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In this work, we investigate the dynamics of two weakly coupled van der Pol

oscillators in which the coupling terms have time delay τ. Our work is motivated

by applications to laser dynamics and the coupling of microwave oscillators. The

governing equations are

ẍ1 + x1 − ε (1 − x2
1) ẋ1 = ε α ẋ2 (t − τ),

ẍ2 + x2 − ε (1 − x2
2) ẋ2 = ε α ẋ1 (t − τ),

where the coupling is chosen to be through the damping terms because this form

of coupling occurs in radiatively coupled microwave oscillator arrays. We use the

method of averaging to obtain the approximate simplified system of three slow-flow

equations
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Equilibria of these slow-flow equations correspond to periodic motions in the original

equations. In the examination of the stability and bifurcation of the equilibria of

these equations, we found that the in-phase and out-of-phase modes coexisted and

were both stable in the parameter range for which the delay is about 1
4

of the

unperturbed limit cycle period. We also found that the in-phase mode ceased to

exist if the delay was about 1
2

of the unperturbed period and the coupling was

strong enough. Similarly the out-of-phase mode ceased to exist if the delay was

approximately the same as that of the unperturbed period. We also found that if the

coupling was sufficiently small, various other motions were predicted to exist besides

the in-phase and out-of-phase modes. These additional motions were predicted

to change their form through a series of elaborate bifurcations. Nevertheless all

these motions were predicted to be periodic, and we did not observe chaos for any

parameter values.

In order to check the validity of the approximations, we numerically integrated

the original differential delay equations for the case ε << 1 and τ = O(1) and

compared their predictions regarding the stability of the in-phase and out-of-phase

modes with those of the slow-flow analysis. The two sets of results showed excellent

agreement.
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Chapter 1

Introduction

1.1 Non-instantaneous Interaction of Oscillators

The instantaneous interaction of a pair of coupled oscillators is something that is

often assumed. This is an okay assumption provided the state of one oscillator does

not change appreciably in the finite time it takes the signal from the other oscillator

to reach it. But consider the case of microwave oscillators which typically have

frequencies of around 10 GHz giving them a period of T = 2π
1010 = 6 × 10−10sec.

Since signals propagate through space at the speed of light, we see that the signal

will move about 18 cm during one full period of the oscillators. If the oscillators are

separated by, say, 4 cm, we see that each oscillator will have gone through about

1
4

period before the signal of the other oscillator reaches it. Thus the time for a

signal to travel from one oscillator to the other represents a substantial portion of

the period of the uncoupled oscillator. This immediately leads to the inclusion of

1
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delay effects in the coupling terms.

Many examples exist in which the interaction of coupled oscillators must take into

account time delay [9],[19],[21],[26],[45]. The work of this thesis is concerned with

the mutual interaction of limit cycle oscillators and has application to laser dynamics

and, more generally, to the coupling of microwave oscillators [22],[23],[46],[48]. This

thesis examines the dynamics of two weakly coupled van der Pol oscillators in which

the coupling terms have time delay τ [44]. The coupling has been chosen to be

via first derivative terms (“velocity coupling”) because this form of coupling occurs

in radiatively coupled microwave oscillator arrays [23],[46],[47]. Experimentalists

Lynch and York state that the reason for studying periodic motions in the original

system is that “in practice, any useful operational mode of a system of coupled

oscillators where coherent power combining is desired must exhibit some type of

stable periodicity”[23]. We use the method of averaging to obtain an approximate

simplified system of three slow-flow equations and then investigate the stability and

bifurcation of their equilibria which correspond to periodic motions in the original

system. We then compare these results with the numerical integration of the original

differential delay equations.

This work has application to high resolution radar systems and satellite com-

munications [22]. Since solid-state devices have trouble handling the desired output

power levels at these high frequencies, alternative power devices are being sought.

Coupled microwave oscillators have the benefit that they can generate adequate

levels of power at such high frequencies, making them a desirable alternative to

solid-state devices. This work is related to previous studies of coupled van der Pol



3

oscillators in which the coupling terms omitted delay effects [5],[32],[37],[38].

1.2 The Literature on Microwave Oscillators

The coupling of microwave oscillators through delayed velocity coupling has been ex-

amined in the electrical engineering literature [22],[23],[46],[47],[48]. Two important

characteristics of microwave oscillators are negative resistance (which causes the am-

plitude of the oscillations to grow) and gain saturation (which limits the amplitude of

the oscillations) [22],[24]. In the laser physics community, the operation of the ruby

laser, for instance, also exhibits such relaxation oscillations [34]. York states that

numerous experiments involving microwave oscillators with “significantly different

physical mechanisms responsible for the negative resistance and gain saturation”

have shown the systems to behave similarly when coupled together [46]. Because of

this observation and the presence of relaxation oscillations, the van der Pol oscillator

is often considered as a generic microwave oscillator [22],[23],[46],[47],[48].

This work examines two coupled van der Pol oscillators with delayed velocity

coupling. It differs from previous work in its treatment of the time delay. Time

delay is included explicitly in the differential equations (thus giving rise to differen-

tial delay equations), rather than introducing the delay in the averaged equations

(cf. [46],[47],[48]); moreover, a mathematical justification is provided and condi-

tions are given under which the approximations of the delay terms will be valid

(cf. [22],[23]). Under certain conditions, it is seen that the introduction of delay

terms in the averaged equations will be accurate. This is not expected as our origi-
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nal differential delay equations must properly be analyzed in an infinite-dimensional

space (as an entire delay interval is needed to calculate the state of the system),

whereas our analysis reduces the system to a finite-dimensional one by making the

delay a parameter (thus allowing our system to be analyzed in a three-dimensional

space involving two parameters). Previous work has dealt with phase-only oscilla-

tors with non-identical frequencies and the stability of these systems was examined

in terms of the frequency differences. This work also differs from previous work in

that it examines identical oscillators with both phase and amplitude and considers

the stability of the system in terms of the coupling strength versus the time delay.

1.3 A Brief Overview

We begin Chapter 2 by considering a pair of van der Pol oscillators that have delayed

velocity coupling. We average the equations and then approximate the delay terms

(under certain restrictions), thereby reducing the system to one that may be ana-

lyzed in a finite dimensional space with parameters τ (time delay) and α (coupling

strength). We find equations for saddle-node and Hopf bifurcation curves and the

intersection of these curves in τ − α parameter space gives rise to three degenerate

equilibria, which we label Q, P and H. Detailed local analyses of the degenerate

singularities Q, P and H are performed in Chapters 3, 4 and 5 respectively, and cer-

tain global bifurcation curves are able to be observed or deduced from the analyses.

