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Abstract. We investigate the dynamics of a system of two van der Pol oscillators with delayed velocity coupling.
We use the method of averaging to reduce the problem to the study of a slow-flow in three dimensions. We
study the steady state solutions of this slow-flow, with special attention given to the bifurcations accompanying
their change in number and stability. We compare these stability results with numerical integration of the original
equations and show that the two sets of results are in excellent agreement under certain parameter restrictions. Our
interest in this system is due to its relevance to coupled laser oscillators.
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1. Introduction

This work is concerned with the mutual interaction of two limit cycle oscillators. It is motiv-
ated by applications to laser dynamics and, more generally, to microwave oscillators [1–4].
When two microwave oscillators operate physically close to one another, the output signal
of each may affect the behavior of the other. Since the frequencies are above the 10 GHz
range, the time for light to travel from one oscillator to the other, a distance of the order
of centimeters, represents a substantial portion of the period of the uncoupled microwave
oscillator. This immediately leads to the inclusion of delay effects in the coupling terms.

In this paper we investigate the dynamics of two weakly coupled van der Pol oscillators
in which the coupling terms have time delay τ . The coupling has been chosen to be via the
first derivative terms because this form of coupling occurs in radiatively coupled microwave
oscillator arrays [1, 3, 4]. We use the method of averaging to obtain an approximate simplified
system of three slow-flow equations and then investigate the stability and bifurcation of their
equilibria (corresponding to periodic motions in the original system). Experimentalists Lynch
and York consider the van der Pol oscillator as a generic microwave oscillator and state that ‘in
practice, any useful operational mode of a system of coupled oscillators where coherent power
combining is desired must exhibit some type of stable periodicity’ [1]. We then compare these
results with the numerical integration of the original differential delay equations.

This work is an extension of previous papers by the present authors [5, 6] and is also
related to previous studies of coupled van der Pol oscillators in which the coupling terms
omitted delay effects [7–10].
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2. Derivation of Slow-Flow Equations

We investigate two van der Pol oscillators with delay coupling [1, 4]:

ẍ1 + x1 − ε (1 − x2
1 ) ẋ1 = ε αẋ2 (t − τ), (1)

ẍ2 + x2 − ε (1 − x2
2 ) ẋ2 = ε αẋ1 (t − τ), (2)

where α is a coupling parameter, τ is the delay time, and where ε � 1. When ε = 0, the
system reduces to ẍi + xi = 0, i = 1, 2, with solution:

xi = Ri cos(t + θi), ẋi = −Ri sin(t + θi). (3)

For ε > 0, we look for a solution in the form (3) but treat Ri and θi as time dependent.
Variation of parameters gives the following equations on Ri and θi:

Ṙi = −ε sin(t + θi)Fi, Ri θ̇i = −ε cos(t + θi) Fi, (4)

where Fi = (1−x2
i ) ẋi +α ẋj (t −τ), i, j = 1, 2. For small ε we use the method of averaging,

replacing the right-hand sides of (4) by their averages over one period of the ε = 0 system:

Ṙi ≈ −ε
1

2π

2π∫
0

sin(t + θi) Fi dt, (5)

Ri θ̇i ≈ −ε
1

2π

2π∫
0

cos(t + θi) Fi dt, (6)

in which

Fi = [1 − R2
i cos2(t + θi)] [−Ri sin(t + θi)] + α [−R̃j sin(t − τ + θ̃j )], (7)

where R̃ = R(t − τ) and θ̃ = θ(t − τ). Evaluating the integrals
∮

cos(t + θi) Fi dt and∮
sin(t + θi) Fi dt gives

Ṙi = ε

2
Ri

(
1 − R2

i

4

)
+ ε α

2
R̃j cos(θi − θ̃j + τ), (8)

Ri θ̇i = −ε α

2
R̃j sin(θi − θ̃j + τ). (9)

Equations (8–9) show that Ṙi ,θ̇i are O(ε). We now Taylor expand R̃i and θ̃i :

R̃i = Ri(t − τ) = Ri(t) − τṘi(t) + τ 2R̈i(t) + · · · , (10)

θ̃i = θi(t − τ) = θi(t) − τ θ̇i(t) + τ 2θ̈i (t) + · · · . (11)

