex� wall does not change orientation�

�gure ���� a� illustrates that two close orbits have the same relative orientation after

a bounce as before the bounce� A bounce o� a straight line reverses the directions

in the same way as a dispersing wall in �gure ���� b�	 so we have to count the

number of straight wall bounces� If pt is the number of symbols � and � in the

sequence sa�s
a
�s

a
� � � � s

a
t��	 the well ordered symbols are given by

wa
t �

��
� vat if pt odd

�� vat if pt even
������

The symbolic value 	a is now given as a real number in base �

	a � ��wa
�w

a
�w

a
� � � � �

�X
t��

wa
t

�t
������

The simplest way to �nd the well ordered symbols of the past is to change the

symbolic description of the past into a string of future symbols� Reversing the

time for an orbit change all clockwise bounces into anticlockwise bounces and all

anticlockwise bounces into clockwise bounces� This implies that symbol � becomes

�	 � becomes �	 � becomes � and � becomes �� Then the symbols wa
t
� obtained

from table ��� and algorithm ������ gives the well ordered symbols of the past� The

symbolic value of the past is then


a � ��wa
�
�wa

�
�wa

�
� � � � �

�X
t��

wa
t
�

�t
������

The Biham�Kvale symbols vbt yield well ordered symbols and symbolic values 	b

and 
b in the same way�
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Figure ����� A chaotic trajectory in the symbol plane �	a� 
a� for a � ���� Symbolic

values for bouncing o� a� the straight line� b� the semi�circle�

����� Symbolic dynamics in the limit a��

The description of the orbits in the stadium in the limit a � � depends on the

choice of symbolic dynamics� We �rst show how the alphabet sat gives a very

complicated description and then how the other alphabets simplify the description�

The pruning depends on the parameter a monotonically	 with the number of

admissible orbits orbits increasing with increasing a� In the limit a � � we have

as many orbits as it is possible to have in the stadium billiard� The topological

entropy is largest for a�� and decreases monotonically with a�

By iterating a long chaotic orbit and plotting the symbolic values �	a� 
a� for

each bounce we obtain �gure ����� In �gure ���� a� the points �	a� 
a� are plotted

for the bounces with sa� � �� we denote this symbol plane �	a
� � 


a
��� In �gure ���� b�

the points �	a� 
a� are plotted for the bounces with sa� � �� we denote this symbol

plane �	a
� � 


a
��� The symbol plane for sa� � � is identical to �	a

� � 

a
��	 the symbol

planes for sa� � � is identical to the plane �	a
� � 


a
�� and the symbol planes �
a	 � 	

a
	�

and �
a
 � 	
a

� are identical to �	a

� � 

a
���

White regions in the plot of the symbol plane are forbidden regions correspond�

ing to symbol strings that never appear in the dynamics� When we choose a large

value of the parameter like a � � in �gure ����	 the visible forbidden regions are

mostly the parameter independent �a��� pruned regions�

In �gure ���� a� we �nd that the two squares 	a
� � ���� 
a� � ��� and 	a

� �

���� 
a� � ��� are forbidden regions� The �rst region 	a
� � ���� 
a� � ��� translated

back to the symbols sat 	 contains all strings where a bounce in a straight line �symbol

� or �� has as its last symbol before a string of � and � symbols a bounce in the left
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semi�circle �symbol � or ��� Also the �rst semi�circle symbol after this string of � and

� symbols is a bounce in the left semi�circle �symbol � or ��� These are the forbidden

strings ���	 ����	 �����	� � � 	 ���	 ����	� � � � The second square is the corresponding

strings with bounces in the right semi�circle ���	 ����	 �����	� � � 	 ���	 ����	� � � �

The limit of the regions are the lines 	 � ��� and 
 � ���	 which are orbits of form

�������	 etc� Even thought that there is no �nite list of forbidden strings covering

these forbidden regions	 the rules are simple and can be implemented by a Markov

graph�

In �gure ���� b� there is a triangle shaped forbidden region below the line


 � �


� 	� One short string in this region is the string � � � � 	 �� � � �� This string

is forbidden because the string � � � � 	 � imply a bounce o� the left semi�circle at a

point below the center of the left semi�circle� If the particle bounces o� this left

semi�circle clockwise �symbol �� and immediately hits the right semi�circle	 this has

to be at a point above the center of the right semi�circle	 and since the orbit was

above both centers of the two semi�circles this is a bounce � and cannot be turned

into a symbol � by changing starting position and angle� The limit of this region


 � �


� 	 translated back to the sat symbols imply that there is a string

� � � s�n � � � s��s��s�s�s� � � � sn � � �

and for all these symbols we have s�n � � if sn � �	 s�n � � if sn � �	 s�n � � if

sn � �	 s�n � � if sn � �	 s�n � � if sn � � and s�n � � if sn � � such that s�n

is the time reversed of sn� This is the string describing an orbit going through the

center of the semi�circle at the bounce t � ��

To understand why this is the limit	 draw an orbit through the center of a semi�

circle as in �gure ����� For example the orbit is given either by the symbol string

� � � ������������� � � � or by the string � � � �������������� � � since the bounce is nor�

mal to the disk	 there are two possible ways to write this string in the sat alphabet�

Assume now that we change the orbit slightly such that the bounce that used to

be normal becomes an anticlockwise bounce� The �rst symbol string with sa� � �

is the correct symbolic description of this orbit� If we perturb the orbit more such

that the symbol string � � � ������� still describe the �rst part of the orbit the last

part of the symbol string can only change the following way� The symbol s� � �

can only change to � or � and not to � or �� If s� � � then the symbol s� � �

cannot change� If s�s� � �� then s� � � can change to �	 �	 � or �� If s�s�s� � ���

then s	 � � can change to � and �� If s�s�s�s	 � ���� then s
 � � cannot change

to any other symbol� If s�s�s�s	s
 � ����� then s� � � can only change to � or �

and not change to symbol � or �� These rules for all t exactly de�ne the forbidden

triangle 
 � ��� � 	�
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Figure ����� An orbit in the stadium going through one center of a semi�circle�

It seems to be extremely di�cult to construct a Markov graph from these �tri�

angle� rules� The symbolic string contains an in�nite memory in a complicated

way	 and we have not been able to construct a �nite Markov graph�

The simplest way to get rid of the triangle region is by not distinguishing between

a right and a left bounce if there is only one simple bounce in the semi�circle as in

the Biham and Kvale ���
 alphabet sbt � This removes both the forbidden orbits of the

triangle	 and the double counting of the orbits bouncing normal to the semi�circle�

We plot a long chaotic orbit in the symbol plane �	b� 
b� for a � � in �gure �����

In �gure ���� a� the orbit is plotted in the symbol plane for bouncing o� a straight

line	 with s� � �	 and in �gure ���� b� for bouncing o� the semi�circle with s� � ��

In �	b
�� 


b
�� the same two squares are pruned as in �	a

� � 

a
��� However in the �	b

	� 

b
	�

plane there is no triangular forbidden region as in the �	a� 
a� plane� The largest

forbidden regions are the rectangles 	b
	 � ����	 
b	 � ����	 ���� � 	b

	 � ���� and

���� � 
b	 � ����� These are simple shifts of the squares in �	a
� � 


a
���

Biham and Kvale conjectured the forbidden orbits in the limit a � �� Their

forbidden orbits agrees with our forbidden square regions and in addition that the

�xed points �	 �	 � and � do not exist� These �xed points are orbits bouncing in�

�nitely many times in one semi�circle and these does not exist	 while orbits bouncing

any number of times in one semi�circle and then bounces somewhere else exist and

are called �whispering gallery� orbits�

By using symbols sbt we can now construct a Markov diagram in the sbt symbols

which gives all legal symbol strings� The only role that cannot be implemented is

the forbidden �xed points �	 �	 � and �	 because only the �xed points are forbidden

while any number of repetitions of the symbols are legal� We will discuss how this

are implemented for the zeta�function in chapter ��� This graph is drawn in �gure
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Figure ����� The points of a chaotic orbit in the symbol plane �	b� 
b� for a � ����

Symbolic values for bouncing in a� the straight line s� � � b� the semi�circle with

s� � ��

Figure ����� The Markov graph for the symbols sbt of the stadium�
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Figure ����� The Markov graph for stadium with alphabet sc�

���� and it looks somewhat complicated� By using the method of counting loops

and combinations of loops �section ���� we �nd the characteristic polynomial

p�z� � ��� z���� � z����� z � �z� � z����� �z � z� � z�� ������

All factors except the last one have to do with the symmetry of the graph ���
 and

the leading zero of the last factor gives the topological entropy�

z � ��

�
� �

�

�

�
�
�� � �

p
��
� �

�

�
�
�

�

�
�� � �

p
��
� �

�

�
� ������ � � � ������

h � ln z�� � ln ������� � � � � ������� � � � ������

We will show below that the graph can be simpli�ed to �gure ���� by using the

alphabet sct 	 and further to the graph in �gure ���� using the alphabet sdt de�ned

in table ���� The characteristic polynomial for the simple graph in �gure ���� is

p�z� � �� �z � z� � z� ������

which is the last factor in ������ and the factor giving the topological entropy� That

we have no other factors show that this alphabet sdt is in the fundamental domain

and have no symmetries left�

The topological entropy is here not directly of physical interest for the dynamics

because the �whispering gallery� orbits converge di�erently than the other orbits� It
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Figure ����� The reduced Markov graph for the stadium with alphabet sd�

is however simple to calculate the topological entropy and it gives some information�

In a complete horseshoe map the number of symbols is given as exp�h�� This

argument say that we here need ���� symbols in average to describe the possible

orbits with these kind of orbits� In ref� ���
 Biham and Kvale have calculated

periodic orbits up to length �� and they give the orbits which are left after applying

geometrical pruning roles and from this table we �nd h 
 ln ��� which is slightly

less orbits than we expect from the diagrams� This may be due to the �nite length

of the orbits in Biham and Kvale�s calculations�

The Markov graph	 �gure ����	 describing the admissible orbits in the alphabet

sct are constructed by observing the following rules� The �rst bounce o� a semi�

circle	�	 can be followed by a bounce o� the other semi�circle	 symbol �	 or by a

second bounce o� the same semi�circle either clockwise	 symbol �	 or anticlockwise	

symbol �	 or it can be followed by a bounce o� one straight line with either symbol

� or �� These are the � arrows out from node � in �gure ����� A second bounce in

one semi�circle can be followed by a further bounce in the same semi�circle �with

the same �anti��clockwise direction� or by a bounce in the other semi�circle	 symbol

�	 or by a bounce in one of the two straight lines	 symbol � or �� This gives the �

arrows out from the nodes � and � in �gure ����� After a bounce in a straight line	

symbol � or �	 a bounce in the other straight line has the opposite symbol as is clear

from the inspection of �gure ����� The other possible bounce after a straight line

bounce is a �rst bounce in a semi circle	 symbol �� These two possibilities yields
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Figure ����� The reduced Markov graph for the simpli	ed stadium scatterer� a� symbols

sc� b� symbols sd�

the � arrows out from the nodes � and � in �gure ����� Drawing the nodes and

arrows gives the transition matrix in �gure ���� with the characteristic polynomial

p�z� � ��� z��� � z���� �z � z� � z�� ������

There is only half as many factors as in ������ since the alphabet sct remove some

of the symmetries�

To simplify this further and remove the symmetry in time and between clockwise

and anticlockwise bounces we have to �gure out which combinations of symbols

that give the same segment of an orbit and which combinations of symbols that

give essential di�erent segments�

We de�ne a fourth alphabet for the stadium in table ���	 with symbols sd �
fa� b� � � � � kg� Symbols sd are de�ned from two�symbol combinations of symbols sc

which in some cases depend on the symbolic string that preseeds the two�symbol

con�guration�

To understand why the dependence on the earlier symbols is necessary	 look at

the two symbol strings� sct � ����
n� and ����n�� These two strings describe the same

kind of segment of an orbit where the �rst string describes a clockwise orbit	 and

the second an anticlockwise orbit� A symbolic string ����n� describe a di�erent kind

of segment of an orbit which is symmetric to the segment described by the string

����n�� Since the symbol � does not distinguish between clockwise and anticlockwise
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sdt sct��s
c
t � � � sct��s

c
t��s

c
t��

a ��

��

b ��

c ��

��

d �� � � � ����n

�� � � � ����n

�� � � � ����n

�� � � � ����n

e �� � � � ����n

�� � � � ����n

�� � � � ����n

�� � � � ����n

f ��

��

g ��

��

h �� � � � ����n

�� � � � ����n

�� � � � ����n

�� � � � ����n

i �� � � � ����n

�� � � � ����n

�� � � � ����n

�� � � � ����n

j ��

��

k ��

��

Table ���� De	nition for stadium symbols sd from the symbols sc�
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bounces it is necessary to know the symbol preseeding the �rst � in a string of

repeated ��s�

The Markov diagram in �gure ���� with the sd symbol is then constructed from

labeling the arrows in the Markov diagram in �gure ����	 turning arrows into nodes

and identify nodes with the same future� If we do not include the bounces in the

straight lines sc � �	 and sc � � we obtain the diagrams in �gure ���� a� and b��

These diagrams are subsets of the full diagrams and describes the symbolic strings

in the repellor consisting of only the two semicircles� These simpler diagrams can

be constructed from inspecting the legal orbits in this repellor�

A di�erence between the sd Markov graph and the preceding graphs is that

in the preceding graphs the symbols can be associated either with the nodes or

with the arrows between the nodes� In the sd diagrams the symbols have to be

associated with the arrows because there are two di�erent arrows connecting the

same two nodes�

The existence of the marginally stable periodic orbit bouncing between the two

straight lines� sa� �� and the forbidden �xed points� sa� �	 �	 �	 �	 suggests that we

may introduce a new alphabet of the type applied in ref� ���
 to study the Gauss

map� We prefer however to construct the Markov graphs with includes all these

special orbits	 and when we �nd the expansion of the Zeta function from the graphs

we sum up in�nite families and avoid these orbits� This is further discussed in

chapter ���



Chapter �

Pruning in billiards

We now give a pruning front description of the admissible orbits in all billiard

introduced in chapter�� The pruning fronts are then approximated by converging

sequences of approximate fronts which give �nite Markov diagram description of

the symbol strings of the admissible orbits�

��� Singular points

In the smooth two�dimensional folding maps such as the H�enon map� the pruning

front is a symbolic representation of the primary turning points of the unstable

manifold� Also in the piecewise linear Lozi map the kneading sequences from all

primary �non�smooth	 turning points mapped into the well ordered symbol plane

de�ne the pruning front� The Lozi map manifolds� �gure 
���� gives the most useful

image in motivating our approach to determining pruning fronts in the billiard

systems� Pictures of the manifolds of orbits in the 
 disk system and the stadium

billiard are shown in �gures ��� and ����� The manifolds have a structure similar to

the Lozi map manifolds� �gure 
���� except that in a close billiard both manifolds

are dense in the phase space� The manifolds are smooth lines changing direction

at a singular points which we for the Lozi map called the turning points� The

manifolds of the wedge�two ball problem� �gure ����� and the overlapping disks are

slightly di�erent because the manifolds end at a singular point� but then continue

somewhere else in the phase space instead of just change direction� To understand

why these manifolds are discontinuous� we investigate closer the singularities in the

di�erent billiards�

For a dispersive billiard the point corresponding to the turning point of a ��d

map is the orbit touching the wall tangentially� Figure ��� shows how a line is folded

at a dispersing wall and the point moving tangential to the wall is the turning point