At the end of Chapter 5, the fate of all but two of the global bifurcation curves is

known. Chapter 6 analyzes the remaining two curves and the end result is that the



5

complete bifurcation set of the averaged equations is known (where the bifurcation

set is defined as the set of points at which the averaged equations are structurally

unstable [12]). Chapter 7 describes a modified Runge-Kutta integration scheme by

which we are able to numerically integrate the original van der Pol equations. We

then compare the predictions from the analysis of the approximate averaged equa-

tions with results obtained from the numerical integration of the original equations.

Chapter 8 discusses some implications and limitations of our analysis and suggests

further research that can be done on similar problems.
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Chapter 2

The Slow-Flow Equations

2.1 Derivation of the Slow-Flow Equations

We investigate two van der Pol oscillators with delay coupling [11],[23],[46]:

ẍ1 + x1 − ε (1 − x2
1) ẋ1 = ε α ẋ2 (t − τ), (2.1)

ẍ2 + x2 − ε (1 − x2
2) ẋ2 = ε α ẋ1 (t − τ), (2.2)

where α is a coupling parameter, τ is the delay time, and where ε << 1. As

mentioned in Chapter 1, we choose van der Pol oscillators with delay coupling

in the damping terms because this form of coupling occurs in radiatively coupled

microwave oscillator arrays [23],[46]. In terms of the physical problem, xi represents

voltage and the velocity coupling represents the coupling of the oscillators in free-

space (where high efficiency is possible [47]). As the voltage is often written in

phasor form as Vk(t) = Rk(t)e
iθ(t), it is natural to examine the equations on Rk and

7
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θk. When ε = 0, the system reduces to ẍi + xi = 0, i = 1, 2, with solution:

x1 = R1 cos(t + θ1), x2 = R2 cos(t + θ2), (2.3)

ẋ1 = − R1 sin(t + θ1), ẋ2 = − R2 sin(t + θ2). (2.4)

For ε > 0, we assume (2.3)-(2.4) but treat Ri and θi as time dependent. Using

variation of parameters, we now differentiate (2.3) and obtain

ẋ1 = Ṙ1 cos(t + θ1) − R1 sin(t + θ1) − R1 sin(t + θ1) θ̇1,

ẋ2 = Ṙ2 cos(t + θ2) − R2 sin(t + θ2) − R2 sin(t + θ2) θ̇2.

Comparison with (2.4) gives

Ṙ1 cos(t + θ1) − R1 sin(t + θ1) θ̇1 = 0 (2.5)

Ṙ2 cos(t + θ2) − R2 sin(t + θ2) θ̇2 = 0. (2.6)

Calculating the second derivatives, we then obtain

ẍ1 = −Ṙ1 sin(t + θ1) − R1 cos(t + θ1) − R1 cos(t + θ1) θ̇1,

ẍ2 = −Ṙ2 sin(t + θ2) − R2 cos(t + θ2) − R2 cos(t + θ2) θ̇2.

Substitution into (2.1)-(2.2) gives

ẍ1 + x1 = −Ṙ1 sin(t + θ1) − R1 cos(t + θ1) θ̇1

= ε (1 − x2
1) ẋ1 + ε α ẋ2(t − τ)

≡ ε F 1 (2.7)

ẍ2 + x2 = −Ṙ2 sin(t + θ2) − R2 cos(t + θ2) θ̇2

= ε (1 − x2
2) ẋ2 + ε α ẋ1 (t − τ)

≡ ε F2. (2.8)
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Using (2.3)-(2.4), the expressions for Fi become

F1 = [1 − R2
1 cos2(t + θ1)] [−R1 sin(t + θ1)]

+ α [−R̃2 sin(t − τ + θ̃2)], (2.9)

F2 = [1 − R2
2 cos2(t + θ2)] [−R2 sin(t + θ2)]

+ α [−R̃1 sin(t − τ + θ̃1)] (2.10)

where R̃i = Ri(t − τ) and θ̃i = θi(t − τ). Solving (2.5)-(2.8) for Ṙi and θ̇i and

applying the method of averaging, we obtain

Ṙ1 = −ε sin(t + θ1) F1 ≈ −ε
1

2π

∫ 2π

0
sin(t + θ1) F1 dt, (2.11)

−R1 θ̇1 = ε cos(t + θ1) F1 ≈ ε
1

2π

∫ 2π

0
cos(t + θ1) F1 dt, (2.12)

Ṙ2 = −ε sin(t + θ2) F2 ≈ −ε
1

2π

∫ 2π

0
sin(t + θ2) F2 dt, (2.13)

−R2 θ̇2 = ε cos(t + θ2) F2 ≈ ε
1

2π

∫ 2π

0
cos(t + θ2) F2 dt, (2.14)

where the right hand side of (2.11)-(2.14) is the average over one period of the ε = 0

system. Calculating
∮

cos(t + θ1) F1 dt using (2.9) and combining with (2.12) gives

R1 θ̇1 =
ε α

2
R̃2 sin(θ̃2 − θ1 − τ) (2.15)

while calculating
∮

sin(t + θ1) F1 dt using (2.9) and combining with (2.11) gives

Ṙ1 =
ε

2
R1

(
1 − R2

1

4

)
+

ε α

2
R̃2 cos(θ1 − θ̃2 + τ). (2.16)

Similarly, we calculate

R2 θ̇2 =
ε α

2
R̃1 sin(θ̃1 − θ2 − τ), (2.17)

Ṙ2 =
ε

2
R2

(
1 − R2

2

4

)
+

ε α

2
R̃1 cos(θ̃1 − θ2 − τ). (2.18)
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Equations (2.15)-(2.18) show that Ṙi,θ̇i are O(ε). We now Taylor expand R̃i and

θ̃i:

R̃i = Ri(t − τ) = Ri(t) − τṘi(t) + τ 2R̈i(t) + · · · , (2.19)

θ̃i = θi(t − τ) = θi(t) − τ θ̇i(t) + τ 2θ̈i(t) + · · · . (2.20)