Equations (10) and (11) indicate that we can replace R̃i ,θ̃i by Ri ,θi in Equations (8) and (9)
since Ṙi(t),θ̇i(t) and R̈i(t),θ̈i(t) in (10),(11) are O(ε) and O(ε2) respectively, from Equa-
tions (8) and (9). This reduces an infinite dimensional problem in functional analysis to a
finite dimensional problem by assuming the product ετ is small. (Note that we do not assume
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a small delay τ .) This key step enables us to handle the original system, a differential delay
equation, as a system of differential equations [1–4]. Note that if terms of O(ε2) were retained
in Equations (10) and (11), then the resulting differential equations would be of second order.
Thus extending the expansion to higher order in ε has the unusual effect of profoundly chan-
ging the nature of the approximate system to be solved. Nevertheless, the O(ε) truncation
studied in this work is valid for small values of ετ , as demonstrated by comparison of the
subsequent slow-flow analysis with numerical integration of the original differential delay
equations (1–2).

We let T = t/ε be the new time scale. Setting φ = θ1 − θ2, we then obtain

Ṙ1 = 1

2

[
R1

(
1 − R2

1

4

)
+ α R2 cos(φ + τ)

]
, (12)

Ṙ2 = 1

2

[
R2

(
1 − R2

2

4

)
+ α R1 cos(φ − τ)

]
, (13)

φ̇ = α

2

[
−R2

R1
sin(φ + τ) − R1

R2
sin(φ − τ)

]
. (14)

These are the slow-flow equations which we will examine in the remainder of the paper.
Note that R1 and R2 are nonnegative and the vector field associated with Equations (12–14)

is periodic in φ. Thus the phase space is R+ × R+ × S1. The slow-flow is invariant under the
three transformations:

(R1, R2, φ) → (R2, R1,−φ), (15)

φ → φ + π, α → −α, (16)

φ → φ + π, τ → τ + π, cos τ → − cos τ. (17)

Equations (16) and (17) show that another invariance involving only parameters is

α → −α, τ → τ + π, cos τ → − cos τ. (18)

Equation (18) shows that we may assume α > 0 without loss of generality, since the phase
flow for a negative value of α is identical to that of the corresponding positive value of α with
the sign of cos τ reversed.

3. Stability of the In-Phase Mode

Equations (12–14) possess the following equilibrium point which corresponds to the in-phase
mode x1 ≡ x2 in (1–2):

R1 = R2 = 2
√

1 + α cos τ , φ = 0, 1 + α cos τ > 0. (19)

Notice that Equations (19) indicate that the amplitudes Ri approach zero as 1 + α cos τ ap-
proaches zero, and that these amplitudes remain zero for 1+α cos τ ≤ 0. This result is known
as amplitude death [11, 12]. Thus the in-phase mode is predicted to come into existence as
we cross the curve α = −1/ cos τ in the cos τ − α parameter plane. This bifurcation is
accompanied by a change in stability of the trivial solution x1 ≡ x2 ≡ 0. In order to show this
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we must return to the original differential delay equations (1–2), since the slow-flow (12–14)
is singular for R1 = R2 = 0. Linearizing Equations (1–2) about the trivial solution, we may
obtain the condition for a change in stability of x1 ≡ x2 ≡ 0 by assuming a solution of the
form eiωt . Equating real and imaginary parts of the corresponding characteristic equation, we
obtain

cos ωτ = − 1

α
, sin ωτ = 1 − ω2

εαω
. (20)

In the small ε limit, the second of Equations (20) gives that ω = 1, and then the first of
Equations (20) gives α = −1/ cos τ , in agreement with the birth of the in-phase mode,
cf. Equation (19).

In order to determine the stability of the in-phase mode, we examine the eigenvalues λ of
the Jacobian matrix of the right-hand side of Equations (12–14) evaluated at the equilibrium
(19). These satisfy the equation:

λ3 + λ2 (2 + 4 α cos τ) + λ (1 + 5 α cos τ + α2 + 4 α2 cos2 τ)

+ (α cos τ + 2 α2 cos2 τ + α2 + α3 cos τ + α3 cos3 τ) = 0. (21)

When λ = 0, Equation (21) gives conditions necessary for a saddle-node bifurcation. The
resulting equation may be factored into three conditions:

α = 0, (22)

α = − cos τ

1 + cos2 τ
, (23)

α = −1

cos τ
. (24)

We can similarly set λ = iω to obtain conditions necessary for a Hopf bifurcation. Omitting
extraneous roots, we obtain:

α = − 1

3 cos τ
, cos2 τ <

1

2
. (25)