���
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Figure ���� A part of the manifold of the orbit s� ��
 in the touching � disk system�

r � �� a� The unstable manifold� b� The stable and unstable manifold�

of the folding� This orbit is usually called the singular orbit ������ This grazing

orbit in the dispersing billiard plays the same role in this system as the critical point

in a unimodal map and the pruning front can be constructed by �nding the symbol

string �kneading sequence	 of all orbits grazing the wall of the billiard domain�

The stadium billiard �
�� has a singular point where a semi�circle joins a straight

line� Figure ��
 shows how a line of phase space points is folded when re�ected in the

neighborhood of a singular point� The picture is similar to the dispersive billiard�

the curve after the folding is continuous with one sharp turning point� The turning

point is the singular orbit bouncing o� the singular point on the wall� At this

point the wall is continuous and has a continuous �rst derivative but the second

derivative is discontinuous� This gives the sharp folding of the neighborhood of the

orbit through the singular point� acting as the turning point� The symbol strings

for all orbits that bounce with di�erent angles through this singular point yield a

pruning front in a well�ordered symbol plane�

In the wedge billiard� as well as in the overlapping dispersive billiards� the folding

of curves is qualitatively di�erent than in the stadium and the non�overlapping

dispersive billiards because a curve breaks up into two disconnected parts at the

singular orbit� In other billiards the limit orbits from each side of the singular orbit

converge to the same orbit� but this is not true in general� see �gure ���� This is the

simplest way a curve can break up� but if the incoming angle or the angles of the

walls close to the corner are di�erent� the limiting orbits to the singular point may

bounce more than once close to the corner� In the integrable � � �
� limit for the

wedge billiard� the two limit orbits to the tip point are identical to each other for

all incoming angles� and the same is of course true for � � ���� Smilansky ���
� has
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Figure ���� Folding of a line in the con�

�guration space when bouncing o	 a dis�

persing wall�

Figure ��
� Folding of a line in the con�

�guration space when bouncing o	 the

stadium close to the singular point�

Figure ���� The breakup of a line in the con�guration space when bouncing o	 a corner

in the wedge billiard� or an overlapping disk system�

observed that for � � ��� many orbits return out in the same direction independent

of whether they bounce to the right or to the left of the tip point� There may

be other exceptions of this kind� but in general the folds are discontinuous as� for

example� the manifold in �gure ����� This makes the problem less like the Lozi

map� and more like a two�dimensional version of a Bernoulli shift�

Discontinuity of folding does not lead to any problems in determining the prun�

ing front� The pruning front is given by the symbolic strings of the two limits to

the singular orbit� bouncing close to the corner with varying incidence angles� We

let the orbits bounce o� one of the two walls� and scan all outgoing angles �in the

wedge billiard from �� to �	� the symbol strings for each angle yields a point on the
pruning front� If the folding had been continuous� we would only have scaned the

angles between � and �� so the consequence of the discontinuity is less symmetry in
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the pruning front�

Similarely� in a dispersing billiard that has a corner with a �nite angle� the

corner leads to a discontinuity in the manifolds� The turning points are not tent�like

bending points� but points where the manifolds end� An example is an overlapping

disk billiard� where the distance between the disk centers is less than the sum of the

two radii� Scanning through the di�erent outgoing angles starting in the corner gives

a second pruning front which we denote as the corner pruning front� to distinguish

it from the tangent pruning front obtained from the tangent singularity discussed

above� The point corresponding to the orbit bouncing from the corner tangentially

to the wall is common to the two pruning fronts� This is the end point for both

kinds of fronts� and by using this point we can combine the two fronts into one�

��� ��disk

The three�disk system gives a complete horseshoe for some parameter values� In

a symmetric system the horseshoe is complete when the distance r between the

centers of the disks is su�ciently large� At some critical parameter value the non�

wandering set becomes a not complete binary Cantor set� but to determine this

critical parameter value is not trivial�

We want a condition on the geometrical construction of the non�wandering set

to distinguish between su�ciently separated disks and the case of pruning� We

�nd that the non�overlapping disks are su�ciently separated to realize a complete

horseshoe if condition � below is true�

De�nition� ��� consists of M strips in the phase space� with each strip m� the

union of initial points �x� �	 from which a trajectory starting at x with angle � hits

a particular disk� As such a trajectory might have to penetrate other disks� the M

strips are not necessarily disjoint� ��

� consists of the M strips� with each strip m�

the union of points �x� �	 where the trajectory starting at x with angle �� hits a
particular disk� We call a transverse intersection of a strip m� and a strip m� a

rectangle� The set �� � �
�
� � ��

� then consists of M
� rectangles� not necessarily

disjoint� The set �T � �
�
T
���

T
with T � � consists of intersections of forward and

backward strips corresponding to T consecutive bounces with the outgoing angle

at each bounce equal to the incoming angle� but allowing the trajectories to go

through discs� Then �T consists of M
�T rectangles�

Condition � There exists a �nite integer T such that �T consists of M� disjoint

areas where each area is inside one of the M� rectangles of ���
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The iteration of the M� disjoint areas corresponds to one more bounce and

gives that each of the M� disjoint areas contains M� new disjoint areas� The

M� rectangles of �� then contains M
� disjoint areas� By induction we �nd that

�T�T � gives M�T �

disjoint areas inside the M�T �

rectangles of �T � � From this it

follows that even if the rectangles of �T � overlap each other� the parts of the non�

wandering set belonging to di�erent rectangles do not overlap� A symbol string

�w�T ���w�T ��� � � � wT �
��w

�

T
	� with wt � f�� �� � � � � �M � �	g corresponds to a unique

rectangle� and is a substring of the symbol strings for all trajectories that pass

through this rectangle� It then follows that the disks are su�ciently separated and

the non�wandering set a complete horseshoe�

If the condition is not satis�ed� there might be an in�nitesimal change of the

parameters that yeilds a �nite a � � T � �� this is the critical parameter value
where pruning starts� If such �nite T cannot be realized for any perturbation of

parameters� then the rectangles always overlap� and the symbol dynamics is always

pruned�

A di�erent and more intuitive way to describe the orbits that disappear �rst

is to �nd the point in the Cantor set � in �x� �	 with the largest angle �� and

determine the parameter value for which � � �	�� i�e� this point represents an

orbit bouncing tangential to a disk� In the symmetric three�disk system this point

is the hetroclinic point where the unstable manifold of one period two orbit crosses

the stable manifold of the other period two orbit� Numerically this can be found by

starting an orbit grazing o� the disc at the symmetry line and �nd the parameter

value for which the orbit converges to the period two orbit� Figure ��
 shows this

orbit for the critical parameter value rc � ���������� � � ��

There are two di�erent homoclinic orbits that look like the orbit drawn in �g�

ure ��
 for the critical parameter value rc� For r � rc one of the orbits bounces o�

the disc� and the other orbit passes by the disk without bouncing for r � rc� An

orbit may then become singular either because a bounce gets an angle � � �	� or

because at a place without any bounce the path is grazing the disk� There orbits

will de�ne two pruning fronts for the non�overlapping dispersive billiards�

����� Pruning front

For � � r � rc the above two pruning mechanisms give two forbidden regions in the

symbol plane� We shall call the border of the regions the �tangential pruning front��

The two mechanisms are illustrated in �gure ���� Figure ��� a	 shows sections of

two admissible orbits� One orbit passes by the dispersing wall� and the other one

bounces o� the wall from the dispersing side� Figure ��� c	 shows corresponding
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Figure ��
� The hetroclinic orbit of the � disk system at the critical parameter value

rc � ���������� � � � where this orbit bifurcates and becomes the �rst pruned orbit of

the � disk system�

sections of two forbidden orbits� In one the trajectory penetrates the disk along

a straight line� The other orbit bounces o� the wall with the incidence angle �

larger than �	�� so thetrajectory penetrates into the disc and bounces o� the wall

from the wrong side� The reason for including these unphysical orbits is that with

them every n�ary alphabet symbol string is realized� The inadmissible orbits can be

distinguished from the admissible orbits by observing that they include bouncing

angles larger than �	�� or that the orbit goes through a wall� The singular limit

orbit between the admissible and inadmissible orbits is the orbits tangentially to

the wall� �gure ��� b	�

The pruning front can be calculated numerically by starting a tangential orbit

at a point x on the disk� following the orbit through any number of bounces �in our

numerical examples 
�	� and recording the corresponding symbol string� Given this

future symbol string and the past symbol string obtained by bouncing tangentially

o� the disk in the oposite direction� we �nd for each initial �x���	�	 the corre�
sponding symbol plane point �
� �	� As an orbit starting tangenially at a point x

may be considered as the limit either of an orbit bouncing o� the wall� or an orbit

not touching the disk� we have two choices for the symbol s�� Either the symbol s�

is the symbol corresponding to this disk and s� is the symbol of the next disk the

particle bounces o�� or we ignore the symbol of this disk and let s� be the symbol

for the next bounce� In this way the tangent in phase space corresponds to two

di�erent pruning front points �
� �	 in the symbol plane�

Assume �
� �	 is the symbolic coordinate for an orbit bouncing tangentially o� a

disk� Then assume that the symbolic past is constant and change one symbol st in

the future symbolic description� If the incidence angle for the corresponding orbit
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Figure ���� Orbit segments which are a� admissible� b� at the pruning point� and c�

inadmissible� The two inadmissible orbits in c� are the only two pruning mechanisms for

dispersive billiards without corners�

changes to � � �	�� this symbol string is pruned� It may also happen that the

angle changes to � � �	�� in case which the orbit is admissible� The well�ordered

symbols are constructed in such a way that an increase in the angle � is an increase

in the symbolic value� and in the well ordered symbol plane �
� �	� the symbolic

representation of the tangent orbit is the border between the admissible and the

pruned orbits i�e� the pruning front� An other important question is whether

the front changes monotonously in the symbol plane� When we scan the di�erent

tangent orbits we increase monotonically the value of the position coordinate x�

keeping the angle � � �	� constant� As we move in the x�direction in the phase

space we cross the foliation of both the stable and the unstable manifolds in only

one direction� We then move monotonously in the space de�ned by the manifolds

which is our symbol plane� The pruning front is obtained by the symbol strings

from such a scan of x�values and is piecewise monotone in the symbol plane� The

shifted symbol stings of these orbits are piecewise monotone� and we give examplels

of this in the �gures below�

The second pruning front is given by the same symbolic string� except that the

symbol for the tangential bounce is omitted� This pruning front then also has to

be monotone� The second pruning front describes the orbits that do not bounce

o� the tangency disk and therefore has no representation in the symbol plane for

this bounce� As any shift of the symbol strings is equivalent� we choose to draw
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Figure ���� a� The tangent pruning front for the ��disk system for touching disks�

r � �� b� Magni�cation�

both pruning fronts in the symbolic plane corresponding to the bounce immediately

before the tangent bounce� These are of course also monotone curves� The region

bounded by the two pruning fronts� from the two families of strings with and without

the symbol of the tangent disk� and by the border of the unit square� is the primary

pruned region�

Examples of the pruning fronts for the three�disk system are drawn in �gures ����

��� and ����

We can numerically test the pruning front by plotting symbolic values �
� �	

for a long chaotic orbit with random initial point� Such chaotic orbits are plotted

in �
� �	 in �gures ����� ���� and ����� Comparing these with the pruning fronts

of �gures ���� ��� and ��� we see that the pruning front together woth the edges

of the symbol plane are the limites of white areas which are never visited by the

chaotic orbits� We refere to the white area limited the pruning front as the primary

forbidden region�

Beyond the primary forbidden regions� there are also other white areas in the

�gures� For �gures ���� and ���� it follows from the conjecture of existence of only

two pruning mechanisms for non�overlapping disks that all other white regions in

the �
� �	 plane are images or preimages of the primary regions� For example� it

is easy to see that in �gure ���� the largest visible white regions are around the

lines 
 � �	�n and � � �	�n� The shift operation is a binary shift� so the large

primary regions surrounding the lines 
 � �	� and � � �	� are partly mapped into

regions surrounding the lines 
 � �	�n and � � �	�n because the shift operation

make � � �	� if 
 � �	�� and similarly backward in time 
 � 
	� if � � �	�� At
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Figure ���� The tangent pruning front

for the ��disk scattering system r �

�����

Figure ���� The tangent pruning front

for the closed ��disk system r � �����

Figure ����� Bounces of a typical chaotic orbit plotted in �
� �	 plane for the ��disk

system for touching disks� r � �� b� Magni�cation of the primary pruned region�
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Figure ����� Bounces of a typical

chaotic orbit plotted in �
� �	 plane for

the scattering ��disk system� r � �����

Figure ����� Bounces of a typical

chaotic orbit plotted in the �
� �	 plane

for the closed ��disk system� r � �����

the same time the area is squeezed by a factor � in one direction and enlarged by

a factor � in the other direction� As pointed out by Troll ���
�� this kind of well�

ordered symbols has a more complicated time shift than the corresponding symbols

st� For the st symbols the time shift is only a shift of the �present dot�� that is all

indices t change to t � � after � iterations� In the �
� �	 plane the time iteration is

both a shift operation� and an inversion 
 � � � 
� and � � � � ��� This follows

from the algorithm ����	�

The more complicated time iteration is the price one has to pay to get symbols

that have a simple spatial ordering� All systems for which there is a change in

direction under the folding cannot be ordered in space and time simultaneously�

The area of the primary pruned region grows as the parameter r decreases in

the symmetric 
�disk system� As the distance between the disks becomes smaller�

more and more orbits become forbidden� and the pruning front moves enlarging the

pruned region� The topological entropy then decreases as r decreases�

����� Overlapping disks

In the 
�disk system with r � � the disks overlap each other� This leads to an

additional pruning front mechanism� As long as the disks are not overlapping each

other an orbit can bounce an arbitrarily number of times close to the period �

cycle s�s� � �� or �
 or 
�� in the well�ordered symbols close to either w� � � or

w� � �� When the disks touch each other� r � �� the cycle s�s� � �� disappears�

and for overlapping disks� r � �� an orbit can only have a �nite number of bounces
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in a corner where two disks intersect� How many times a particle can bounce in