Equations (2.19)-(2.20) indicate that we can replace R̃i,θ̃i by Ri,θi in equations

(2.15)-(2.18) since Ṙi(t),θ̇i(t) and R̈i(t),θ̈i(t) in (2.19)-(2.20) are O(ε) and O(ε2) re-

spectively, as calculated from equations (2.15)-(2.18). This substitution reduces the

delay τ to a parameter. That is, the problem is reduced from an infinite dimen-

sional problem in functional analysis to a finite dimensional problem by assuming

the product ετ is small. (Note that we do not assume a small delay τ .) This key step

enables us to handle the original system of differential delay equations as a system of

differential equations [22],[23],[46],[48]. Note that if terms of O(ε2) were retained in

equations (2.19)-(2.20), then the resulting differential equations would be of second

order. Thus extending the expansion to higher order in ε has the unusual effect

of profoundly changing the nature of the approximate system to be solved. Never-

theless the O(ε) truncation studied in this work is valid for small values of ετ (see

Chapter 7), as demonstrated by comparison of the subsequent slow flow analysis

with numerical integration of the original differential delay equations (2.1)-(2.2).

Setting φ = θ1 − θ2 we then obtain

Ṙ1 =
ε

2

[
R1

(
1 − R2

1

4

)
+ α R2 cos(φ + τ)

]
, (2.21)

Ṙ2 =
ε

2

[
R2

(
1 − R2

2

4

)
+ α R1 cos(φ − τ)

]
, (2.22)
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φ̇ =
ε α

2

[
−R2

R1
sin(φ + τ) − R1

R2
sin(φ − τ)

]
. (2.23)

In our analytic treatment and subsequent numerical integration of equations (2.21)-

(2.23), we avoid having to choose ε by making the change of variables T = 1
ε
t. Then

dT
dt

= 1
ε

and the ε has no explicit appearance. The slow-flow equations are then in

the form

Ṙ1 =
1

2

[
R1

(
1 − R2

1

4

)
+ α R2 cos(φ + τ)

]
, (2.24)

Ṙ2 =
1

2

[
R2

(
1 − R2

2

4

)
+ α R1 cos(φ − τ)

]
, (2.25)

φ̇ =
α

2

[
−R2

R1

sin(φ + τ) − R1

R2

sin(φ − τ)
]

(2.26)

and we will examine equations (2.24)-(2.26) in the ensuing chapters, but now the

derivatives are with respect to T , not t. We again note that equilibria in the slow-

flow equations correspond to periodic motions in (2.1)-(2.2) and we will define the

oscillators to be 1:1 phase locked if φ(t) is constant. We also note that periodic

motions of (2.24)-(2.26) correspond to quasiperiodic motions of (2.1)-(2.2) and we

define the oscillators to be in 1:1 phase entrainment when φ(t) varies periodically.

The remaining situation occurs when φ(t) grows unbounded and we define the os-

cillators in this case to be in phase drift [5].

Note that R1 and R2 are nonnegative and the vector field associated with equa-

tions (2.24)-(2.26) is periodic in φ. Thus the phase space is R+ × R+ × S1. The

slow-flow is invariant under the three transformations:

(R1, R2, φ) �→ (R2, R1,−φ) (2.27)

φ �→ φ + π, α �→ −α (2.28)
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φ �→ φ + π, τ �→ τ + π. (2.29)

Equations (2.28),(2.29) show an invariance involving only parameters:

α �→ −α, τ �→ τ + π. (2.30)

It will often be easier to consider cos τ (instead of τ) as the delay parameter. This

last invariance, equation (2.30), is then written

α �→ −α, cos τ �→ − cos τ. (2.31)

Equation (2.31) shows that we may assume α > 0 without loss of generality since

the phase flow for a negative value of α is identical to that of the corresponding

positive value of α with the sign of cos τ reversed. Since our approximation assumes

a small ετ term, considering cos τ as our delay parameter, we expect the periodic

behavior in τ to actually be incorrect (cf. [26],[45]).

2.2 In-phase Mode

Equations (2.24)-(2.26) possess the following equilibrium point which corresponds

to the in-phase mode x1 ≡ x2 in (2.1)-(2.2):

R1 = R2 = 2
√

1 + α cos τ , φ = 0, 1 + α cos τ > 0. (2.32)

The in-phase mode is also referred to as a mixed mode since R1, R2 �= 0, φ = 0

[2]. Notice that equations (2.32) indicate that the amplitudes Ri approach zero as

1+α cos τ approaches zero, and that these amplitudes remain zero for 1+α cos τ ≤
0. This result is known as amplitude death [33],[42]. Thus the in-phase mode is
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predicted to come into existence as we cross the curve α = − 1
cos τ

in the cos τ − α

parameter plane. This bifurcation is accompanied by a change in stability of the

trivial solution x1 ≡ x2 ≡ 0. In order to show this we must return to the original

differential delay equations (2.1)-(2.2), since the slow-flow equations (2.24)-(2.26)

are singular for R1 = R2 = 0. Linearizing equations (2.1)-(2.2) about the trivial

solution, we may obtain the condition for a change in stability of x1 ≡ x2 ≡ 0

by assuming a solution of the form eiωt. Equating real and imaginary parts of the

corresponding characteristic equation, we obtain:

cos ωτ = − 1

α
, sin ωτ =

1 − ω2

εαω
. (2.33)

In the small ε limit, the second of equations (2.33) gives ω = 1, and then the first of

equations (2.33) gives α = − 1
cos τ

, in agreement with the birth of the in-phase mode,

cf. equation (2.32).

Before proceeding with the analysis of the in-phase mode, we pause to discuss a

symmetry associated with it. Recall the invariance given in equation (2.27):

(R1, R2, φ) �→ (R2, R1,−φ).