Simulation reveals that the limit cycle created in the Hopf bifurcation (25) is unstable. Equa-
tions (22–25) represent stability boundaries for the in-phase mode x1 ≡ x2 in the cos τ − α

(or equivalently, the τ − α) parameter plane (Figure 1).
In order to check the stability results in Figure 1 and to confirm the validity of our ap-

proximations (both from averaging and from Taylor expanding the time delay terms), we
numerically simulated Equations (1–2). The delay terms in Equations (1–2) require that initial
conditions be given for the time interval between −τ and 0. We handled this by allowing the
two oscillators to run uncoupled from t = −τ to t = 0. This was accomplished by specifying
x(−τ) and ẋ(−τ) and thus allowed us to obtain an interval of initial conditions x(t) = φ(t),
−τ ≤ t ≤ 0. Then at time t = 0, we started numerically integrating the coupled delay
equations, which require that we take into account what happened τ time units ago. Here we
use a fourth order Runge–Kutta scheme with fixed step size, appropriately modified to account
for delay [13]. In order to avoid unnecessarily long runs, we began close to the equilibrium
point whose stability we were investigating. For example, in the case of the in-phase mode,
we took x1 ≈ x2, ẋ1 ≈ ẋ2. A point in τ −α parameter space is said to be stable if the trajectory
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Figure 1. Stability of the in-phase and out-of phase modes: S = Stable, U = Unstable, N = does not exist.

in four-dimensional phase space continues to spiral into the in-phase mode. In this way we
were able to confirm that the stability of the in-phase and out-of-phase modes agreed with the
predictions of the analytical method shown in Figure 1.

Our treatment of Equations (1–2) involves three time scales: the period of the unforced, 2π ;
the delay time, τ ; the slow time scale, 1/ε. Our approximations should really be valid only
when ε � 1 and where τ = O(1), that is, we have assumed ετ � 1. For larger values of ε, for
example ε = 0.5, the analytical stability curves of the slow-flow equations do not give nearly
as good agreement as when ε = 0.1. The larger the value of ε, the worse the approximation
becomes. This is reasonable because the method of averaging assumes that ε � 1 and the
stability regions occur at τ values near 2. Numerical agreement is best for small ε and when
τ = O(1) (Figure 2). This agrees with the theoretical restriction that ετ � 1. The periodicity
of the stability results in τ predicted by the analytical treatment of the slow-flow is also seen
to be only approximate and will indeed break down for large enough values of τ .

4. Stability of the Out-of-Phase Mode

In addition to the in-phase mode, Equations (12–14) also possess an equilibrium which cor-
responds to the out-of-phase mode x1 ≡ −x2:

R1 = R2 = 2
√

1 − α cos τ , φ = π, 1 − α cos τ > 0. (26)
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Figure 2. Stability of in-phase mode for ε = 0.1. Solid line is analytic prediction of stability given by (23) and
(25); dots represent stability via numerical integration of (1–2).

In order to determine the stability of this mode we could proceed in an analogous fashion to
that used for the in-phase mode. However, a more direct approach is available to us due to the
symmetry discussed in Equations (16–18). The out-of-phase mode (26) maps to the in-phase
mode (19) under the transformation (17), α → −α, τ → τ + π . But since the entire phase
flow is invariant under this transformation, the stability of (26) is seen to be identical to that
of (19) with the parameter change cos τ → − cos τ . That is, the out-of-phase mode has the
same stability chart as the in-phase mode, reflected about the α-axis (Figure 1).

5. Unsymmetrical Modes

Having investigated the stability of the slow-flow equilibria corresponding to in-phase and out-
of-phase modes, we now look for any other slow-flow equilibria, each of which corresponds to
a periodic motion in the original equations (1–2). Our task is to solve the three Equations (12–
14) for equilibrium values of R1, R2 and φ. We solve (13) for R1, substitute the result into (14)
and solve for R2

2. Call the result ‘equation A’. Then we solve (13) for R1 and substitute the
result into (12), giving a polynomial on R2

2. We substitute ‘equation A’ into this polynomial,
giving an equation with no R1 or R2 in it. Algebraic and trigonometric simplification of the
resulting equation gives:

α2 sin2 τ cos4 φ + (2α2 sin2 τ − 1) cos2 τ cos2 φ + cos4 τ(1 + α2 sin2 τ) = 0. (27)
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Equation (27) is a quadratic on cos2 φ. We may obtain up to four real values for cos φ, corres-
ponding to eight values of φ. Of these eight, four must be rejected because they correspond to
negative Ri values. The remaining four equilibria come in two pairs which map to each other
under the transformation (15).