the corner depends on the angle at which it arrives to the corner� The corner

pruning front is obtained by bouncing out from the corner at all allowed angles�

and determining the corresponding symbolic values �
� �	�

The corner pruning front is drawn in �gure ���
 for r � ���� The tangential

pruning front for the same parameter value is drawn in �gure ����� In �gure ���


we have drawn the two pruning fronts and some of their images together� we note

that the corner pruning front ends where the tangent pruning front starts� A long

chaotic orbit� �gure ����� stays below the pruning front and never crosses into the

forbidden white regions�

The corner pruning front moves down and gives a larger forbidden region as the

disks move together� Figure ���� shows the corner pruning front for the parameter

value r � ���� and �gure ���� shows the tangent pruning front for the same param�

eter value� The corner pruning front becomes more important as r decreases and

the tangent pruning front becomes smaller as r decreases�

In the limit where the area of the domain in which the particle bounces vanishes

�r �p

 � ���
� � � �	 the domain approaches a triangle� and the tangential pruning

front shrinks to a point� the point common to the two pruning fronts� As we show

in chapter�� the corner pruning front becomes a straight line�

����� Approximating the pruning front

The pruning front is an exact solution to the problem of �which orbits are forbidden

in the billiard system�� limited only by the numerical accuracy of calculating an

orbit�

This picture is neither less nor more useful than the kneading sequence of the

logistic map� To be useful in calculations of average values of physical interest

the primary forbidden region has to be transformed into a description of admissible

orbits in such a way that one can construct the Markov diagrams and the associated

zeta function expansions for the new symbolic alphabet�

There may be several ways to do this but� we have chosen to follow the same

procedure that we have used for one�dimensional maps� The forbidden region can

be split into rectangles described by �nite symbol strings which corresponds to

paths of �nite length down the symbolic tree� and we construct an approximate

sequence of �nite Markov graphs or automata� In the unimodal map this procedure

works very well� and for the H�enon map it will converge rather well� The procedure

also works in the billiards studied here� but the convergence has to be less good

as the pruning front does not have a staircase structure as the H�enon map� with
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Figure ���
� The corner pruning front

for � overlapping disks� r � ����

Figure ����� The tangent pruning front

for � overlapping disks� r � ����

Figure ���
� The corner pruning front�

the tangent pruning front� together with

some of their images� r � ����

Figure ����� Bounces of a long chaotic

orbit for the � overlapping disks� r � ����
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Figure ����� The corner pruning front

for � overlapping disks� r � ����

Figure ����� The tangent pruning front

for � overlapping disks� r � ����

a few large steps and smaller steps organized in a hierarchy� For a staircase�like

pruning front where the steps become small very fast� a few rectangles cover most

of the forbidden regions� If the pruning front is more like a smooth curve� the

approximation with rectangles converges slowly� This suggests that we should use

some kind of trapezoidal approximation� but at present we do not know how to

implement this�

The �rst step is to �nd the forbidden rectangles in the symbol plane �
� �	� In

�gure ���� we draw the pruning front together with a staircase approximation with

steps at all rational values p	��� If we make an �under�pruning� ��under�counting�	

approximation where we let the approximating curve be entirely inside the forbidden

region� We then take away too few of the forbidden orbits� but we are guaranteed

that any orbit that exists in the system will be included in the new alphabet we

construct� Alternatively we can choose to �over�prune� and let the approximation

be on the other side of the pruning front� This implies that there are orbits in the

system which cannot be represented in the alphabet we construct but every symbol

sequence generated is realized by the dynamics� The third possibility is to chose a

�closest� curve which partly over�prunes and partly under�prunes the system�

The approximation curve in �gure ���� is an under�pruning curve� including

some squares which are completely in the forbidden region� Each square with

the side length ��k corresponds to a symbol string of length �k in the symbolic

description� The forbidden symbol strings of lengths ��� ��� ��� and �� are given

in table ����

As an example� we implement this by taking the shortest forbidden string which
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w�� � � � w� w�� � � � w� w�� � � � w	

������ � ������ ������� � ������� �������� � ��������
������� � ������� �������� � ��������
������� � ������� �������� � ��������
������� � ������� �������� � ��������
������� � ������� �������� � ��������
������� � ������� �������� � ��������
������� � ������� �������� � ��������
������� � ������� �������� � ��������
������� � ������� �������� � ��������
������� � ������� �������� � ��������

�������� � ��������
�������� � ��������
�������� � ��������
�������� � ��������
�������� � ��������
�������� � ��������
�������� � ��������
�������� � ��������
�������� � ��������
�������� � ��������
�������� � ��������
�������� � ��������
�������� � ��������

Table ���� The forbidden orbits in � discs� r � �� 
Under�counting� approximation to

level ��
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w�	 � � � w


��������� � ��������� ��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ���������
��������� � ��������� ��������� � ���������

Table 
��� Continue�
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Figure ����� The pruning front for the � disk system for touching disks� r � �� and a

rational rectangles approximation�

has length ��� together with the time reversed version of the string and the conju�

gate strings �� and � interchanged	 as the forbidden strings which we remove from

the binary tree� The corresponding Markov diagram is too complicated to imple�

ment by hand� and we use a computer program that generates an automaton from

a list of forbidden strings� In order to handle the tree structure this program has to

be relatively complicated� because of the object oriented structure of the data we

have programmed it in C� The nodes with pointers to other nodes are programmed

as struct variables� with pointers containing the address of the variables� The con�

struction of the automaton is quite fast� but going through all loops and �nding all

possible combinations of non self�intersecting loops can be time consuming� We �nd

that when the number of nodes in the automaton is larger than a number between


� and ���� the time the program needs to scan all loops is too large for practical

calculations� This may however vary a lot depending on the number of symbols and

the structure of the automaton�

The result of this calculation is the fundamental part of the zeta function with

all the terms that are not shadowed by shorter orbits but usually also a number

of orbits that are shadowed together with the shadowing combinations� We will

return to this problem in chapter ��� If we were only interested in determining

the topological entropy� section ��
� we could simply �nd the average number of

symbol strings of a given length starting at one node in the tree� In practice this

converges rather quickly with the length of the string to the correct entropy and

can be applied to rather large trees�

With the � pruned symbol strings of length ��� ������������� �������������
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������������� ������������� we obtain an automaton with 

 nodes and the

longest loop of length ��� The topological polynomial is

p�z	 � ��� � z	� �� � z	
�
�� z � z�

�
����	

�
� � z � z�

� �
� � z� � z� � z	 � z
 � z�� � z��

�
�
�� z � z� � z� � z� � z� � z� � z	 � � z
 � 
 z��

�� z�� � 
 z�� � � z�� � 
 z�� � � z�� � z��
�

The � forbidden strings are symmetricunder time reversal and �	 � interchanged

so we expect that the polynomial can be factorized ����� The leading zero belongs

to the ��th order polynomial� and yields h � ln �����
� � � ��

The automaton can also be constructed with all the length �� and �� forbidden

symbol strings� table ���� Some of the forbidden strings can be reduced to shorter

strings� e�g� the two strings of length ��� ������� � ������� and ������� � ��������
can be combined to one length �
 string �������������� and both the two strings

������� � ������� and ������� � ������� contain the forbidden length �� string
������������ and can be left out from the list� All strings up to length �� are

pruned by the following list of forbidden strings

������������

�������������

�������������

�������������

�������������

��������������

��������������

����	

together with the time reversed strings and the strings with � and � interchanged�

These forbidden strings yield an automaton with ��� nodes� too large for determi�

nation of all non�intersecting loops and their combinations� Counting all possible

paths from the root node gives a topological entropy estimate h � ln����
�
 � � ��

That the calculation exceeds our computational skills after just a few approx�

imations may seem discouraging� but the touching disk example is a bit special

among the pruned systems because it has very few forbidden strings� or more pre�

cisely� there are no short orbits which are pruned� The average number of symbols

is around ���� which is rather close to �� and the pruning is not so important as

in many other systems� The method works much better in the cases whith heavy

pruning and where one really needs to control pruning in order to apply the theory

to problems such as evaluation of semiclassical resonances�



��� CHAPTER �� PRUNING IN BILLIARDS

For the overlapping three disk problem� e�g� r � ���� we �nd more interesting

results� We can draw the pruning front for the corner and tangent pruning together

with a ��k lattice and �nd the symbols corresponding to squares outside the pruning

front in the forbidden region� By combining the forbidden strings we obtain the

following list of forbidden orbits up to length ���

�����

�������

��������

��������

���������

���������

���������

����������

�����������

������������

������������

���
	

Pruning the two strings ����� and ����� of length 
 yields an automaton with

� nodes and the characteristic polynomial

p�z	 �
�
�� z � z� � z� � z�

� �
� � z � z� � z� � z�

�
����	

with a topological entropy h � ln �����
�� � � ��

Pruning the strings of length 
 and � yields an automaton with the characteristic

polynomial

p�z	 � ��� � z � z� � z� � z� � z� � z� � z� � z��	

���� z � z� � z� � z� � z� � z� � z� � � z	 � � z
 � z��	
���
	

giving a topological entropy h � ln ����
��� � � �� Including also the length � forbid�

den strings yields an automaton with 
� nodes with

p�z	 � �� � z � z� � z� � � z� � � z	 � � z
 � z��	

��� z � z� � z� � � z� � z��	
����	

which yields the topological entropy h � ln �������� � � �� The value of eh as a

function of the maximal length of the forbidden strings included is plotted in �g�

ure ���� a	� The topological entropy seems to converge to h � ln ����� � � � � ���� � � ��

We can plot the values ln�z � zl���	 as a function of the length as we did for the

logistic map in �gure ���
� For the logistic map we found that this plot was linear

with a slope �h� In �gure ���� b	 the convergence of the entropy seems to be faster
as a function of the length of the forbidden strings� If the few points plotted are

approximated by a line the slope is around ���



���� ��DISK ���

Figure ����� The values a� a	z � eh and b� ln�z � zl���	 as a function of the length

of the forbidden strings for � disk r � ����

��� ��disk

The analysis of the symmetric four disk system is very similar to the three disk

system� We construct pruning fronts from the tangential and the corner orbits� and

�nd the forbidden regions in the symbolic value plane �
� �	� The alphabet st has

� symbols� and the well�ordered alphabet� eq� �����	� has 
 symbols� Hence the

symbolic values are base�
 numbers� and the shift operations looks slightly di�erent

from the binary 
�disk case�

As for the three�disk system� the pruning starts at a critical disk separation rc�

where a point in the non�wandering set attains � � �	�� This outermost point is the

hetroclinic point where the unstable manifold of one period�� orbit� e�g� s�s� � ���

crosses the stable manifold of another period � orbit� e�g� s�s� � �
� We �nd

numerically rc � ��������

 � � �� Hence for the ��disk system the pruning starts

when the distance between the disks is approximately �� of the radius� while in

the 
�disk system pruning started at the distance approximately 
 of the radius�

For � � r � rc the forbidden regions are limited by the tangential orbit pruning

fronts� Figure ���� shows the pruning front for the touching disk case� r � ��

As for the three�disk system� we make a grid in the symbol plane� and read o�

the forbidden strings listed in table ����

The shortest forbidden string is the length � string ������ � in terms of the

wt symbols	 and letting this sting and the symmetric strings ������� ������ and

������ be forbidden we obtain an under�pruned Markov graph with a new alphabet
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Figure ����� The pruning front for the touching ��disk system� r � �� b� Magni�cation�

and the characteristic polynomial

p�z	 � ��� � z	� �� � z	
�
� � z � z�

� �
�� � z � z� � z�

�
����	

�
�� � � z � � z� � � z� � z� � 
 z� � 
 z� � 
 z� � z	

�
����	

with the topological entropy h � ln �������� � � �

We can also approximate the pruning front with the symbol strings from the

squares which are mostly in the forbidden region� This gives the strings ������

������ and ������ and the symmetric ones of these and we obtain an automaton

with 
� nodes and with topological entropy h � ln ���

�� � � ��

We can �nd all completely forbidden strings of length less or equal � and by

combining the forbidden strings in table ��� we get the list of forbidden strings

������

�������

�������

�������

�������

�������

��������

��������

��������

��������

��������

��������

����	



���� HYPERBOLA BILLIARD �
�

Figure ����� The hyperbola billiard� a� The full con�guration space� b� The funda�

mental domain�

Including stings up to length � gives h � ln ������� � � � and also including the

strings of length � gives h � ln ����
�� � � �� The automaton in this case has �



nodes and it is very time consuming to �nd all loop combination in the graph�

The topological entropy is close to the topological entropy of a three letter

alphabet h � ln 
� but the pruning is larger for the � disk touching system than in

the 
 disk touching system�

��� Hyperbola billiard

The hyperbola billiard is a system similar to the � disk system where a point particle

bounces elastically between the four hyperbola branches

y � ��
x

�����	

drawn in �gure ���� ��
� ���� ���� ����� The symmetry in this billiard is the same

as for the � disk system and the walls are dispersing� A pruning front for this

system can be obtained in the same symbol plane as the � disk system� The four

hyperbolas are enumerated st counterclockwise and �����	 and ����
	 gives the well

ordered symbols and the coordinate �
� �	� As for the touching � disks the periodic

orbit w � � � � does not exist� The walls does not overlap giving a corner and

the tangent orbits are the only singular orbits in the system� The tangent pruning

fronts give the pruned regions in �
� �	 and are drawn in �gure ���
�

The tangent pruning fronts are the same two fronts as for the disk systems�

one for the primary pruned region of orbits bouncing in the wall from the wrong
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w�� � � � w� w�� � � � w�

��� � ��� ���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����
���� � ����

Table ���� The forbidden orbits in � discs� r � �� Under counting approximation to

level k � ��
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Figure ���
� A magni�cation of the pruning front of the hyperbola billiard� b� with a

lattice of size 
��

side and one region for orbits going through a wall without bouncing� We �nd in

�gure ���
 that the primary pruned region is small compared with the touching �

disk system� Qualitatively the shape of the front is slightly di�erent than what we

�nd in the disk billiards� the front has a more visible step�like shape� This may

be because compared to the disk systems here more of the pruning is close to the

origin and there is less pruning out in the tails x� �� and y � ���

To obtain lists of forbidden orbits of �nite length we draw a lattice with length


�k between the lattice lines as in �gure ���
 b	 and �nd the symbolic description

of the rectangles in the forbidden region� This gives the following list of forbidden
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orbits with symbol strings wt shorter or equal �
�

�������������

�������������

�������������

�������������

��������������

��������������

��������������

��������������

��������������

��������������

��������������

���������������

���������������

���������������

�����	

and the strings symmetric to these� The shortest forbidden string is of length �


and the pruning is very small in this system� By pruning these strings we get an

automaton with ��� nodes and a topological entropy

h � ln �������� � � �

This entropy is very close to h � ln 
 as for a complete three letter alphabet� It

was also noticed by Sieber ����� that the number of periodic orbits missing in a

three letter alphabet is very small� In practical calculations a three letter alphabet

can be used with small errors even thought a random in�nite string of symbols has

a probability � that it is forbidden because a random string would sooner or later

contain one of the forbidden strings in the list�

��� 	
� Disk system

We can also construct the pruning fronts for the system with one disk surrounded by