Because the in-phase mode is given by R1 = R2, φ = 0, we see that the in-phase

mode is invariant under this transformation. This is particularly important because

equilibria which bifurcate from the in-phase mode will always satisfy (2.27). That

is, the behavior of one of the newly born equilibria will result in an immediate

understanding of its partner, which is given by the mapping (2.27).
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2.2.1 Bifurcation Curves

In order to determine the stability of the in-phase mode, we compute the Jacobian

matrix of the right-hand side of (2.24)-(2.26) evaluated at the equilibrium given in

equation (2.32):




1
2
− 3

2
(1 + α cos τ) α

2
cos τ −α sin τ

√
1 + α cos τ

α
2

cos τ 1
2
− 3

2
(1 + α cos τ) α sin τ

√
1 + α cos τ

α sin τ
2

√
1+α cos τ

− α sin τ
2

√
1+α cos τ

−α cos τ




. (2.34)

The eigenvalues of (2.34) satisfy the characteristic equation

λ3 + λ2 (2 + 4 α cos τ) + λ (1 + 5 α cos τ + α2 + 4 α2 cos2 τ)

+(α cos τ + 2 α2 cos2 τ + α2 + α3 cos τ + α3 cos3 τ) = 0. (2.35)

When λ = 0, equation (2.35) gives necessary conditions for generic saddle-node

bifurcation curves in the cos τ −α parameter plane. The three curves we obtain are

α = 0, (2.36)

α =
−1

cos τ
, (2.37)

α =
− cos τ

1 + cos2 τ
. (2.38)

In the case of equation (2.36), the original system reduces to the system

ẍ1 + x1 − ε (1 − x2
1) ẋ1 = 0, (2.39)

ẍ2 + x2 − ε (1 − x2
2) ẋ2 = 0, (2.40)

with λ = −1 being an eigenvalue of multiplicity two in equation (2.35). This system

corresponds to the case of two uncoupled oscillators in the original system and is
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not of any importance for our physical system, since we are concerned with coherent

coupling.

When equation (2.37) holds, the two non-zero eigenvalues are λ = 1 ± i tan τ .

The R-values of the in-phase mode are given by equation (2.32), which exists only

when 1+α cos τ > 0. As stated above we see that the in-phase mode does not exist

for points in the cos τ − α parameter plane which lie above equation (2.37). As we

cross equation (2.37), the in-phase equilibrium is born.

When equation (2.38) holds, the two other eigenvalues are

λ =
−1

1 + cos2 τ
,
2 cos2 τ − 1

1 + cos2 τ
, (2.41)

and we can expect two real, distinct, non-zero eigenvalues for all but one pair of

parameter values along this curve. We see that when cos2 τ = 1
2
, λ = 0 will be an

eigenvalue of multiplicity two. In the parameter plane, this point is given by

cos τ =
−1√

2
, α =

√
2

3
(2.42)

and we label it “point P.” Thus point P has eigenvalues λP = −2
3
, 0, 0. (We will see

in Chapter 4 that a Takens-Bogdanov bifurcation actually occurs at point P.)

As we will discuss in greater detail later in this thesis, center manifold analysis

along (2.38) shows the curve is a supercritical pitchfork bifurcation for

−1 > cos τ >
−1√

3
(2.43)

and it is a subcritical pitchfork bifurcation for

−1√
3

> cos τ > 0. (2.44)
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Another point of interest occurs where the bifurcation curve switches from a

supercritical to a subcritical pitchfork. We will call this point in the parameter

plane “point Q” and note that it has values

cos τ =
−1√

3
, α =

√
3

4
. (2.45)

We note that point Q has eigenvalues λQ = −3
4
,−1

4
, 0. Later we will use center

manifold theory to examine the flow on the corresponding one-dimensional center

manifold.

We can similarly set λ = i ω to obtain conditions necessary for a Hopf bifurcation.

Omitting extraneous roots, the characteristic equation gives

α =
−1

3 cos τ
, cos2 τ <

1

2
. (2.46)

Note that this curve “ends” at point P (see Figure 2.1).

Examining the τ values, we see that this Hopf bifurcation curve from the in-phase

mode, equation (2.46), joins to the pitchfork bifurcation curve of the in-phase mode,

equation (2.38), at point P. Point P will be examined in more detail in Chapter 4.

Equations (2.37),(2.38) and (2.46) represent stability boundaries for the in-phase

mode x1 ≡ x2 in the cos τ − α parameter plane (see Figure 2.2).

These results are in agreement with numerical integration of equations (2.24)-

(2.26). DsTool shows an unstable limit cycle is created as the in-phase mode goes

from unstable to stable [13]. Thus the Hopf bifurcation, given by (2.46), is subcriti-

cal. The slow-flow limit cycles born in the Hopf bifurcation correspond to quasiperi-

odic motions in the original equations; however, since the limit cycle created in the

Hopf bifurcation is unstable, it is of no practical importance in the coherent coupling
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Figure 2.1: Partial bifurcation set of the in-phase mode.
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Figure 2.2: Stability of the in-phase and out-of phase modes: S=Stable,
U=Unstable, N=does not exist.
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of the oscillators except for the fact that its stable manifold will separate the basins

of attractions of the stable fixed points. Note that quasiperiodic motion corresponds

to the two oscillators varying about a periodic motion and so they are frequency

locked when averaged over one cycle.

2.3 Out-of-phase Mode

In addition to the in-phase mode, equations (2.24)-(2.26) also possess an equilibrium

which corresponds to the out-of-phase mode x1 ≡ −x2:

R1 = R2 = 2
√

1 − α cos τ , φ = π, 1 − α cos τ > 0. (2.47)

The out-of-phase mode is also referred to as a mixed mode since R1, R2 �= 0, φ = π

[2]. In order to determine the stability of this mode we could proceed in an analogous

fashion to that used for the in-phase mode; however, a more direct approach is

available to us due to the symmetry discussed in equations (2.28)-(2.30). The out-

of-phase mode (2.47) maps to the in-phase mode (2.32) under the transformation

(2.29), φ �→ φ + π, τ �→ τ + π. But since the entire phase flow is invariant under

this transformation, the stability of (2.47) is seen to be identical to that of (2.32)

with the parameter change τ �→ τ + π, i.e., cos τ �→ − cos τ . That is, the out-of-

phase mode has the same stability chart as the in-phase mode, reflected about the

α-axis (see Figure 2.2). Thus, in the remainder of the thesis, when we examine

bifurcation curves near the in-phase mode we can immediately deduce the existence

of an identical curve under the parameter change cos τ �→ − cos τ. Also, in our

original equations (2.1)-(2.2), the stability of the out-of-phase mode has the same
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stability as the in-phase mode under the mapping α �→ −α but we can conclude

nothing about the stability of the two modes through the mapping τ �→ τ +π. This

again indicates that the periodic behavior we detect will only be valid for the regime

ετ << 1.