Bifurcations of these equilibria result from setting cos φ = 1 in Equation (27) since
cos2 φ ≤ 1. This gives Equation (23) and its reflection in the symmetry (17). Bifurcations
also occur in Equation (27) if the discriminant vanishes. This results in the condition

α2 = 1

8(1 − cos2 τ)
, cos2 τ <

1

3
. (28)

Equation (28) is displayed in Figure 3 along with the previously obtained bifurcation curves
(23–25). Points P and Q in Figure 3 are defined as the points of intersection of curves (23) and
(25), and of curves (23) and (28), respectively:

P: cos τ = − 1√
2
, α =

√
2

3
, Q: cos τ = − 1√

3
, α =

√
3

4
. (29)

The total number of slow-flow equilibria in Equations (12–14) depends on the parameters α

and τ (Figure 3). The maximum number is six, consisting of the in-phase mode, the out-of-
phase mode, and the four additional equilibria associated with Equation (27). Note that none
of these additional equilibria can occur if the coupling α is sufficiently large.

We checked these results by numerically simulating Equations (12–14). In doing so we
discovered that the equilibria discussed in this section undergo Hopf bifurcations in the regions
marked ‘4’ and ‘6’ in Figure 3. In order to find the location of these Hopf bifurcations in the
parameter plane of Figure 3, we linearized the slow-flow equations (12–14) about the equilib-
ria given by Equation (27) and then set λ = iω in the associated eigenequation. The resulting
equations were too complicated algebraically to allow us to obtain closed form conditions
for the Hopf bifurcations (even using computer algebra). Nevertheless we were able to treat
the resulting equations numerically, revealing that the Hopf bifurcations occur along a curve
which is displayed in Figure 4. This curve is approximately given by the empirical equation

α = −0.045266 cos4 τ + 0.286920 cos2 τ + 0.3393455, 0.238095 ≤ cos2 τ ≤ 0.5. (30)

As shown in Figure 4, the curve (30) reaches between point P and a point H on curve
(28). The slow-flow limit cycles which are born in these Hopf bifurcations correspond to
quasiperiodic motions in the original equations (1–2).

The unsymmetrical equilibria are born stable along PQ and lose their stability in a Hopf
bifurcation (Figure 4). Thus they are only predicted to be stable in a very narrow region of
parameter space. Given that averaging and Taylor expanding the time delay have made the
analytical results only approximate, one might question the point of examining such regions
of space. We thus chose τ = 2.26 (cos τ = −0.6359), α = 0.45, ε = 0.01, which is a point in
parameter space in the middle of the region where the unsymmetrical equilibria are predicted
to be stable, and numerically integrated the original differential-delay equations. Reassuringly,
the unsymmetrical stable equilibria were found (Figure 5). This further validates the analytical
treatment of our approximate system, Equations (12–14). We now proceed with finding the
complete bifurcation set of the slow-flow equations (12–14).
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Figure 3. Number of periodic motions exhibited by the slow-flow (12–14). The displayed curves are the
bifurcation equations (23), (24), (25), (27) as well as their reflections in the α-axis.

6. Unfolding Point P

In order to better understand the bifurcations which occur in the slow-flow equations (12–
14), we magnify the region of parameter space around point P. This involves (i) expanding
in power series the parameters α and τ about point P and the phase variables R1, R2 and
φ about the in-phase equilibrium point, then (ii) transforming the phase variables to local
eigencoordinates (which involve a double zero eigenvalue at point P), then (iii) obtaining
a power series approximation for the center manifold at P, and then (iv) transforming the
resulting two-dimensional flow to normal form. This is a very complicated calculation which
involved a lot of computer algebra. We give only the final form of the flow on the center
manifold:

ẏ = z,

ż = y3

(
−1

6
− 175

192

√
2µ − 367

288
ν − 1523

256
µ2 + −317

128
ν2 − 1945

384

√
2µν

)

+ y2z

(
9

2
+ 21

4

√
2µ + 19

2
ν − 11763

32
µ2 + 729

16
ν2 − 1029

16

√
2µν

)

+ y

(
−1

2

√
2µ + 1

9
ν − 3

2
µ2 − 1

6
ν2 + −1

6

√
2µν

)



The Dynamics of Two Coupled van der Pol Oscillators with Delay Coupling 213

Figure 4. Enlargement of a region in Figure 3.