� disks in �gure ����� In this system the pruning starts already when the distance

between the disc centers is rc � 
�
������� � � �� and we expect large pruning when

the disks are close� There are two di�erent tangent pruning fronts� one from orbits

tangent to the center disk and one from orbits tangent to one of the other disks� The

center�disk pruning front gives the largest pruned region� When the disks touches

each other for r � � the system is reduced to � independent closed 
 disk systems

and we do not have any corner pruning front for r 
 ��



��	� 
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Figure ����� The ��� disk system and a hetroclinic orbit at the critical parameter value

rc � 
�
������� � � ��

The well ordered symbols and the symbolic coordinate �
� �	 are given by �����	

and �����	� The �
� �	 space we use are the one corresponding to the phase space

of a bounce in one of the � surrounding disks� The phase space for the center disk

is di�erent and we choose not to work in �
� �	 for this disk� The pruned regions

looks di�erent in this space because the regions here are complicated shifts of the

regions in the other symbol space�

The symbolic values 
 and � are base 
 numbers and a lattice with length 
k

between the lattice lines gives squares corresponding to symbol strings of length �k�

The pruning fronts for the ��� disk system with parameter r � ��� are drawn in

�gure ���
� From this picture we get the following list of forbidden strings�


� ��� ����

�� 
�� 
���

��� ���



�� ����

��� ���


��
 ����

��� ����

��
 ����

��� ����

�����	

and the time reversed and �� w reversed of these stings�
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Figure ���
� The pruning front of the ��� disk system for r � ����

The forbidden stings up to length � gives an automaton with 

 nodes and a

topological entropy

h � ln 
��
� � � � ����
	

which is much lower than the well separated ��� disk system where h � ln 
� This

is an example where the pruning is very important for the description of the system�

��	 Stadium billiard

We have di�erent well ordered alphabets describing the stadium billiard and a

corresponding symbols plane �
� �	 for each alphabet as discussed in section ��
� In

each �
� �	 we will have a monotone pruning front and we can identify forbidden

strings of increasing length� All di�erent symbol planes will in principle give pruned

regions consisting of the same strings when translated into the same alphabet� The

approximation to a given length k of the strings wt for the pruned region may yield

slightly di�erent results for the di�erent alphabets� When constructing the new

alphabets the di�erent combinations of symbols imply that a square of the symbol

plane may correspond to di�erent lengths of the strings in the di�erent alphabets�

In the non overlapping disk systems there were two kind of forbidden orbits�

orbits going into the disk and bouncing from the wrong side and orbits going through

a disk without bouncing� By including these unphysical orbit we have a complete
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Figure ����� The orbits with sa symbols ���


 and ����
� for a� a � �� b� a � �� c�

a � ���� d� is a Blow�up of c��

n�ary symbolic description of all orbits� It is shown by Biham and Kvale ��
� that in

a similar way one can �nd unphysical orbits in the stadium billiard� These are the

orbits that bounce in the straight line outside the singular point where the straight

line joins the semi�circle� and the orbits which bounce in the circle inside the billiard

domain� By including these unphysical orbits we can �nd all orbits described by

the symbols obtained from the Markov graphs in section ��
�

When we decrease the length a of the straight line in the billiard we have bi�

furcations� The bouncing points of an orbit with a given symbolic description may

move as a decreases� and a points where the particle bounces o� a wall moves closer

to the closest singular point� In �gure ���� we show one example of two orbits that

become forbidden when a decreases below a critical parameter value� ac � ����

The orbit drawn with dashed lines in �gure ���� is the orbit described with

symbols sa� ���


 or ���


 with sb� ���


 or ���


 with sc� ������ and with

sd� eac� The orbit drawn with solid lines is the orbit described with symbols sa�

����
� or ����
� with sb� ����
� or ����
� with sc� ���
�
 and with sd� ghf �

These strings can be found as paths in the Markov graphs in �gures ���
� ����

and ���
 and exist in the limit of an in�nite long stadium a��� In �gure ���� a	
we �nd that the two orbits also exist when a � � but for a � ��� in �gure ���� c	

and d	 these two orbits bounces o� the illegal part of the stadium� The orbit eac

bounces o� the circle on the wrong side of the singular point inside the stadium

where the semi�circle does not exist and the orbit ghf bounces o� the straight line
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outside the singular point where a physical orbit would bounce in the semi�circle�

Figure ���� b	 shows that for a � � the two orbits bounce exactly o� the singular

point and are on the limit of being illegal� These orbits are on the pruning front

for a � �� Biham and Kvale have numerically found periodic orbits and checked if

each orbit is bouncing o� the legal or forbidden part of the walls of the stadium�

We can draw the pruning front by �nding the symbolic description of all orbits

bouncing in the singular point with di�erent outgoing angles� We record the symbol

string as the symbols sa and can translate these to the symbol space we want to use�

The pruning front is drawn in �
a� �a	 for the parameters a � 
� a � � and a � ��


in �gure ����� The pruning front is also drawn in the �
b� �b	 plane in �gure ����

for these parameter values� As a check of the pruning front we have drawn the

symbolic values of ��
 � ��� bounces of chaotic orbits in the stadium with a � � in

�gure ���� for �
a� �a	 and in �gure ��
� for �
b� �b	� The pruning fronts are exactly

the border of the points in these �gures�

We can make a lattice with separation 
�k between the lattice lines and read

o� the symbol strings that are forbidden in the primary pruned region which is not

forbidden for a � �� This gives the list in table ��
 for k � � where we give all
strings wb and some of the corresponding strings sb� In addition there is the strings

of sb symmetric to the given ones� The choice of approximating the pruning front

in either symbol plane �
a� �a	 or �
b� �b	 does not make any other di�erence than

changing the order in which we �nd the forbidden substrings when increasing k�

��� Wedge billiard

The pruning front in the wedge billiard is obtained by the symbol plane repre�

sentation of the singular orbits from the tip of the wedge� For the two bouncing

ball system these orbits are the points where the balls bounces together and in the

�oor simultaneously� In the map �����	 the singular orbits are point on the line

�xt � �yt	� cos� � � y�
t
sin� � � � which is the border between map T� and map T��

The pruning front is drawn in �gure ��
� for parameter values a	 � � 
���

b	 � � ���� c	 � � ��� and d	 � � ���� The pruning fronts can be compared with

�gure ��
� where we have plotted each bounce of a chaotic orbit with ��� iterations�

The bounces are plotted in the symbol plane �
� �	� These �gures show that the

pruning front is the border of the primary pruned region�

The primary pruned region changes as the parameter changes� but in contrast

to the examples above there is not a monotone increase in the area of the region�

In the limit � � �
� most of the forbidden orbits are obits in the upper left corner�
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�

Figure ����� The pruning front for the stadium in the �
a� �a	 symbol plane a� a � 
�

b� a � �� c� a � ��
�
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Figure ����� The pruning front for the stadium in the �
b� �b	 symbol plane a� a � 
�

b� a � �� c� a � ��
�
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Figure ����� Bounces of a chaotic orbit in �
a� �a	 for a � ��

Figure ��
�� Bounces of a chaotic orbit in �
b� �b	 for a � ��



��� CHAPTER �� PRUNING IN BILLIARDS

Figure ��
�� The pruning front for the wedge billiard� a� � � 
��� b� � � ����

c� � � ��� and d� � � ����
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a	 b	

Table ��
� The parameter dependent completely pruned stings of length � � for wb

for parameter a � �� a	 Symbols wb

t
� b	 Some symbols sb

t
�

This corner is orbits having one symbol st � � with a long string of s � � symbols

on each side of this symbol� A physical interpretation for the wedge billiard is that

the orbits bouncing a number of times on one tilted wall then jumps over to the

other tilted wall and bounces a number of times there are forbidden� This dynamics

is di�cult for the particle if the angle is close to � � �
� because then usually the

particle will return immediately to the �rst wall giving a stst�� � �� string� For

the two ball system this dynamics is orbits where the down�most ball bounces a

number of times o� the �oor� then bounces once into the uppermost ball and then

continues to bounce o� the �oor a number of times� When the masses of the two

balls are similar then this is an unlikely event because the balls tend to bounce

twice� The dynamics for this limit is discussed further in section ����

In the limit of � � ��� most of the forbidden orbits are obits in the upper

right corner� This corner gives the symbol strings where there is a symbol string

stst�� � �� surrounded by strings of symbol �� In the wedge this is orbits crossing

the tip twice which is di�cult in the limit where the tip vanishes� In the two ball

system this is a sequence of ball�ball� ball��oor� ball�ball collisions which is unlikely

if the uppermost ball is much smaller than the downmost ball�

We �nd that the �rst region decreases and the second region increases as �

increases from � � �
� to � � ���� All parameters between � � �
� and � � ���



��� CHAPTER �� PRUNING IN BILLIARDS

Figure ��
�� A chaotic orbit in the wedge billiard plotted in the symbol plane� a� � �


��� b� � � ���� c� � � ��� and d� � � ����
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stst�� � � �

������ ���������

������� ���������

������� ���������

������� ���������

�������� ����������

�������� ����������

�������� ����������

�������� ����������

Table ���� The forbidden strings up to length �� of the wedge billiard� � � ����

have a primary pruned region including both the upper left and the upper right

corner�

As for the other systems we can approximate the pruning front by rectangles

and get an approximate description of the admissible orbits for a given parameter

value� For � � ��� we get the forbidden strings in table ���� Including strings up to

length �� gives the topological entropy h � � ln���
����� � � �	 � ������� � � �� All the
zeroes in the complex plane for this polynomeal is drawn in �gure ��

� The zeroes

seems to build up a wall of convergence at the unit circle similar to the chaotic

unimodal map in �gure �����
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Figure ��

� The zeroes of the characteristic polynomial for the wedge billiard� � � ����

with forbidden strings up to length ���



Chapter �

Symbolic dynamics in special

limits

In some limit cases of billiard systems the symbolic dynamics is special and can be

found exact� Even if these cases are limits of the alphabets we can derive from a

pruning front� the symbolic dynamics of the limit may have very di�erent number

theoretical properties than for the typical description� The limit we discuss in this

chapter is the integrable limit of the billiards where the orbits are stable and exist in

continuous families� The symbolic dynamics is in most cases mapped into a simple

rotation which is the description of how a straight line crosses a lattice� The sym�

bolic description of the rotation is a problem with old roots considered by Bernoulli

����	
� Markov ����	
� Christo�el �����
 and Smith �����
 �for historical notes see

ref� 
����
� The results as we use it was showed �rst by Morse and Hedlund 
�����

Generalizations to higher dimensions can also be done 
����

Our simplest billiard� the � disk system� turns out to be slightly more compli�

cated than the � disk billiard and the wedge billiard� so we choose here to �rst

present the method for the later billiards�

In �gure ��� a square lattice is drawn together with a line crossing the lattice�

Denote a crossing of the line with a vertical lattice line � and a crossing of the line

with a horizontal lattice line � � The symbol string � � � l��l��l�l�l� � � � is the symbolic

representation of the di�erent crossings of the line with the lattice lines� The line

in �gure ��� is described by the symbolic string � � � ���������������� � � �� A given

in�nite symbolic string de�ne uniquely the slope of the line� but a periodic orbit has

an interval of starting points giving the same symbolic dynamics� The admissible

strings are not constructed from a �nite alphabet or from a Markov graph as we

have done in other examples� but can be constructed from a Farey tree expansion�

The symbolic Farey tree is drawn in �gure ����

	��
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Figure ���� The crossing of a straight

line with the lines of a square lattice�

Figure ��	� The crossing of a straight

line with the lines of a triangular lattice�

Figure ���� The construction of admissible symbolic sequences for the crossings in

�gure ��� by a Farey tree�



���� WEDGE BILLIARD 	��

Figure ���� Two independent balls bouncing and crossing each others path� The

symbolic description of this orbit is � � � �������������� � � ��

To apply this for the billiard examples we have to translate the symbols for

vertical and horizontal lines into the symbols in the di�erent billiards�

��� Wedge billiard

In the limit where the angle in the wedge billiard goes to ��� the system is integrable

and corresponds to a simple rotation� The corresponding system with two bouncing

balls is when the two masses are equal m� � m�� In this two ball system it is easy to

see why a simple rotation is the correct dynamics of the system� An elastic collision

between two point particles with equal masses is identical to the system where the

two particles pass through each other without any interaction� We then have a

crossing of balls instead o� bouncing between two balls� If the two balls bounce in

the �oor independent of each other only the initial position and velocity matters

and there are two independent� never changing bouncing patterns� In �gure ��� two

independent bouncing balls are drawn� One ball bounces with a time T� between

each bounce and the second ball with time T� � T�� The two times correspond to

the vertical and horizontal distances in �gure ��� and determine the slope of the

line� We can associate the crossing of the straight line with a vertical lattice line

with the motion where the lower most ball is bouncing twice o� the �oor without

crossing ��bouncing
 with the other ball� A symbol � in the lattice description

corresponds to a symbol � in the two ball symbols� The crossing of the straight

line with a horizontal line can be related to the sequence from one ball bouncing o�
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the �oor� the two balls cross and the the second ball bounces o� the �oor� then the

balls cross again and the �rst ball bounces o� the �oor� This symbol � in the lattice

symbols corresponds to the symbolic string �� in the two ball symbols� Figure ���

shows that the two ball symbols always appears in pairs�

Interpreted this way the symbols � and � for crossing vertical and horizontal

lines are identical to the symbols � and �� for the two ball system and therefore

also the wedge billiard� The strings in �gure ��� can be translated into the wedge

symbols giving the symbols st

��
�����������

���������
����������������

�������
�������������������

������������
�����������������

�����
������������������

�������������
�������������������

��������
�������������������

�����������
��������������

���
�������������

����������
�����������������

�������
������������������

�����������
���������������

����
�������������

���������
��������������

�����
�����������

������
�������

�

����


This Farey tree is the description of admissible orbits in the integrable wedge in

terms of symbolic dynamics� In the well ordered symbols we have to take care of

the �ipping process but this is simple since all symbol � which �ip the ordering

always come in an even number so the only di�erence from the symbols above is
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that every second symbol � is turned into a symbol �� This gives the symbols wt
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�����������

���������
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���������
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and the symmetric ones with � and � interchanged�

We can show that in the symbol plane this gives as the limit of the pruning

front the straight line

� �
�

	
� �

�

	
����


Let a line go through one of the crossings between the horizontal and the vertical

lattice lines which corresponds to a singular orbit� The line will cross the vertical

and the horizontal lattice lines exactly the same way in both directions along the line

from the crossing point� The pruning front is given by the symbolic description of all

orbits having a double collision between the two balls and the �oor simultaneously

an this is the point where the vertical and horizontal lattice lines crosses� All points

on the pruning front then has the form

� � � l�l�l�l
�

�
l�l�l�l� � � �

The symbol string l�
�
l� describes the crossing of the line with the lattice cross and

the string is either �� or ��� If we choose l�
�
l� � �� we get the two ball symbol string

describing the line

� � � s�s�s����s�s�s�

and the well ordered symbols

� � � w�w�w����w�w�w�
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Figure ���� The pruning front for the

wedge billiard in the integrable case � �

����

Figure ���� The symbolic values for a

number of orbits in the wedge billiard in

the integrable case � � ����

Figure ���� The pruning front for the

wedge billiard for � � �������

Figure ���� The pruning front for the

wedge billiard for � � ������
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which gives the symbolic values

� � ����w�w�w� � � �

� � ���w�w�w� � � �

From these equations we get ����
� The other choice of l�
�
l� gives the symmetric line

� � ��	 � ��	�

Figure ��� shows the numerical pruning front obtained for the wedge billiard at

��� and �gure ��� shows the symbolic values of a number of di�erent �not chaotic


orbits in this wedge� Parameters close to ��� should give pruning fronts close to

this straight line and in �gures ��� and ��� we �nd for wedge angles � � ������ and

� � ����� many points on the pruning front are close to the line � � ��	 � ��	 but

some points are far above this line and gives a staircase like curve with the line as

an envelope under the points�

��� ��disk

When the four disks are so close that the area of the domain where the particle

bounces goes to � the walls of the domain approaches straight lines and the system

becomes a particle in a square box� A particle bouncing inside a square is equiva�

lent to a particle moving freely on a square lattice and again we get the symbolic

description from the Farey tree construction� Here the translation from the rotation

to the symbol plane is slightly more complicated because the alphabet in the ��disk

case is a four letter alphabet or a three letter alphabet�

We may choose to identify the four disk symbols st � f�� 	� �� �g with the lattice

such that the symbols � and � correspond to horizontal lattice lines and the sym�

bols 	 and � correspond to vertical lattice lines� Every second lattice line is then

� and � �or 	 and �
 and every crossing of one of these lines gives these symbols

alternating� We also immediately see that a clockwise bounce followed by a num�

ber of bounces between opposite disks gives a clockwise or anticlockwise bounce

depending of whether the number of bounces was even or odd�

We can use the Farey tree in �gure ��� to construct the symbolic strings for this

system� As the well ordered symbols are of grater interest than the symbols st we

only give the symbols wt� Since the system is symmetric in the vertical and the
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Figure ���� The symbolic values for a

number of orbits in the overlapping ��

disk billiard close to the integrable limit

with parameter r � ����� and the line

� � ���� ����

Figure ����� The symbolic values for

a number of orbits in the overlapping

��disk billiard with distance r � ���

between the disk centers and the line

� � ���� ����

Figure ����� Corner pruning front for

the overlapping four disk billiard close

to the integrable limit with parameter

r � ������

Figure ���	� Corner pruning front for

the overlapping four disk billiard with dis�

tance r � ��� between the disk centers�
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horizontal direction we only have to use half the Farey tree to get wt

	�
�	�	�	�	�

�	�	�	�
�	�	��	�	�	�

�	�	�
�	��	�	��	�	�

�	��	�	�
�	��	��	�	�

�	�
��	��	��	�

��	��	�
��	���	��	�

��	�
���	���	�

���	�
����	�

�

����


In addition to these we have the strings where symbols � and 	 are interchanged�

The pruning front from the tangent orbits only becomes a point in these limit as

there is no curvature left� As for the wedge the limit of the pruning front originating

from the orbits starting in the corners is a straight line� Since the construction of

well ordered symbols are di�erent and have base � symbol values wee get a di�erent

line� Following an argument as above we �nd the line

� �
�

�
� �

�
� ����


to be the limit of the pruning front�

Figures ��� and ���� show the symbolic values of all bounces for chaotic orbits

close to the limit r �
p
	 � �����	 � � �� For the parameter r � ����� there is hardly

any point above this line while for r � ��� there is some points above it� The

�gures ���� and ���	 show the corner pruning fronts for the same parameter values�

Close to the limiting parameter value the points of the pruning front are almost all

very close to the line ����
�

��� ��disk

In the limit when the three disks are so close that the domain turns into a trian�

gle the orbit is equivalent to the straight line in a triangular lattice as showed in

�gure ��	� The symbolic description of this can be found from the Farey tree in

the following way� The line is always crossing in an angle between ��� and �	��

to one of the three directions in the lattice� Every second crossing between the

line and the lattice lines is a lattice line which has this direction� The non trivial

dynamics is only the crossing between the line and the lattice lines in the other two

directions� If we call the crossing of the line with a lattice line in one direction �

and the crossing with a lattice line in the other direction � and skip the crossings
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with the trivial lattice lines� then the Farey tree in �gure ��� gives the grammar�

There is no mathematical work on this triangular lattice proving that this is the

correct procedure 
��	� but as it turns out to be very similar to the square lattice

we state the result as a conjecture�

In �gure ���� the triangular lattice is drawn and the labeling lt is given as �

for horizontal lines� � for lines going right�up and 	 for lines going right�down� In

the lattice we have drawn a line going from left�down to right�up� This line crosses

the lattice lines no 	 every second time it crosses a lattice line and analogous to

the square lattice we can construct the Farey tree with these lattice line symbols lt

assuming every second crossing is 	� This gives the following tree for lt

	�
	�	�	�	�	�

	�	�	�	�
	�	�	�	�	�	�	�

	�	�	�
	�	�	�	�	�	�	�	�

	�	�	�	�	�
	�	�	�	�	�	�	�

	�	�
	�	�	�	�	�	�	�

	�	�	�	�	�
	�	�	�	�	�	�	�	�

	�	�	�
	�	�	�	�	�	�	�

	�	�	�	�
	�	�	�	�	�

	�

����


The orbit in �gure ���� has the labeling in symbols lt � � � 	�	�	�	�	� � � � and we

�nd that this is a substring of the string 	�	�	�	�	�	�	�	� in the Farey tree ����
�

The three symbols st in the ��disk system are not identical with the three direc�

tions of the lattice lines� but the disk symbols can be identi�ed with the parts of the

lattice lines as showed in �gure ����� This unfolding of the domain to the lattice

gives the new symbols and we obtain a Farey tree for the symbol st which is rather

awkward to use because the symbols are not repeated the same way� Assuming we

�rst cross the line with symbol 	 as in the �gures we obtain the tree for st

	�
	���	��	��

	���	��	
	���	���	��	��

	���	�
	���	���	���	��	

	���	���	�
	���	���	���	�

	���
	��	�	�	�	�	�	

	��	�	�	�	
	��	�	�	��	���	�

	��	�	
	��	��	���	���

	��	��	�
	��	��	���

	�

����


It is simpler to directly work with the well ordered symbols wt� In this alphabet
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Figure ����� The triangular lattice with

a symbol lt for each direction and a line

giving the sequence � � � 	�	�	�	�	� � � ��

Figure ����� The triangular lattice with

the symbols st for the ��disk system

folded out in the lattice�

we obtain the tree for symbols wt
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����������
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��������������
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We can get the limit of the corner pruning front by observing the well ordered

symbols wt for a line going through a lattice cross� We choose the symbols for going

through the cross as three symbols for crossing close to the cross and obtain

� � ��w�w�w� � � �

� � ������� w�
��� w�
��� w�
 � � �

which gives the line

� �
�

�
� �

�
� ����


In �gure ���� this line is plotted together with a number of bounces in the ��

disk billiard for the center�center distance r � ����	� which is close to the critical
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Figure ����� The symbolic values for a

number of orbits in the overlapping ��

disk billiard close to the integrable limit

with parameter r � ����	� and the line

� � ���� ����

Figure ����� The symbolic values for

a number of orbits in the overlapping

��disk billiard with distance r � �����

between the disk centers and the line

� � ���� ����

Figure ����� Corner pruning front for

the overlapping ��disk billiard close to

the integrable limit with parameter r �

����	��

Figure ����� Corner pruning front for the

overlapping ��disk billiard with distance

r � ����� between the disk centers�
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distance r �
p
� � ����	�� � � �� In this numerical experiment we do not get any

points above the line� A slightly larger parameter value r � ����� gives �gure ����

where a few of the points are above the line� The corner pruning fronts for these two

parameter values are drawn in �gures ���� and ����� The pruning front becomes

points on the line ����
 in the limit r �p
��

��� Approaching the integrable limit from the

mixed chaos�order side

The limit of orbits organized in a Farey tree gives a signature which is a pruning

front that becomes a straight line� In a phase space plot of a chaotic orbit there is

no clear signature of this organization�

We can however in these cases approach the integrable limit tuning the param�

eter from the opposite side of the critical parameter value� We then have a system

with mixed chaos and stable islands� This is the dynamics for the wedge billiard

� the two ball system
 for � � ��� �m� � m�
 and for the disc systems where the

walls are slightly convex instead of concave� We can to study a disc system as a

particle bouncing inside the convex domain limited by the focusing side of the disk

walls for the ��disk system with center�center distance less than
p
��

The dynamics we observe in the wedge billiard and in the � disk system is

that all stable islands close to the limit of the critical parameter value are islands

surrounding each periodic orbit from the Farey tree construction� Approaching the

limit� the islands become squeezed out into horizontal lines in the phase space� In

the integrable system the orbits are degenerated and are lines instead of points in

the phase space�

Pictures of the island structure for the wedge billiard was drawn by Lehtihet

and Miller 
���� and discussed in several articles 
���� ����� In �gure ��� b
 we �nd

that in the limit � � ��� there is a hierarchy of islands with an island surrounding

each periodic orbit from the Farey tree ����
� For a � �nitely smaller than ���� the

smallest islands have disappeared in a chaotic sea� In smooth dynamical systems

like the standard map 
����� the KAM theory gives that quasiperiodic orbits with

irrational winding number survive a perturbation depending on how irrational they

are in a Farey tree sense� The Last surviving KAM tory has the golden mean as

winding number� In these billiard systems it seems that the creation of chaotic

regions also follows a Farey organization but here we do not have the unstable

periodic orbit which give the chaotic regions and the mechanism of creating chaos

is di�erent� It seems that the stable periodic orbits furthest down in the Farey
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tree disappear and create a chaotic region �rst� This imply that the orbits with

most irrational winding numbers �rst disappear in the chaotic sea� This is in a way

opposite to the KAM�scenario� The numerics indicate that the transition to chaos

is di�erent in these discontinuous systems than in the smooth �ows and maps�

As the value of the parameter � in the wedge billiard decreases the system

�forgets� the Farey tree organization� and in the limit of a very narrow wedge

� � � the dynamics is dominated by one stable orbit�

We may compare the wedge billiard scenario with a disk system to examine

how general the wedge billiard transition from integrability is� We know that the

dispersive � disc billiard is completely chaotic and in the integrable limit it has the

orbits organized in a Farey tree� The phase space picture of a number of di�erent

orbits in the focusing ��disk system is plotted in �gure ���� for di�erent parameter

values from close to the triangle shape� r �
p
�� to almost a circle� r � �� In

�gure ���� a
 there are islands which are very narrow and hard to distinguish but

in �gure ���� b
 it is possible to distinguish a number of islands which surrounds

the shortest of the periodic orbits from the Farey tree� When r decreases as for

�gure ���� c
 we �nd that only the largest of the islands in �gure ���� b
 remain� As

the value of r decreases further we �nd that the picture changes into new structures

and only the stable period � orbit s�s�s� � �	� survive to r � � and is here

dominating the dynamics� This dynamics is qualitatively similar to the wedge

for � � �� where the orbit bouncing back and fort between the two tilted walls

dominates and to the two ball system where the dominating orbit for m� �� m� is

when the down�most ball bounces o� the �oor and bounces in the upper most ball

every time�

We have not proven that the islands in �gure ���� are surrounding the periodic

orbits of the Farey tree� but this seems to be a reasonable conjecture from the

numerical pictures� The di�erent examples suggest that there is a number of systems

that have this kind of transition to chaos� and this may be generic for non�smooth

billiards�
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Figure ����� The phase space plot of orbits in the mixed stable�chaos � disk system�

a	 r � ����
 b	 r � ���	
 c	 r � ���
 d	 r � ���
 e	 r � ���
 f	 r � ���
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Chapter �

Bifurcation in billiards

Chapter � described bifurcations and forbidden orbits in billiard systems by intro�

ducing a pruning front� An orbit was forbidden if its symbolic value was in the

forbidden region and the orbit bifurcated if its symbolic value was on the pruning

front� We will in this chapter investigate the bifurcation process in billiard systems�

the structure in the phase space and how the bifurcations are organized in families�

This will enable us to connect bifurcations in a hard billiard system with the bifur�

cations in a soft Hamiltonian system even if it is di�cult to obtain a pruning front

for a smooth potential�

The bifurcations in billiard systems have received very little attention in the

literature� It has even been claimed that there are no bifurcation structure in

billiards� �� � � the E�� plots �phase space as function of parameter	 for this problem

�anisotropic Kepler	 has no interesting structure and shows no branching� The same

is true of the various 
Billiards� problems�� �
�	� I disagrees with the statement on

the billiard systems� The lack of interest in bifurcations in billiards should not be

because these billiards are too arti�cial� because the billiards are very popular to

use in e�g� quantum chaos calculations� It may be that the problems with symbolic

dynamics have discouraged studies of bifurcations in billiards� but that is unlikely

since bifurcations in the more complicated smooth potentials are much studied�

Anyway I �nd these problems an interesting and a not too complicated exercise�

��� Tent map revisited

The best way to understand bifurcations in billiards is �rst to study the one di�

mensional tent map� In chapter � we made some remarks on bifurcations in the

tent map� In the one parameter tent map a family of orbits is born at one critical

parameter value� In the one dimensional phase space x the orbit at the bifurcation


��
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Figure ���� Bifurcation of families of periodic orbits in the tent map� a� �� b� ���� c�

����� d� �������

has one point at xc � ��
 and moves away as the parameter a increases� Some

examples of bifurcating orbits are given in �gure ���� We de�ne the bifurcation

family of orbits to be the period doubling family� This is all orbits of the form

S��� ��

S�

S�S��� ��

S�S��� ��S�S�

S�S��� ��S�S�S�S��� ��S�S��� ��
���

�����

with S � s�s�s� � � � sn�� and si � f�� �g� �i � f�� �g� the number of symbol ��s in