2.4 Unsymmetrical Equilibria

2.4.1 Saddle-node Bifurcations

Having investigated the stability of the symmetrical slow-flow equilibria correspond-

ing to the in-phase and out-of-phase modes, we now look for any other slow-flow

equilibria, each of which corresponds to a periodic motion in the original equations

(2.1)-(2.2). In contrast to the in-phase and out-of-phase modes, these unsymmet-

rical equilibria correspond to motions which are phase and frequency locked but

where the phase is neither 0 nor π. These unsymmetrical equilibria are also referred

to as travelling waves [2]. Our task is to solve equations (2.24)-(2.26) for equilibrium

values of R1, R2 and φ. We solve (2.25) for R1, substitute the result into (2.26) and

solve for R2
2. Call the result “equation A”. Then we solve (2.25) for R1 and sub-

stitute the result into (2.24), giving a polynomial on R2
2. We substitute “equation

A” into this polynomial, giving an equation with no R1 or R2 in it. Algebraic and

trigonometric simplification of the resulting equation gives:

α2 sin2 τ cos4 φ + (2 α2 sin2 τ − 1) cos2 τ cos2 φ + cos4 τ(1 + α2 sin2 τ) = 0. (2.48)
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Equation (2.48) is a quadratic on cos2 φ. We may obtain up to 4 real values for

cos φ, corresponding to 8 equilibria in our slow-flow since each value of cos φ has two

corresponding values of φ; however, we only see 4 of these equilibria because 4 of

them have negative Ri values. The 4 that we do see come in pairs and satisfy the

symmetry given in equation (2.27).

Bifurcations of these equilibria result from setting cos φ = 1 in equation (2.48)

since cos2 φ ≤ 1. This gives equation (2.38) and its reflection in the symmetry

(2.29). Along this curve we now have the unsymmetrical equilibria being born in

addition to the in-phase mode becoming stable. Bifurcations also occur in equation

(2.48) if the discriminant vanishes. This results in the condition

α2 =
1

8(1 − cos2 τ)
, cos2 τ <

1

3
. (2.49)

When we cross this curve in the cos τ − α plane coming from above, two pair of

fixed points are born in a double saddle-node bifurcation. This bifurcation curve

joins to the in-phase bifurcation curve equation (2.38) at point Q. That is, a saddle-

node bifurcation curve for the unsymmetrical equilibria joins to the in-phase mode

bifurcation curve at exactly the point where the curve switches from a supercritical

pitchfork to a subcritical pitchfork bifurcation. The subcritical pitchfork bifurcation

given by equation (2.38) destroys the two unstable fixed points at the same time

the in-phase mode switches from stable to unstable. Trajectories which leave the

neighborhood of the unstable in-phase mode are attracted to the two unsymmetrical

equilibria which are present and stable.

Equation (2.49) is displayed in Figure 2.3 along with the previously obtained
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bifurcation curves (2.37),(2.38),(2.46).

The total number of slow-flow equilibria in equations (2.24)-(2.26) depends on

the parameters α and τ , see Figure 2.3. The maximum number is six, consisting

of the in-phase mode, the out-of-phase mode, and the four additional equilibria

associated with equation (2.48). Note that none of these additional equilibria can

occur if the coupling α is sufficiently large.

2.4.2 Hopf Bifurcations

Numerical simulation suggests the equilibria discussed in this section undergo Hopf

bifurcations in the regions marked ‘4’ and ‘6’ in Figure 2.3. To find this Hopf

bifurcation curve analytically, we calculate the general characteristic equation from

the matrix of partial derivatives obtained from the slow flow equations (2.24)-(2.26):

p(R1, R2, φ, τ, α) = 0.

Using the Hopf condition λ = i ω we obtain an equation of the form

C1 ω3 i + C2 ω2 + C3 ω i + C4 = 0 (2.50)

where Ci = Ci(R1, R2, φ, τ, α). This gives two equations in ω2 (where ω2 ≥ 0).

Subtract them from each other and call this equation F (R1, R2, φ, τ, α) = 0.

We now need estimates for the values of R1, R2, and φ near the Hopf bifurcation.

We solve (2.25) for R1, substitute the result into (2.26) and solve for R2 to obtain

R1 =
1
4
R3

2 − R2

α cos(φ − τ)

R2 = 2

√
1 + α cot(φ − τ)

√
− sin(φ − τ) sin(φ + τ). (2.51)
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Figure 2.3: Number of periodic motions exhibited by the slow-flow (2.24)-
(2.26). The displayed curves are the bifurcation equations (2.37), (2.38),
(2.46), (2.48).
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We can solve equation (2.48) for φ to obtain φ = H(τ, α).

We then substitute this solution into F (R1, R2, φ, τ, α) to find an expression for

the Hopf bifurcation; however, due to the extreme complexity of the resulting ex-

pressions, we were not able to find a closed form condition for these Hopf bifurcations

(even using the computer algebra programs MAPLE and MACSYMA [6],[25], [29]).

We look for a numerical approximation for the curve as follows:

1. Fix a value for τ and find an approximate (lower) value of α.

2. Find numerical estimates for φ = H(τ, α), R2 = G2(φ, τ, α), and R1 =

G1(R2, φ, τ, α), using equations (2.48),(2.51).

3. Plug these values into the Hopf condition F (R1, R2, φ, τ, α) along with the

current values of τ and α.

4. Evaluate. A point on the Hopf curve satisfies F = 0. If the value is not zero,

continue to step 5.

5. Advance α a small step size. Re-evaluate φ = H(τ, α), R2 = G2(φ, τ, α), and

R1 = G1(R2, φ, τ, α) using the new values of τ, α.

6. Repeat steps 3-5 until a switch in the sign of F (R1, R2, φ, τ, α) is seen.

(Alternatively, we could use Newton’s method instead of steps 5 and 6 above to

find the α which satisfies the equation F = 0.) As we cross the Hopf bifurcation

curve coming from above in the cos τ−α parameter plane, two of the unsymmetrical

fixed points become unstable and DsTool shows that a small stable limit cycle is

born. The Hopf bifurcation is thus supercritical.

This Hopf bifurcation curve joins the previously known bifurcation curves at

point P in the parameter plane. It also joins to the saddle-node bifurcation curve
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of the unsymmetrical equilibria at

cos τ ≈ −0.487950, α ≈ 0.405046 (2.52)

and we will call this “point H,” see Figure 2.4.