+ z

(
3

2

√
2µ + ν − 1

2
ν2 + 3

2

√
2µν

)
, (31)

where µ and ν are defined by the equations (cf. Equation (29))

τ = arccos

(
− 1√

2

)
+ ν, α =

√
2

3
+ µ. (32)

Analysis of Equation (31) shows that there are six bifurcation curves which emanate from
point P, a Takens–Bogdanov point [14]. See Figure 6 where these six curves are labeled A, B,
C, D, E, F. Their description and approximate equations are found to be:

A, C: pitchfork bifurcation, Equation (23): µ =
√

2

9
ν − 13

√
2

54
ν2, (33)

B: subcritical Hopf bifurcation, Equation (25): µ = −
√

2

3
ν +

√
2

2
ν2, (34)

D: supercritical Hopf bifurcation, Equation (30): µ =
√

2

6
ν + 47

√
2

512
ν2, (35)

E: symmetry-breaking bifurcation: µ = 17
√

2

93
ν + 38173

√
2

178746
ν2, (36)
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Figure 5. Unsymmetrical periodic motion in (1–2) which corresponds to an unsymmetrical equilibrium in
(12–14). The initial condition used to generate the interval of delay values is R1 = 1.5253234, R2 = 1.8161932,
φ = 0.20669649. Equations (3) are also plotted. The other unsymmetrical equilibrium exists under
(x1, x2) → (x2, x1).

F: limit cycle fold: µ = 0.26606ν. (37)

In curve E, the symmetry-breaking bifurcation, a pair of stable limit cycles is replaced by
a single larger stable limit cycle. In curve F, the limit cycle fold, a pair of limit cycles, one
stable and one unstable, coalesce. It will be noted that the algebraic form of curve F involves
an approximate decimal, in contrast to the expressions for the other bifurcation curves. In
fact a closed form expression for this constant is known in terms of elliptic integrals, but is
omitted here for brevity. The details by which Equations (33–37) are obtained, which involve
Melnikov and elliptic integrals, are omitted here, but are included in the doctoral thesis of the
first author [15]. Figure 7 shows a schematic of the bifurcation sequence obtained by moving
through the parameter space near point P.

7. Unfolding Point Q

Recall that point Q is defined as the point where the double saddle-node bifurcation curve (28)
joins with the in-phase mode pitchfork bifurcation curve (23), which occurs at

cos τ = −1√
3
, α =

√
3

4
. (38)
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Figure 6. Bifurcation curves at point P obtained via center manifold analysis and normal forms. The equations for
curves A, B, C, D, E, F are given in (33–37). Each of these curves separates regions of parameter space containing
qualitatively distinct phase portraits, see Figure 7.

As with point P, we can similarly find the analytical stability curves coming in and out of point
Q. The resulting equation describes the flow on the center manifold. We obtain the following
expression:

ż1 = −2z5
1

+
(

2788123
√

3

19440
µ − 94267

√
2

5184
ν − 35604121

√
6

38880
µν + 360207083

19440
µ2 − 47251

1080
ν2

)
z5

1

+
(

−400
√

3

27
µ + 23

√
2

9
ν + 1154

√
6

9
µν − 45520

27
µ2 − 15

2
ν2

)
z3

1

+
(

−4
√

3

3
µ +

√
2

2
ν + 10

√
6

3
µν − 128

3
µ2 + 1

4
ν2

)
z1, (39)

where (cf. Equation (29))

τ = cos−1

(−1√
3

)
+ ν,
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Figure 7. Schematic diagram showing the qualitatively distinct center manifold phase portraits found in the para-
meter space near point P. Note that in addition to all these steady states, the phase space also contains a stable
equilibrium corresponding to the out-of-phase mode. Note that the curves are drawn distorted for better viewing,
cf. Figure 6 and Equations (33–37).

α =
√

3

4
+ µ. (40)

We expect very degenerate behavior at this point since the cubic term in the normal form
switches from negative to positive as the bifurcation switches from supercritical to subcritical
and this is indeed what the normal form shows. The bifurcation curves are found to be

µ =
√

6

8
ν − 5

√
3

16
ν2 + O(ν3), (41)

µ =
√

6

8
ν +

√
3

4
ν2 + O(ν3), ν < 0 (42)

for the in-phase and double saddle-node local bifurcation curves, respectively.