S� is odd� S� can not be written as S ���� ��S �� and �nally S� has to be the cyclic

permutation giving �max� This corresponds to all harmonics of an orbit in the MSS

terminology ����	�

With this de�nition is it only the critical parameter rc � � in eq� ����� that gives

a bifurcation of only one family� This is the family of the �xed point � where the
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Figure ��
� The position of one point of the orbits �
���
� �
�����
 and �
����


as a function of the parameter �r close to the bifurcation in the non�symmetric � disk

system�

string S consists of no symbols �here S��� �� � � does not bifurcate together with

the family�� All the other critical parameter values give the bifurcation of several

families� The topological entropy increases linearly with the parameter and the

map is called not full since not all kneading sequences can be obtained� In a more

general map with a none�smooth critical point and no stable orbits� the di�erent

families may split up and bifurcate at di�erent parameter values� while the di�erent

orbits belonging to the same family ����� always bifurcate at the same parameter

value� The di�erent families bifurcate in the MSS order but with critical parameter

values where many orbits are created simultaneously�

In the tent map we �nd that the period � orbit family S� � ��� bifurcates

together with all other families with ������ � ��S ��� � ��������� � ��������

which is all orbits in the resonance of the logistic map� In general the orbits S �

which bifurcate together with the primary family S� have ��S��� ��� � ��S �� �

��S�S��� ���

The shortest orbits in the families �� ���� ���� and ������ are drawn in �gure ���

as a function of the parameter a�

��� Dispersing billiards

The bifurcation of a whole family of orbits at one parameter value is also happen�

ing in the billiards� but an important di�erence is that the billiards have a one
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Figure ���� The orbits� a� and b� �
���
� c� �
�����
 and d� �
����
 for the param�

eter values� a�� c� and d� �r � 
�� and b� �rc � ��
�
 � � ��

dimensional family of critical orbits while the tent map only has one critical orbit�

����� The bifurcation family

Figure ��
 shows a point in some orbits as a function of the parameter �r in a � disk

system with the center�center distances d�� � d�� � 
��� d�� � �r� and with radius

equal to �� These orbits are the orbits in the family

� � � ���s��
�
s����s�
�
s���� � � � ���
�

with si either empty or the symbol �� An equivalent de�nition of this family is that

it consists of the orbits constructed by using the alphabet

�si � f���� ����� 
�
� 
�
�g �����

We see that this family has more members than the period doubling family of the

one dimensional map�

The reason why this is the correct symbolic description of the family is un�

derstood by the description of the singular orbits in �gure ���� We know that an

orbit in a dispersing billiard without corners bifurcates� that is changes between

admissible and not admissible� because either
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�� a free �ight of the particle becomes tangential to the border

or


� a bounce o� the wall has the outgoing angle � � ��
�

In the con�guration space at the bifurcation parameter rc� these two cases look

the same� From the �gure ��� b� it is not possible to tell if the straight line between

disk 
 and � is case �� or 
�� The parameter value rc therefore has to be the

bifurcation value of both the orbit where this straight line does not bounce and

have no symbol� and for the orbit where it bounces and has the symbol �� The

orbit is in�nite in future and in past and each time it passes the tangent point

it may have a bounce or not� The descriptions ���
� and ����� are exactly the

descriptions of these orbits using symbols�

If we study an orbit which is tangent at one point but never returns to this point

tangentially� there are only two orbits that bifurcate together for this parameter

value� This is the case for hetroclinic orbits�

The argument for why the orbits bifurcate at the same parameter value does

not depend on the details of how the billiard changes with a parameter� The only

necessary knowledge is which straight line that becomes tangential to the wall� or

which angle that becomes ��
� Figure ��� shows the same orbits in a ��disk system

as a function of a parameter �r when we choose di�erent radiuses of the disks

radius�disk �� � 
� radius�disk 
� � ��
� radius�disk �� � �

with the center�center distances

d�� � d�� � d�� � �r

The positions and the parameter change from the previous example but the same

orbits ���
� belong to the bifurcation family� The ordering along �r for when the

di�erent families bifurcate may however change� This ordering is not �xed here as

it is for the unimodal map �the MSS ordering��

An other example of a dispersing billiard is the symmetric � disk system and in

�gure ��� the position of one bounce of some long orbits is drawn as a function of

the parameter r� The orbits are drawn in �gure ��� and this family of orbits are

described by the string

� � � �s����
�
�t���t��
��

�s��s���
�
�t��t��
��

�s� � � � �����

with si either 
 or no symbol� and ti either � or no symbol� Because of the symmetry

of this family there is a bifurcation two places in the orbit simultaneously� The

critical parameter value is rc � 
����
 � � ��

We will return to this example later when we discuss the smooth potentials�
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Figure ���� Bifurcation of the orbit �
���
 and its family in a not symmetric ��disk

system� The position of the bounce on disk � as a function of �r�

Figure ���� Bifurcation of the orbit ���
����
��� and its family in the ��disk system�

The position of the bounce on disk 	 as a function of r�
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Figure ���� The orbits a� ���
����
���� b� �
��
������
���
� c� ���
�����
���
 and

d� ���
������
��� in the � disk system for r � 
���

����� The parameter space

In the tent map each bifurcating orbit has one point equal to the critical point xc �

��
� In the dispersing billiards the critical points are a function of one parameter

x which is the position of the tangent bounce� We call the orbit tangential to the

border at x for xc�x� if this orbit is in the non�wandering set of the system� If the

dispersing billiard is closed then xc�x� is continuous in the phase space� In an open

billiard xc�x� is a point set� possibly a Cantor set� or it is empty�

The di�erent families bifurcate at di�erent positions on xc�x� and if we choose

two di�erent ways to parameterize the billiard with two parameters r� and r� then

the di�erent families with di�erent xc�x� are not necessarily ordered the same way

in contrast to the unimodal map� The only ordering between the families follows

from the requirement that the pruning front is monotone�

The number of parameters necessary for describing all possible ways the system

may bifurcate is in�nite� We can deform a small part of the wall without destroying

the dispersive properties� This will change the orbits that bounce in this part of

the wall but not the other orbits� By making this deformation we can change the

bifurcation point of one orbit without changing the bifurcation point of another�
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Figure ���� The angle of a bounce in the orbits ������ and ��
��
 as a function of a

for the stadium billiard�

These di�erent local deformations may be considered as the di�erent parameters

in the system� Another point of view on the parameters is to understand each

point of the pruning front as one parameter� This also gives an in�nite number of

parameters equivalent to the discussion above� In the folding maps of the H enon

type the pruning front has large steps� and we found a natural hierarchic structure

of the in�nite parameter space which gave a good way of describing the bifurcations

of the map� We have not been able to �nd a similar ordering into more and less

important parameters for the billiards because the pruning front does not have any

large steps but is rather smooth�

��� Stadium billiard

The focusing stadium billiard also has the same kind of singular bifurcations of

families as the dispersing billiards� Figure ��
� shows some orbits for di�erent

parameter values� The outgoing angle � of one bounce of the orbits as a function of

the half length of the straight line� a� is plotted in �gure ���� The structure of the

singular bifurcations is similar to the dispersive billiards where all orbits belonging

to one bifurcation family bifurcate at one parameter point� The family for the

example in �gures ��
� and ��� is given by the symbol strings in symbols sa

� � � c��d�e��f�c��d�e��f� � � � �����
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with

ci � f�� �g� di � f�� 
g� ei � f
� �g and fi � f�� �g�

An orbit in the stadium billiard becomes not admissible because either

�� The point where the particle bounces in the semi�circle moves to the end of

the semi�circle

or


� The point where the particle bounces in the straight line moves to the end of

the straight line�

Assume an orbit bounces exactly o� the singular point on the border where the

straight line and the semi�circle join� In the con�guration space is it not possible to

decide whether this orbit is bouncing in the semi�circle or in the straight line� The

symbol of this bounce is then given by either the semi�circle symbol or the symbol

for the straight line� If the orbit is periodic then the orbit bounces o� the singular

point every n�th bounce and therefore a whole family bifurcates at this parameter

value� The family of orbits is described by an alphabet

si � S� �����

where S is a �xed symbol string and � is either a semi�circle or a straight line

symbol� If there are symmetries of the orbit such that it bounces several times in a

singular point before it closes� then the alphabet may be more complicated as the

example above shows�

��� Corner bifurcations

We have a corner bifurcation in the wedge billiard where the singularity is the tip

between the planes and in the corners of the overlapping disk systems� An orbit

becomes illegal because a bouncing point on the wall moves from bouncing legally

outside the corner until until it hits the corner at the bifurcation parameter� The

only other orbit with a point that hits the corner for the same parameter value is

the orbit which bounces o� the other wall in a symmetric system� Because of the

symmetry this is the orbit that is a mirror image of the �rst orbit or it is the same

orbit if this orbit also is symmetric� In a fundamental domain is it only one orbit

bifurcating� The bifurcation family is only the trivial family consisting of the orbit�

its re�ection and the time reversed orbit�

One exception is the orbits bifurcating for 	 � ��� in the wedge billiard� As

observed by Smilansky ����� ���	 there are several orbits bifurcation simultaneously
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for this parameter value� One may expect this for some special parameter values

but generically it does not seem to be true� Typically will the size of the family

depend crucially on the smoothness of the singularity in the system�



Part IV

Hamiltonian systems

���





Chapter ��

Smooth Hamiltonian systems

In this chapter we will discuss the di�cult problem of analyzing a smooth Hamilto�

nian system� It is not proven for any nontrivial example that there exist a partition

of the non�wandering set� and there is no theory analog to the MSS theory which

explains the ordering of di�erent bifurcations in these systems� We will show some

examples where we can understand bifurcations better than before by using the

results we have obtained on folding maps and on billiard systems� These examples

support the conjectures and speculations we present below concerning the smooth

Hamiltonian systems and we suggest future investigations of these problems�

In an area preserving smooth system� e�g� a Hamiltonian system� there is a

non�wandering set of stable and unstable orbits� The major di�erence from the

smooth dissipative system is that the stable orbits are not attracting neighboring

orbits but are surrounded by KAM tori 	
���� The determinant of the Jacobian of a

dissipative system is less than 
 while for the area preserving map the determinant

is 
�

From a two�dimensional Hamiltonian we can 
nd the Jacobian for the canonical

variables �I� �� 	
��� �also called the monodromy matrix� and since the determinant

is 
 a period n orbit is hyperbolic �unstable� if

jTrJj � � �
��
�

and the orbit is elliptic �stable� if

jTrJj � � �
����

If jTrJj � � we have a bifurcation point� If the periodic orbit is elliptic then the

eigenvalues are

���� � e�i� �
����

� � arccos
�
TrJ

�

�
�
����

���
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and there is a bifurcation of a periodic orbit for all rational values of ���	 	
��� �� ����

The typical bifurcation for ���	 � p�q is the creation of two period q � n orbits in

the Poincar�e map where one orbit is elliptic and one is hyperbolic and the orbits

have q points in a chain surrounding each point of the period n orbit in the Poincar�e

plane� If q � � the orbits may have a di�erent bifurcation depending on the system�

The general classi
cation of bifurcations is given by Meyer 	
��� and is used to show

general scaling behavior of bifurcations 	����

This general theory does not predict neither the shape of the bifurcated orbit

in the con
guration space nor how many times a given periodic orbit has the same

value of � scanning a parameter line�

���� Hamiltonian H�enon maps

The once folding maps are for some parameter values area preserving maps and

could in principle be constructed as a Poincar�e map of a Hamiltonian �ow� The

H�enon map has det J � �b and is area preserving for jbj � 
 and also the Lozi map

is area preserving for jbj � 
�

In chapter � we found that some cusp bifurcations have to be exactly at b � 


or b � �
 because of symmetries in the symbol strings describing the orbits� In

a �n�dimensional symbolic parameter space the area preserving maps seem not to

correspond to a simple line or surface but to points characterized by a special

symmetry in the strings giving the values 
�� 
�� 
��� 
��� 
��� 
��� � � �� Similarly in

the pruning front language it is not obvious which pruning fronts that give an

area preserving map� but the points ��� 
� on the pruning front must have special

symmetries in the symbol strings�

That we at all can describe bifurcations e�g� the period � cusp f
�

� 
���� 
��
g

in the symbolic parameter space �
��� 
��� 
��� 
��� indicates that the non�wandering

set at jbj � 
 can be described by the binary symbolic dynamics� However conjec�

ture 
 which gave a continuous partition curve of the H�enon map in the �xt� xt���

space assumed that the unstable manifold is not dense in �xt� xt��� which is not

necessarily true for jbj � 
� When there is a bifurcation of a turning points the

partition curve may break up into not connected parts� A not connected partition

curve may be acceptable if it goes through the unstable manifold in a unique way�

but the partition of the area conserving H�enon map is not understood and further

investigations is needed�
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���� The �x�y��
�a potential

One group of smooth Hamiltonians which seem to be promising candidates for

a good symbolic description is the two�dimensional potentials V �x� y� that have

a shape which can be compared with a billiard system� We can consider these

systems to be created by starting with a billiard potential which is � in the domain

accessible to the particle and �� in the forbidden regions and then smoothen this

hard potential to a soft potential�

One example of this is the potential

V �x� y� �
�
x�y�

� �

a �
����

which was investigated by Dahlqvist and Russberg 	��� ��� and other authors� In

the limit a � � this potential becomes the hyperbola billiard ���
�� which we in

section ��� found was described by a slightly pruned trinary alphabet� Dahlqvist

and Russberg adiabatically followed periodic orbits starting at the hyperbola billiard

a � � and letting the parameter a increase slowly� They found that an unstable

periodic orbit in the hyperbola billiard smoothly changes and is hyperbolic when

a increases� and some orbits have a parameter interval �a window� where the orbit

is elliptic� and then the orbit disappears in a bifurcation and does not exist for

larger values of a� Other orbits bifurcate and disappear without becoming stable�

They described a number of bifurcations and found that the symbolic description of

the orbits merging into each other is similar� They conjectured 	��� that all orbits

pruned during one bifurcation cascade� have a symbolic description consisting of

combinations of two symbolic strings�

Figure 
��
 shows Dahlqvist and Russbergs calculation of TrJ as a function of a

for some periodic orbits� The symbols they use are slightly di�erent than those used

here� In 
gure 
��� the same bifurcations are drawn with dashed lines indicating

hyperbolic orbits and solid lines indicating elliptic orbits� For clarity the parameter

axis is not at correct scale and the vertical axis is a sketch of a possible point in a

Poincar�e map�

Dahlqvist and Russberg showed that the orbit S � 
������������� is stable in a

window that includes the parameter value a � 
� and therefore that an earlier con�

jecture claiming that the potential V � x�y� is completely chaotic was wrong 	����

We are now interested in the symbolic description of the orbits bifurcating in

one bifurcation scenario� Dahlqvist and Russbergs conjecture is that all orbits in

the cascade in 
gure 
��� a� are described by the symbol strings of the form

� � � �t�����t����t����t��� � � � �
����
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Figure 
��
� The TrJ as a function of a for some periodic orbits� From �����

with ti either symbol � or no symbol� and that the orbits in 
gure 
��� b� are

described by the strings

� � � 
s������
�t���t�����

�s�
s�����
�t��t�����

�s� � � � �
����

with si either � or no symbol� and ti either symbol � or no symbol�

We now compare these bifurcations to the bifurcation families for the billiard

systems in chapter � and we 
nd that the strings describing a billiard family of

orbits are the same strings that give the orbits bifurcating in the bifurcation trees

of the potential �
����� The � disk system with rc � ��
����
 � � �� 
gure 
���� is

the bifurcation point of the orbits with symbolic description �
���� and for rc �

����
� � � � there is a singular bifurcation of the orbits �
����� 
gures ��� and ����

We now state a general conjecture of bifurcations of �billiard like� smooth po�

tentials�

Conjecture � In a billiard like smooth Hamiltonian system the orbits bifurcating

in one bifurcation cascade are the orbits of one family bifurcating at a singular

parameter rc for a corresponding billiard system�

We can also state an other interesting conjecture�

Conjecture � The symbolic description of the bifurcation family of the billiard sys�

tem predicts the minimum number of times a periodic orbit has to bifurcate with the

same complex eigenvalues ���� � e�i� for any one�dimensional parameter path from

the complete horseshoe repellor to the parameter value where the orbit disappear�
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Figure 
���� A sketch of the bifurcation trees of the orbits in �gure �	��� Solid lines

are elliptic orbits while dashed lines are hyperbolic orbits�
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One major di�culty in these conjectures is that we have not precisely de
ned

a �billiard like� Hamiltonian and which billiard one associates with a speci
c po�

tential� A guiding line may be that a smooth slope is represented as a hard billiard

wall� convex and concave walls in the billiard are similarly shaped in the smooth

potential and the symmetries in con
guration space have to be the same�

The potential �
���� has four hills which we identify with the � disks in the ��

disk system� We could have studied the hyperbola billiard ���
�� and changed the

hard hyperbola walls to 
nd the bifurcations� but the bifurcation families would be

the same in these two billiards and the ��disk system is more convenient� In some

cases the ��disk system may give problems because it has the corner pruning which

is not present in the potential �
����� The singular bifurcation of a billiard is when

the orbit is tangent to the disk� In the smooth potential there is no sharp wall to be

tangent to� but in Dahlqvist and Russbergs plot of orbits in the con
guration space�


gure 
���� we 
nd that orbits that are going to bifurcate together� move closer such

that the curves corresponding to the tangent line in 
gure 
��� straighten out and

move closer to each other� We then get a kind of tangent curve o� a soft wall� This

kind of curve is what we have to identify as a singular orbit or a turning point in the

smooth potential� The orbit is tangential to a constant energy line but the position

is not given as simple as for the billiard system� To 
nd this orbit in general is an

open question�

We can illustrate the conjectures � and � by the two examples in 
gure 
���� In


gure 
��� a� the orbit ���� ���� becomes elliptic in a bifurcation where the orbit

��� ���� disappears and then the elliptic orbit changes once through each winding

numbers � and then the orbit disappears together with the unstable orbit ��� ����

The bifurcation where the elliptic orbit becomes hyperbolic is a symmetry breaking

bifurcation which in some Poincar�e map is a bifurcation from a 
xed point to a

period two orbit� In the ��disk system all orbits in the family �
���� bifurcate for

rc � ��
����
 � � � where one line is tangent to a disk� 
gure 
����

The family � � � 
s�����
�t��t�����

�s� � � � in the ��disk system� 
gure ���� has one

more tangent line do the disks than the � � � �t����t��� � � � family� If the symmet�

ric orbit 
��������������� bifurcates in a similar way as the orbit ���� ���� then


��������������� has to bifurcate two times to bifurcate together with the di�er�

ent symmetry broken orbits� For these two examples we 
nd that the number of

tangent lines of the billiard orbit at rc is equal to the number of stable windows of

the orbit� We may conjecture that this is a general feature such that the number of

tangent lines in the singular bifurcation gives the number of times the short orbit

has to go through a stable window�
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Figure 
���� The orbits ��� ��� and ���� ���� in potential 
�	��� for two di
erent

parameter values� From �����

Figure 
���� The orbit ��� ��� in the � disk system for rc � ��
����
 � � ��
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In 
gure 
��� a� we also 
nd that orbits bifurcating in the stable window at

rational values of ���	 are described by the symbol string �
����� The length of

the symbol string gives approximately the length of the orbit in the potential�

The non�periodic symbol strings from �
���� and �
���� may be orbits from the

accumulation point of n�tuplings of stable periodic orbits or from quasiperiodic

orbits created between the creation of periodic orbits at irrational values of ���	

In the two examples shown here the shortest critical billiard orbit is tangent to

the wall � or � times� If the orbit is tangent only one time we expect the bifurcation

where the shortest elliptic orbit turns hyperbolic to be a period doubling bifurcation

instead of the symmetry breaking bifurcation�

���� Parabola shaped potentials

We will sketch here how an investigation of bifurcations in a smooth potential can

be interpreted in terms of symbolic dynamics of a corresponding billiard�

������ NELSON

Baranger and Davies 	��� have carefully studied bifurcations in a potential

V �x� y� �

�
y �

x�

�

��

�
x�

��
�
����

which they called NELSON� and other more complicated potentials 	
�� They stud�

ied the bifurcations of periodic orbits as a function of the energy for this potential�

Figure 
��� shows equipotential contours of potential �
����� This system without

any other parameters does not have a limit of a hard billiard system and Baranger

and Davies did not try to give a symbolic description of orbits but denoted them

di�erent names according to how they look and how they bifurcate� The potential

is just chosen as one typical system of a parabolic shape and it is no reason to

expect that the increasing energy � E� should be a more special parameter path

than a change of a parameter in the potential as in the �x�y����a potential�

We will now try to give the periodic orbits as a symbolic description by replacing

the soft walls with hard billiard walls and 
nd singular bifurcations which corre�

sponds to a bifurcation tree in the smooth potential� In addition to the billiard

bifurcation where the singular orbit is tangent to a dispersing wall we also 
nd it

necessary to allow two consecutive bounces in a focusing wall to merge into one

bounce�
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Figure 
���� Equipotential contours of the potential 
�	����

Baranger and Davies have chosen to plot the bifurcations in the �E� �� plane

where E is the energy and � is the length of the periodic orbit� Some of their

bifurcation diagrams are given in 
gure 
���� In these diagrams orbits are denoted

by di�erent letters and the plots of some of the periodic orbits in �x� y� are given

in 
gure 
����

We will de
ne a billiard system with a symbolic dynamics and identify the orbits

in 
gure 
��� with a symbol string� A �smiling billiard� is drawn in 
gure 
����

This is just a hand�drawn billiard which is not ergodic and the periodic orbit is also

just sketched by hand� A change of parameter is a change in the shape of the walls�

We de
ne the symbols�

s � 
 for a bounce o� the dispersing wall�

s � � for a counterclockwise bounce o� the focusing wall�

s � � for a clockwise bounce o� the focusing wall and

s � � for a normal bounce o� the focusing wall�

If the normal bounce s � � is on the symmetry line x � � we denote it ��� We

assume this is a covering �and heavily pruned� alphabet� A number of periodic

orbits of the billiard are drawn in 
gures 
��� and 
��� together with the symbol

string S and the Baranger�Davies name for the corresponding smooth orbit�

In 
gure 
��� we 
nd that when the smooth orbitA� 
��
�� changes from elliptic

to hyperbolic then the orbit q�� 
�
�
�
� is born� In our smiling billiard there exists
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Figure 
���� The bifurcation diagram �E� �� of the potential 
�	���� From �����
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Figure 
���� Some periodic orbits in the potential 
�	���� From �����
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Figure 
���� The symbols and some periodic orbits in the �smiling billiard��
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Figure 
���� Periodic orbits in the �smiling billiard��

a singular bifurcation of these two orbits where the orbits have a line tangential to

the dispersive wall� This orbit is drawn in 
gure 
���� The singular bifurcation

gives a change of symbols �� � �
� or �� � �
�� The singular bifurcation family

of orbits have the symbolic description

� � � 
�t���
�t��
�t��
�t�� � � � �
����

with ti either 
 or no symbol� One other periodic orbit in this bifurcation family

is 
��
�
� which is drawn in 
gure 
gure 
��� and which we identify with an orbit

bifurcating from q�� 
�
�
�
� in 
gure 
����

An other example of a tangent type of a singular orbit in the billiards is the

family

� � � 
�
�t���
�t��
�
�t��
�t��
� � � � �
��
��

with ti either 
 or no symbol� In 
gure 
��� the singular orbit is drawn and the

two orbits p�� 
��
��
� and p�� 
�
�
�
�
� are drawn for a di�erent parameter

values� The orbits p� and p� bifurcate together in the �E� �� plane in 
gure 
����

It seems to be necessary to make an ad� hoc� assumption of a second bifurcation

in the smiling billiard� We allow one bounce in the focusing wall close to x � � to

split into two bounces� This bifurcation implies the change of symbols � � �� or

�� ��� This is not an bifurcation that are a singular bifurcation in a billiard but in
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the region below origin in the smooth potential a path changes very smoothly and

a billiard model may not be a good approximation here� An example of a family

from this bifurcation is

� � � 
�r�
�s�
�
�r�
�s�
� � � � �
��

�

with ri either � or no symbol and with si either � or no symbol� The symbol � can

turn into � or � if the combination of ri and si gives an orbit that is not symmetric�

The two orbits p�� 
�
�
� and p�� 
��
��
� in 
gure 
��� are members of this fam�

ily� A periodic orbit may be member of both these two kind of singular bifurcations

and this gives the zig�zag structure in 
gure 
��� b� which Baranger and Davies calls

a �duet of asymmetric librations�� The orbit 
��
�
� in 
gure 
��� is a member of

the family �
���� and of the family �
��

� and is the hard version of the smooth

orbit Baranger and Davies calls the �
rst rotational bridge�� Figure 
��
� a� shows

Baranger and Davies� rotational bridge for di�erent parameter values connecting

the orbits q� and p�� Figure 
��
� b� is the billiard orbit 
��
�
� connecting the

orbits 
�
�
�
� and 
��
��
�� The symbolic description of all bifurcation families

in this zig�zag structure is

� � � �
��k��t��
�t���
��
k � � �

� � � �
��k��t��
�t���
��
k��
� � � �

� � � �
��k��r�
�s��
��
k � � �

� � � �
��k��r�
�s��
��
k
� � � �

�
��
��

with ti � f
� 	g� si � f�� 	g and ri � f�� 	g�

It seems possible to describe all bifurcations in this system in terms of a symbolic

alphabet but more investigations of the bifurcations in this and similar systems

should be done to test this conjecture� The family of orbits obtained by splitting

one bounce in the focusing wall into two bounces is made ad� hoc� to 
t the

description of the smooth system and are not directly motivated from the billiard

suggested as a hard model of the potential� From a symbolic dynamics point of

view is this a simple creation of symbol strings but from a physical point of view

we would like to have a better billiard model that also had this family of orbit as a

singular bifurcation�

������ St�rmers problem

A physical problem which has a kind of parabola shaped potential is the motion of

a charged particle in a magnetic dipole 
eld� Pioneering numerical investigations

of this problem was started by Carl St�rmer 
��� 	
��� who probably was the 
rst

to numerically calculate complicated chaotic orbits 	
��� 
����
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Figure 
��
�� a� The ��rst rotational bridge� of the potential 
�	���� From ����� b�

The orbit 
��
�
� in the �smiling billiard��
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Figure 
��

� The path of a particle in a magnetic dipole �eld� Drawing by P� Cvitanovi�c

after C� Stormer �����



����� PARABOLA SHAPED POTENTIALS ��


The problem can be reduced to a two dimensional problem with the Hamiltonian

H �



�
�p�� � p�z� �




�

�



�
�

�

r�

��

�
��
��

where �� �� z is the cyclical coordinates around the magnetic dipole and r is the

distance from the particle to the origin� For low energies the potential is near

integrable with KAM tory and it has a shape similar to a parabola but with one

path going into the dipole� For slightly larger values of the energy the problem

is a scattering problem with a structure comparable to the three�disk problem�

For large enough values of the energy the system is a complicated but not chaotic

scatter� This system is investigated in several works 	�
� ��� ��� ��� 
��� 
��� but

a careful study of the bifurcation structure has not been done� We expect that

we can describe the bifurcation diagrams for the St�rmer problem by a symbolic

dynamics obtained from a corresponding billiard system as we could do for the

potential �
����� Figure 
��

 shows one path of a scattered particle in the dipole


eld�
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Part V

Quantum Chaos and Zeta

Functions

���





���

An important application of the theory of symbolic dynamics and pruning dis�

cussed in the chapters above is the semi�classical quantization of classical chaotic

systems� A control of the geometrical structure of the classical system is essential

for controlling the convergence of the semi�classical expansions� as showed in several

examples by Cvitanovi�c 	
�� 
�� 
�� 
�
� Artuso� Aurell and Cvitanovi�c 	��� ��� �

�

Ezra� Richter� Tanner and Wintgen 	��
 and others� Gutzwiller 	���
 states� �Find�

ing the appropriate code seems the most important task when facing a dynamical

system with hard chaos��



���
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Quantum Chaos

���� Semi�classical methods

The semi�classical Bohr�Sommerfeld theory� or the �rst quantum theory described

successfully the quantum spectrum of hydrogen� However� this method failed in

describing even the ground level of the helium atom� the calculation which was

the �rst triumph triumph of the new quantum mechanics 	���
� Before the intro�

duction of the quantum mechanics of Heisenberg� Born� Jordan� Dirac� Pauli and

Schr�odinger� Einstein noticed that the Bohr�Sommerfeld quantization rested on the

construction of action�angle variables and would fail for systems which are not inte�

grable 	��
� Understanding of the geometrical phase factors Morse 	���
 and Maslov

indices 	�
�� �� ��
 came much later and the ground level of helium was calculated

with semi�classical methods by Percival and Leopold as late as ���� 	���
�

Lately there has been much interest in applying semi�classical methods to de�

termine spectra of systems whose classical dynamics is chaotic� both because semi�

classical methods are a useful tool for obtaining numerical results� and because they

o�er a classical intuitive picture of the quantum system� Fundamental work was

done by Gutzwiller around ���� 	���� ���
� with the Gutzwiller trace formula which

connects a sum over periodic orbits in a completely chaotic classical system to the

eigenvalues of the corresponding quantum mechanical system

gc�E� �
�

i�h

X
p�o�

Tp

j det�Mp � I�j �� e
i
�h
Sp�E��i��p�� ������

where gc�E� is the trace of the semi�classical Green�s function� Mp is the mon�

odromy matrix� Tp the time of the primitive periodic orbit p� Sp the classical action

along the periodic orbit and � the Maslov index for the orbit� The poles in gc�E�

give eigenvalues of the quantum system� energy levels� resonances� decay times�

correlations� etc� There are several di�erent ways to formulate this result� the

���
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zeta�function formulation from thermodynamic theory� see below� gives a slightly

di�erent formula�

The classical dynamical zeta function in thermodynamics was introduced by

Ruelle 	���� ���� ���
 and applied to chaotic quantum systems by Cvitanovi�c 	
�


and others� The classical dynamical zeta function is given by

��� �
Y
p

��� tp� � tp �
zTp�

j�pj ������

and the corresponding quantum zeta function can be written as

��� �
Y
p

��� tp� � tp �
�p
�p
e
i
�h
Sp�E��i��p��

������

where � the leading eigenvalue of the Jacobian matrix� The zeros of the zeta

functions corresponds to the semiclassical eigenvalues of the system� ������ is a

truncation of the Gutzwiller�Voros zeta function 	���� ���


Zqm �
Y
p

�Y
k	


�
��� e

i
�h
Sp�E��i��p��

j�pj����k
p

�
A ����
�

or the recently introduced �quantum Fredholm determinant� of Cvitanovi�c and

Rosenqvist 	��


Zqm �
Y
p

�Y
k	


�
��� e

i
�h
Sp�E��i��p��

j�pj����k
p

�
A
k��

������

and even more recent determinants constructed suggested by Vattay et�al� 	��

�

These di�erent formulations are expected to give the same leading eigenvalues�

but they di�ers in the domain of analyticity and the speed of convergence� Formally

the sums or products in such formulas are divergent� and only a �clever� expansion

will yield a good result� The trace formula ������ will usually give very few eigen�

values� while the quantum Fredholm determinant is claimed to have the largest

domain of analyticity� and yelds most eigenvalues 	��� ��
� The classical Fredholm

determinant is entire for an axiom A system 	���� ��� ��
� and this fact motivates

the belief that quantum Fredholm also has good analytic properties�

A fast convergence for these formulas depends on a good expansion� usually

ordered according to the length of the periodic orbits� If we have a complete bi�

nary symbolic description the expansion can be done according to the symbolic

description�

The dynamical zeta function is formally given by the sum

��� �
Y
p

��� tp� � �� X
p�p����pk

tp��p������pk

tp��p������pk � ����k��tp�tp� � � � tpk

������
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where the product and sum is over all distinct non�repeating combinations of prime

periodic orbits� If the orbits are given by a complete binary symbolic description�

we can reorder of the terms as follows�

��� � ��� t����� t
���� t�
���� t�

���� t�
����� t�


�

��� t�

����� t�
������ t�



���� t�


��

��� t�

�
���� t�

������ t�
�
����� t�
���� � � �

� �� t� � t
 � 	t�
 � t�t

� 	�t�

 � t�
t
� � t�
� � t�
t�


�	�t�


 � t�

t
� � �t���
 � t�t��
�

��t�

� � t�

t� � t�
�t
 � t�
t
t��
 � � �

������

The terms in square brackets are called the n�th curvature correction cn by Cvi�

tanovi�c 	
�
� and the �rst part of the expansion is called the fundamental part� If

all orbits with the same symbolic description have approximately the same weight

the terms in the curvatures almost cancel each other� and the convergeness of the

expansion is fast� This near cancelationcan be understood as a shadowing e�ect�

as shown numerically for ��dimensional repellors and the well�separated ��disk sys�

tem 	��
�

The weight of the term tp may be di�erent for some orbits and the simple

shadowing might fail� One example is the unimodal Farey map

T �

��
�

x���� x� if x � ���

��� x��x if x � ���
������

discussed by Artuso� Aurell and Cvitanovi�c 	��
� Here the �xed point � is marginally

stable while all other orbits are unstable� The term t
 cannot shadow any of the

other orbits but Artuso et�al� found that one can resum the unstable terms in such

a way that di�erent in�nite sums shadow each other� with the fundamental part of

the zeta�function given by a geometrical series

��� � �� �t� � t�
 � t�

 � t�


 � � � ��
�	�t��
 � t��

 � t��


 � � � ��� t��t�
 � t�

 � t�


 � � � ��

�	�t���
 � t���

 � � � ��� t��t��
 � t��

 � � � ��

�	�t�
�

 � t�
�


 � � � ��� t�
�t�

 � t�


 � � � ��

� � � �

������

this sum can be written as 	��


��� � �� �t� � 	�t�� � t��t�
� 	�t��� � t��t��
� 	�t�� � t��t�
� � � � �������

where the index of tk for k � � denotes a string ��k�� and �tklm���n is the in�nite

sum starting with tklm���n and increasing the number of ��s in the end of the symbol
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string� �tklm���n � tklm���n � tklm����n��� � tklm����n��� � � � �� We then have to evaluate

an in�nite sum to obtain the fundamental part of the zeta function� The terms

in this sum will in typical examples converge as a power law� and the sum can be

estimated from just a few terms�

This kind of orbits seems to be common in chaotic systems� In the stadium

billiard an orbit bouncing in�nitely many times successively in one semi�circle does

not exist� but the whispering gallery orbits bouncing an arbitrary number of times

do� The length of these orbits converges to a �nite length as the number of bounces

goes to in�nity� and the fundamental part of a zeta function has to include at

least one such in�nite sum� In the wedge billiard there are the orbits bouncing

n times successively on one tilted plane� denoted �n� The length �and action� of

these orbits with increasing n converges to a �nite length �action�� but the �xed

point � orbit does not exist� In smooth Hamiltonian systems with stable islands

we expect this type of orbits to be generic� The orbits inside islands are stable�

but there always exist unstable orbits wandering arbitrarily close to the outermost

KAM torus� These orbits have to be included in the zeta function expansions as

in�nite sums�

���� Markov diagrams

Given a �nite Markov diagram for the admissible orbits� one can easily read o� the

terms in the fundamental part of the zeta function� As we did when �nding the

topological entropy in section ��� we �dentify all non�self�intersecting loops and non�

intersecting combinations of these loops� We record the symbol string corresponding

to each such loop in the diagram and this is the index for each fundamental term

tk� Combinations of loops with no common node give products of terms tktl � � � tm�
with the indices corresponding to the di�erent loops� The self�intersecting loops�

combinations of these� and intersecting combinations of non�intersecting loops give

the curvature terms of the zeta�function� A few examples of getting the terms from

a diagram illustrate the procedure�

The loops in the binary graph ���� gives t
 and t�� no combination of loops� and

the zeta function is

��� � �� t
 � t� � �curvatures��

The graph in �gure ���� b� describing the repellor when the period � orbit of

the unimodal map is stable gives the loops t� and t�


��� � �� t� � t�
 � �curvatures�� �������
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An example of the zeta function from a graph describing the bimodal map is

given in �gure ����� The zeta function has the fundamental orbits

f�g� f��g� f��g� f���g �������

and in addition the combination of the orbits � and ��� is not a shadow of any orbit

in the expansion of the � function� The � function is now expanded and gives

��� � �� t� � t�
 � t�
 � t�

 � t�t�

 �������

�	t�
� � t�
t�
� 	t�
� � t�
t�


�	t�
�
 � t�
t�

� 	t�
�� � t�
�t�
� 	t�
�� � t�
�t�


�	t�
��� � t�
��t�
� 	t�

�
 � t�
t
�

 �����
�

�	t�

�
 � t�

t�

� 	t�
�
� � t�
�t
�


�	t�
�
� � t�
��
 � t�
�t
� � t�
�
t� � t�
t��
 � t�
t�
t�
� � � �

where for smooth !ows the shadowing terms become small compared with the fun�

damental orbits�

If a loop in the Markov diagram corresponds to a forbidden orbit or an orbit

isolated from all other orbits then we can �nd a fundamental part of the zeta

function with in�nite sums as in the above Farey map example of Artuso� Aurell

and Cvitanovi�c 	��� ��
� Instead of the forbidden orbit in the diagram we choose

the series of non�sel�ntersection loops in the diagram running n times through the

loop of the forbidden orbit� Examples of this are the stadium billiard and the wedge

billiard�

In the billiard systems we have made an approximation of the pruning front to

obtain the Markov graphs� The zeta functions we obtain from these graphs will then

be an approximation� but we expect this zeta function to have good convergence

properties since we have an approximation both to the fundamental parts and the

shadowing parts of the expansion�
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Conclusions and new challenges

The long and detailed analysis of symbolic dynamics in a variety of systems de�

veloped above� shows that symbolic dynamics may be a powerful tool for solving

various problems in chaotic systems� Possibly this kind of detailed analysis of

chaotic systems overshoots� and becomes too complex for a practical application to

physical problems such as of �nding the energy levels of a bound quantum system�

Only future investigations can decide whether such a detailed description of the

geometry of orbits is really necessary for practical calculations in di�erent systems�

If this turns out to be necessary� we believe that the symbolic description given here

is a natural and e�ective way implementing this description�

Regardless of what the applications might turn out to be� we believe that the

symbolic description of bifurcations and the pruning fronts discussed above is impor�

tant for theoretical understanding of dynamical systems� In mathematical literature

the discussion is usually centered around unimodal one�dimensional maps and the

renormalization of bifurcations� For two�dimensional di�eomorphisms and �ows

the literature deals mostly with the problems of the existence of complete Smale

horseshoe non�wandering sets� bifurcations creating homoclinic tangency points�

the Newhouse theorem� and the di�erent bifurcations of stable orbits �	

� 	��
�

Not much has been done in systematically describing the resonance structure in

the parameter space for multi�modal one�dimensional endomorphisms� and chaotic

two�dimensional di�eomorphisms� For billiards the interest in mathematical lit�

erature has been on proving the ergodicity ���� ��� 	�	� 	��� �


 and not on the

understanding of bifurcations� For some billiards the existence of countable Markov

partitions has been showed ���� 	��� 	��
� but not how to obtain useful approxima�

tions to this partition� We think that the methods developed here to generalize

the MSS and Milnor�Thurston theory lead to a better understanding of bifurcation

structures in the parameter space� but this thesis does not pretend to be mathemat�

�
�
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ically rigorous� The conjecture of the existence of a unique way to assign symbols

to a pruned folded map is one important case where a proof� a counterexample or

an improved conjecture is needed� The existence of pruning fronts in the billiard

systems may be turned into theorems without too much e�ort� but the conjecture of

existence of a pruning front for smooth Hamiltonian systems may be very di�cult

to prove� The main di�culty is constructuion of a �singular orbit� in a smooth po�

tential that would be analog to the singular orbit in the billiard� We have pointed

out the close connection between the bifurcation trees in the billiards and in the

smooth potentials� We expect a �singular orbit� in a smooth potential to be at�

or close to� a homoclinic�hetroclinic tangency with a geometric shape in the con�

�guration space similar to a singular billiard orbit� e�g� an orbit tangent to a wall

or bouncing o� a singular point of the billiard wall� This is an important question

which requires further investigation� Also it will be nontrivial to prove that the

well�ordered symbols of the billiard are ordered the same way in the phase space of

a smooth potential� a necessary prerequisite for construction of a monotone pruning

front�

The transformation of a pruned region into an expansion of the zeta function is

obtained by constructing a Markov transition graph and �nding loops in this graph�

This is faster than a direct construction of a matrix from the symbol plane� but

�nding all combinations of loops is time consuming for large graphs� The diagrams

we construct are also not necessarily the smallest possible and their form may

depend on the order in which the forbidden strings are implemented as we construct

the graph� This implies that the �fundamental part� of our the zeta function

expansions may be unnecessarily large� Our approximations to the pruning front are

implemented by removing rational rectangles� and for billiard systems this seems not

very e�cient� An approximation with triangles would converge much better� but we

do not know how to implement this to get the admissible orbits� In addition Markov

graphs might have symmetries which should be removed� Symmetry decomposition

for complete alphabets has been discussed in detail by Cvitanovi�c and Eckhardt ���
�

but should also be implemented for the pruned systems�

Another question receiving interest lately is the question of the monotonic�

ity of bifurcations in di�erent maps� Recent work by Milnor� Tresser and oth�

ers ���� 	��� 	�	� 	��
 has shown that in bimodal maps with bifurcation diagrams

similar to the symbolic parameter planes discussed in section ��	� there are sim�

ple paths along which the topological entropy increases monotonically� and regions

with constant entropy are connected in the parameter plane� Numerics indicate

that these results also hold for the parameter spaces of polynomial maps �	�	
� The



�
�

question of anti�monotonicity has been discussed by Yorke and coworkers ��
� 	��
�

who claim that bimodal and more complicated maps are anti�monotone� There has

not been further work for higher modal maps following the aproach of by Milnor

and Tresser� but the bifurcation diagrams obtained here� �gures ��	�� ��	� and ���
�

indicate that the results for bimodal maps also apply to three�modal and possibly

higher�modal maps� However� in the higher modal maps bifurcations can change

the modality and make the picture more complicated� We have also obtained sim�

ilar symbolic parameter spaces for the once�folding maps� and we hope that this

will enable us to prove monotonicity for once�folding maps as well� This however

appears to disagree with the results of Kan� Ko�cak and Yorke �	��
� The folding

maps are complicated systems with an in�nite�dimensional parameter spaces� Much

more work is required before we can claim this problem to be solved� but we hope

the work presented here is a step in the right direction�

Another problem of interest is the description of the parameter values for which

the entropy changes from 
 to a positive number called the �border of chaos� �	�

�

By using symbolic parameter spaces this border may be described for the N �modal

one�dimensional maps and for folding two�dimensional maps� This border may

then also be understood in an ordinary parameter space� This is also a question for

further studies�

The question of a chaotic attractor for a �nite measure of parameter values has

been addressed� and positive results have been obtained for the logistic map ��	


and for the H�enon map with very small values for the parameter b ���
� Nothing is

known about this question in bimodal and other more complicated maps�

The construction of symbols for an arbitrary smooth dynamical system is not

understood� We believe that in a number of Hamiltonian systems we can use

symbols de�ned for a corresponding billiard� but there currently exists no method

for constructing symbols for any system� This is a di�cult problem but progress

here will be very interesting� See also ref� ���
�

The method of Biham and Wenzel ���� ��
 for �nding periodic orbits in the

H�enon map is interesting� and could be generalized to other once�folding maps and

maybe to n�folding maps� With more than one folding the method will depend on

the starting conditions� and an investigation of such methods may be interesting�

We have shown here how the convergence of the BW method is closely related to

the modality of the 	�dimensional approximation� and we expect this also for a

generalized BW method�

In the �eld of quantum chaos there is a number of interesting questions under

investigation� The quantum verions of our classical chaotic billiard systems are
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�particle in box� problems and the systems studied most� The semi�classical work

on the three�body problem in atomic systems is very promising� and the results al�

ready obtained for these systems under special conditions are impressive ��
� 	��
�

Further studies along this path may be the most exciting projects of the near fu�

ture� The question of di�usion in classical and quantum systems is an interesting�

but di�cult problem ��
� and application to astrophysical problems are interest�

ing ��
� ��
�
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