To be precise, we define H to be the one point along the double saddle-node

bifurcation curve (with −1 ≤ cos τ ≤ 0) which has two eigenvalues satisfying λ =

0, since at all other points along the double saddle-node curve we had only one

eigenvalue satisfying λ = 0. The equilibria which undergo the Hopf bifurcation have

a pair of eigenvalues satisfying λ1 + λ2 = 0 where λ1, λ2 are pure imaginary, while

the remaining eigenvalue satisfies λ3 < 0. To the right of point H in cos τ −α space,

the conditions λ1 + λ2 = 0 and λ3 < 0 still hold (for reasons that will be explained

in Chapters 5, 6); however, λ1, λ2 ∈ R. The curve satisfying λ1 + λ2 = 0 extends

from point P to its reflection about the α− axis, point P’, and passes through point

H and its reflection point H’.

This curve is approximately given by the empirical equation

α = −0.045 cos4 τ + 0.29 cos2 τ + 0.33932 (2.53)

which gives a maximum relative error of 0.35% while the equation

α = −0.045266 cos4 τ + 0.286920 cos2 τ + 0.3393455 (2.54)

gives a maximum relative error of only 0.025% where

0.238095 ≤ cos2 τ ≤ 0.5. (2.55)

As mentioned above, numerical simulation has shown the resulting limit cycles

to be stable. Recall these periodic slow-flow motions correspond to quasiperiodic
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Figure 2.4: Partial bifurcation set of the in-phase and unsymmetrical modes.
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motions in the original equations (2.1)-(2.2). Thus the stable limit cycles may

be of some practical importance; however, these stable limit cycles only exist in

a very narrow strip in parameter space. It should also be noted that although

the unsymmetrical Hopf bifurcation curve (cf. equation (2.54)) crosses the in-phase

mode pitchfork bifurcation curve (2.38) in the parameter plane, the intersection does

not correspond to the same point in phase space; however, when the bifurcation

curves of the unsymmetrical equilibria join at points P, Q, and H, the R1, R2, φ

values are identical. In any case, we define the parameter plane intersection of the

unsymmetrical Hopf and the in-phase mode pitchfork bifurcation curves as “point

T.”

2.4.3 A Brief Overview

Let us now pause to examine what we have so far. We are looking for periodic

stable motions of the original system of equations (2.1)-(2.2) which are seen as

stable equilibria in our slow-flow equations (2.24)-(2.26). We have found a number

of bifurcation curves in the parameter plane which separate the various regions of

stability for particular equilibria. There are two questions we now ask:

1. Are these the only bifurcation curves which occur?

2. What happens to the stable limit cycles born from the unsymmetrical Hopf

bifurcation?

A possible approach to the first question would be to numerically check the

parameter plane in order to look for any other equilibria not already found. A

second possibility is to examine the degenerate points— Q, P and H—to see if any
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other bifurcation curves might actually join at those points. The latter approach

will also allow us to answer the second question about the fate of the limit cycles

which were created. Both are done through a combination of center manifold theory

and an unfolding of the points in question.

One might ask at this point for an explanation on physical grounds for exam-

ining such a narrow region (cf. Figure 2.4), especially given that the method of

averaging, combined with our reduction of the infinite-dimensional problem to a

finite-dimensional one already leaves us two steps removed from the original prob-

lem. Recall that we hope to find all stable periodic solutions of the original equa-

tions. In our case, stable quasiperiodicity might be equally valid and it would not do

justice to the analysis to just ignore or avoid this region in parameter space because

it is too small. Also our goal is to be able to describe the behavior of the system

given any set of parameter values. Although it may or may not be desirable to

be restricted to such a small range of parameter values, it may indeed be the case

that our system will be affected in some way and we will be thrust either into or

out of this region of space. Knowing each and every bifurcation curve is thus very

important to understanding the global picture.



Chapter 3

Point Q

3.1 Introduction

Recall that point Q is defined as the point where the double saddle-node bifurcation

curve (2.49) joins with the in-phase mode pitchfork bifurcation curve (2.38), which

occurs at

cos τ =
−1√

3
, α =

√
3

4
. (3.1)

Since cos−1 is multivalued, there are actually two τ values which satisfy this con-

dition. We will pick 0 < τ < π. Thus as τ increases, cos τ will decrease. When

comparing our τ − α parameter plane picture with the cos τ − α parameter plane

picture, we must remember that the bifurcation curves will be reflections of each

other about the line τ = π.

We expect a pitchfork bifurcation to switch from supercritical to subcritical at

point Q. In particular, we know that we must have one eigenvalue satisfying λ = 0.

29
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We state the following theorem which tells us that our analysis can be carried out

at point Q on a one-dimensional manifold, the center manifold:

Theorem 3.1.1 (Center Manifold Theorem [12],[27]) Let f be a Cr vector

field on Rn which satisfies f(0) = 0 and suppose that A = Df(0) has k eigen-

values satisfying Re(λ) < 0, j eigenvalues satisfying Re(λ) > 0, and the remaining

m = n − k − j eigenvalues satisfying Re(λ) = 0. Let Es, Ec, Eu denote the

generalized stable, center, and unstable eigenspaces, respectively. Then there exists

an m-dimensional Cr−1 center manifold W c tangent to Ec at 0 and Cr stable and

unstable invariant manifolds W s and W u tangent to Es and Eu. The manifolds

W s, W c, W u are all invariant for the flow f.

We note that we cannot simply project our original system onto the linear sub-

space spanned by Ec if we want to capture the correct qualitative behavior [12]. To

show how the above theorem comes into play, consider the following system already

in eigencoordinates

ẋ = Ax + g1(x, y, z)

ẏ = By + g2(x, y, z) (3.2)

where x ∈ Rk, y ∈ Rm, A is a k-by-k matrix whose eigenvalues have negative real

part, B is an m-by-m matrix whose eigenvalues have zero real part, and g1(0) =

g2(0) = Dg1(0) = Dg2(0) = 0. From Theorem 3.1.1, we know the center manifold

is tangent to the center eigenspace, Ec and so we can represent it locally as a graph

[4],[12]:

W c = {(x, y)| x = h(y)}, h(0) = Dh(0) = 0, (3.3)
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where h : Rm �→ Rk is defined on some neighborhood of the origin. If we now

consider the projection of the vector field on x = h(y) onto Ec, we obtain

ẏ = By + g2(h(y), y). (3.4)

The remarkable conclusion is that all the essential behavior of the system (3.2) in

the neighborhood of the origin, will be captured by (3.4). In particular, we have the

following theorem:

Theorem 3.1.2 ([4],[12]) If the origin of (3.4) is stable (unstable), then the origin

of (3.2) is also stable (unstable).