8. The Completed Bifurcation Set

Having unfolded points P and Q, we now turn toward piecing together the entire bifurcation
set of Equations (12–14). Although we have an implicit representation for point H, we were
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Figure 8. Bifurcation set (numerical) near points T, S, A. The out-of-phase mode exists (and is stable) throughout.
The third eigendirection is (nearly) normal to the page and has negative eigenvalue. Note that curve (1) is drawn
distorted for better viewing.

not able to write it in normal form using unfolding parameters (as we did with points P and Q);
however, numerically simulating the flow on the center manifold at point H and the slow-flow
equations near point H allowed us to conclude that point H is a Takens–Bogdanov point but of
a different kind than point P [14]. Thus the Hopf bifurcation and the homoclinic bifurcation
curves which emanate from point P (Figures 6 and 7) terminate at point H.

Numerical simulation and consistency arguments lead us to conjecture that at the point
where the homoclinic bifurcation curve emanating from point P crosses the in-phase subcrit-
ical pitchfork bifurcation curve, we have the beginning of a curve of heteroclinic connections
involving the two unsymmetrical equilibria (Figure 8), which gives rise to a large stable limit
cycle. Consistency arguments and numerical simulation again allow us to conclude that this
bifurcation curve of heteroclinic connections and the bifurcation curve along which the limit
cycles coalesce cannot terminate at point H.

We note that due to the type of Takens–Bogdanov bifurcation that occurred at point H,
there exists a curve extending to the right of point H satisfying �λi = 0 where λi are the
two principal eigenvalues. Since this is just the trace of the matrix corresponding to these
eigenvalues, we will refer to the curve as the tr = 0 curve. This curve may be thought
of as an extension of the unsymmetrical Hopf bifurcation curve and indeed, we used this
extension to calculate the empirical equation for the Hopf bifurcation, given by Equation (30).
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Figure 9. Bifurcation set and phase portraits near points N with curves drawn distorted for better viewing. Note
that the phase portraits above and below curve (6) are identical and are thus only drawn once. Also, the third
eigendirection is contracting and in a direction (nearly) normal to the page.

This extension goes from H to H’ and enters tangent to (28) at the respective points. The
significance of this curve is that the heteroclinic and limit cycle fold curves must intersect it.
For values of α below the tr = 0 extension, the limit cycle born in the heteroclinic bifurcation
must be stable; however, for values of α above the tr = 0 extension, the limit cycle born in the
heteroclinic bifurcation must be unstable. Thus the limit cycle fold curve and the heteroclinic
bifurcation curves must join together at the tr = 0 extension curve with only the heteroclinic
bifurcation curve continuing on the other side (Figure 9).

To determine the fate of the heteroclinic and limit cycle fold curves, we examine the special
case when τ = π/2. The planes φ = ±π/2 are invariant planes and due to the nature of het-
eroclinic orbit (Figure 10), a consistency argument leads us to conjecture that the heteroclinic
bifurcation curve could not possibly exist at a value of τ = π/2. Thus we conjecture that
there exists a point N on the double saddle-node bifurcation curve, H-H’, lying neither close
to H nor to τ = π/2 at which point the heteroclinic bifurcation curve terminates. Although
this occurrence may seem highly unusual, it has been observed in similar systems [14, 16]. A
similar argument holds when τ = 3π/2. The completed bifurcation set is given in Figure 11.
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Figure 10. Heteroclinic connection close to H-H’. (a) shows the two-dimensional projection of this connection
observed in Figure 8 while (b) shows the full three-dimensional connection.

9. Discussion

Perhaps the most significant result of this work is the conclusion that both the in-phase and
out-of-phase modes are stable for values of cos τ close to zero, i.e., for delays of about 1/4 of
the uncoupled period of the oscillators, see Figure 1. We have seen good agreement between
numerical integration results and the analytical results for small values of ετ and this agree-
ment deteriorates as ε increases. Also, the parameter τ always appears in the form cos τ in the
slow-flow (12–14), leading to the prediction that the dynamical behavior exhibits a periodic
dependence on τ . Recent research work which does not assume that ετ is small has shown
that this prediction is only approximately true [17, 18].

The elaborate bifurcation sequences which were found to be present in this system occur
over a very small region of parameter space, and hence may be difficult to observe in an
associated physical system. Nevertheless these bifurcations are important because they explain
how dynamical transitions occur between the larger regions of parameter space.
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Figure 11. Complete bifurcation set of Equations (12–14). For the top left frame, cf. Figure 3 and for the top right
frame, cf. Figure 4. Note also that the same bifurcation curves exist under cos τ → − cos τ .
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