These theorems will be used in our analysis of point Q, but we take one more

detour and examine exactly what behavior we expect at point Q, where our pitch-

fork bifurcation switches from supercritical to subcritical. The normal form for a

supercritical pitchfork bifurcation is

ż = r z − z3 (3.5)

and the normal form for a subcritical pitchfork bifurcation is

ż = r z + z3. (3.6)

Since these equations model a physical system and because the symmetry associated

with (2.27) will take the form z �→ −z on the one-dimensional center manifold, we

expect the instability of the subcritical pitchfork to be countered by some stabilizing

force of O(z5) or higher [41]. That is, we expect the normal form for the subcritical

pitchfork to actually be

ż = r z + z3 − z5. (3.7)
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We expect very degenerate behavior at this point since the cubic term in the normal

form switches from negative to positive as the bifurcation switches from supercritical

to subcritical. We can see this better by inserting another parameter p into the

system. Thus in order for the bifurcation to go from a supercritical pitchfork to a

subcritical pitchfork, the parameter p in the normal form

ż = r z + p z3 (3.8)

must switch from negative to positive. And in order for us to see this switch, we

will need to keep terms of O(z5) and thus we will expect the normal form

ż = r z + p z3 − z5. (3.9)

This will be useful to remember as we examine point Q in more detail.

3.2 Linearization

From the previous discussion of the in-phase mode, we can calculate the eigenvalues

at point Q. It is important to note that one of the eigenvalues is zero while the

other two are negative. As stated in Section 3.1, the Center Manifold Theorem tells

us that we can expect a one-dimensional center manifold to capture the essential

behavior of the system. We begin with the three slow-flow equations (2.24)-(2.26)

and linearize about the in-phase mode equilibrium at point Q

R1 = R2 = 2
√

1 + α cos τ =
√

3, φ = 0. (3.10)

To make this explicit, we let

R1 =
√

3 + x, (3.11)
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R2 =
√

3 + y, (3.12)

φ = z. (3.13)

We can do the center manifold analysis in any coordinates but the calculations are

easier if we switch to eigencoordinates. We can easily obtain the eigenvalues from

(2.41) but since we also need the eigenvectors, we proceed with the linearization.

The coordinates x, y, z are physical coordinates which are local about point Q. Sub-

stituting equations (3.11)-(3.13) into the slow-flow equations (2.24)-(2.26), setting

µ = ν = 0 and ignoring higher order terms, we find that

d

dt




x

y

z




= A




x

y

z




(3.14)

where

A =




−5
8

−1
8

−√
6

8

−1
8

−5
8

√
6

8
√

6
12

−√
6

12
1
4




. (3.15)

We then calculate the eigenvalues of A as

λ1 =
−3

4
, λ2 =

−1

4
, λ3 = 0

with corresponding eigenvectors v1, v2, v3. Let Λ = (v1 v2 v3) be the matrix with

the eigenvectors as its columns.

We could proceed with the analysis of point Q in the physical x, y, z coordinates

but since we have one zero eigenvalue, it will be useful to rotate to eigencoordinates

before using center manifold theory to examine the behavior of the system.
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Thus we seek expressions for the eigencoordinates, (x1, y1, z1), which are defined

by the equation 


x

y

z




= Λ




x1

y1

z1




(3.16)

where

Λ =




1 −
√

6
2

−1

1
√

6
2

1

0 1 2
√

6
3




. (3.17)

We substitute these values of x, y, z into (3.14). We solve for ẋ1, ẏ1, ż1 and Taylor

expand the expressions, keeping quadratic terms in µ, ν and quintic terms in x1, y1, z1

(cf.(3.7)). This will allow us to obtain the flow in terms of the eigencoordinates.

Since we want to unfold point Q, we will also make the substitution

τ = cos−1

(−1√
3

)
+ ν

α =

√
3

4
+ µ (3.18)

into the previous result. As mentioned above, we take 0 < τ < π so that an increase

in τ implies a decrease in cos τ . This will allow for a local analysis about point Q

in the parameter plane.

Before continuing, we note that the expressions of the two curves coming into

point Q are

α =
− cos τ

1 + cos2 τ
,

α2 =
1

8(1 − cos2 τ)
, cos2 τ <

1

3
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where the first of these equations is the in-phase mode bifurcation curve (2.38) and

the second is from the double saddle-node bifurcation curve (2.49). Thus we can

examine the corresponding expressions in terms of the local parameter coordinates,

µ and ν. Since the slope of each curve is the same at point Q, when we substitute

(3.18), we need to keep quadratic terms in µ, ν in our Taylor expansion. We obtain

µ =

√
6

8
ν − 5

√
3

16
ν2 + O(ν3) (3.19)

µ =

√
6

8
ν +

√
3

4
ν2 + O(ν3) (3.20)

for the in-phase and double saddle-node local bifurcation curves, respectively. Know-

ing these expressions will provide a check on our unfolding calculation, which will

in addition permit us to see if there are any other bifurcations at point Q.

3.3 Unfolding Q

To begin the unfolding, we start with the three differential equations in terms of

the eigencoordinates x1, y1, z1. We substitute in equations (3.18) and obtain three

equations:

ẋ1 = G1(x1, y1, z1, µ, ν) (3.21)

ẏ1 = G2(x1, y1, z1, µ, ν) (3.22)

ż1 = G3(x1, y1, z1, µ, ν), (3.23)

where x1, y1 ∈ W s, z1 ∈ W c at the bifurcation point (cf. Theorem 3.1.1). We know

the center manifold, W c, is tangent to Ec and thus can locally be represented as a
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graph. Recall that the flow on the center manifold is going to be given by a one-

dimensional equation. In our case, this equation involves only z1 and will be given

by equation (3.23) once we have expressions for the center manifold, i.e., once we

have x1, y1 in terms of z1. We need to assume an appropriate form for the center

manifold in order to express x1 and y1 in terms of z1. The fact that we want to

keep quintic terms in the eigencoordinates and quadratic terms in µ, ν leads us to

assume a center manifold of the form

x1,cm = a1 z4
1 + (a2 + a3 µ + a4 ν + a5 µ ν + a6 µ2 + a7 ν2)z3

1

+ (a8 + a9 µ + a10 ν + a11 µ ν + a12 µ2 + a13 ν2)z2
1

+ (a15 µ + a16 ν + a17 µ ν + a18 µ2 + a19 ν2)z1

+ (a21 µ + a22 ν + a23 µ ν + a24 µ2 + a25 ν2) (3.24)

for x1 and a similar form for y1,cm. Comparing with (3.3), we see that the center

manifold will be given by

W c = {x1, y1, z1)| x1 = h1(z1), y1 = h2(z1)} (3.25)

where hi : R �→ R with h1(0) = h2(0) = Dh1(0) = Dh2(0). (Here h1(z1) =

x1,cm, h2(z1) = y1,cm and a14 = a20 = 0 in (3.24) to avoid any O(1) translation in

the linear or constant terms.) We substitute these equations into the differential

equations (3.21)-(3.22). This will introduce ż1 terms after the differentiation is

carried out. We then substitute in equation (3.23) which reintroduces x1, y1 into the

equations but rids the equations of any ẋ1, ẏ1, ż1 terms. One more substitution of

equation (3.24) and the corresponding y1,cm equation into the new versions of (3.21)-

(3.22) gives two equations which only have z1 terms. For each equation, we move
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all terms to one side and Taylor expand the expressions, keeping quadratic terms

in µ, ν and quintic terms in z1. We then have two equations, G̃1(z1, µ, ν) = 0 and

G̃2(z1, µ, ν) = 0, and we compare G̃1 with the assumed form of the center manifold,

equation (3.24), since we want an expression for x1,cm, y1,cm which is valid at the

equilibrium point. We then do a similar comparison for G̃2. This allows us to obtain

the coefficients of x1,cm, y1,cm. We find that

x1,cm = −43
√

3

24
z4
1 −

√
3

2
z2
1

+

(−311

9
µ +

61
√

6

36
ν +

1195
√

2

18
µν − 13639

√
3

27
µ2 +

41
√

3

9
ν2

)
z2
1

y1,cm =
13

9
z3
1

+

(
11294

√
3

81
µ − 547

√
2

27
ν − 178954

√
6

243
µν +

3252502

243
µ2 − 2083

81
ν2

)
z3
1

+

(
92
√

3

9
µ − 4

√
2

3
ν − 112

√
6

27
µν +

7684

27
µ2 − 55

9
ν2

)
z1. (3.26)

Now that we have expressions for the center manifold, we substitute (3.26) into

(3.23). The resulting equation describes the flow on the center manifold. We obtain

the following expression:

ż1 = − 2z5
1

+

(
2788123

√
3

19440
µ − 94267

√
2

5184
ν − 35604121

√
6

38880
µν +

360207083

19440
µ2 − 47251

1080
ν2

)
z5
1

+

(−400
√

3

27
µ +

23
√

2

9
ν +

1154
√

6

9
µν − 45520

27
µ2 − 15

2
ν2

)
z3
1

+

(−4
√

3

3
µ +

√
2

2
ν +

10
√

6

3
µν − 128

3
µ2 +

1

4
ν2

)
z1. (3.27)

We now want to examine the bifurcations of equation (3.27). We note that the

first O(1) term in µ, ν appears in the z5
1 term (cf. equation (3.9)). We can factor
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out the root z1 = 0 (which corresponds to the in-phase mode) and we are left with a

fourth order polynomial on z1. We will have bifurcations associated with this. If we

consider equation (3.27) as a quadratic on z2
1 , the first bifurcation will correspond

to the condition for the existence of four real roots of this equation and so we need

both roots of z2
1 to be nonnegative. Thus this bifurcation will occur when z2

1 = 0.

From this we recover (3.19) and no new equations. We note that the saddle-node

bifurcation will not occur when z2
1 < 0. To leading order, we find that z2

1 = −3
√

2
4

ν

and thus we need ν < 0. That is, our saddle-node bifurcation curve is a one-sided

curve (which checks with what we expected from equation (2.49)). The second

bifurcation occurs when the discriminant of z2
1 vanishes. This results in (3.20), see

Figure 3.1.

Since we only want to consider real roots, these are the only bifurcation curves

which result. Thus the unfolding at Q confirms what we expected from the larger

picture in the parameter plane, see Figure 3.2.

If we rewrite (3.27) as ż1 = r z1 +p z3
1 −2z5

1 , we see that p switches sign as we go

through the point Q along the in-phase pitchfork bifurcation curve, given by (3.19).

We thus see that we do indeed switch from a supercritical to a subcritical pitchfork

at point Q.

3.4 Bifurcation Sequence Near Point Q

Note that our unfolding was done locally about point Q. A little below and to the

left of point Q (in the cos τ − α parameter plane), DsTool reveals that we have
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Q0

0

µ

-ν

(3.20)

(3.19)

(3.19)

Figure 3.1: Bifurcation set in the neighborhood of point Q. Flows are on
the line since we have a one-dimensional center manifold. Note that the
bifurcation curves near point Q are drawn slightly distorted for better
viewing.
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Q

α

cos τ

4
√ 3

√ 3
-1

(2.38)

(2.38)

(2.49)

Figure 3.2: Phase portraits corresponding to Figure 3.1. Note that the
third eigendirection is contracting and comes into the plane of this page
(nearly normal). Also, the bifurcation curves near point Q are drawn
slightly distorted for better viewing.
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a supercritical Hopf bifurcation and below this curve stable limit cycles surround

the two unsymmetrical equilibria. Examining the phase portraits for fixed τ while

lowering α shows the existence of a symmetry breaking homoclinic bifuration dur-

ing which the two stable limit cycles both join at the in-phase mode in a double

homoclinic loop and then form a large stable limit cycle, see Figure 3.3.

But throughout this entire bifurcation sequence, the unstable limit cycle created

in the in-phase mode Hopf bifurcation surrounds the in-phase mode and all the

unsymmetrical equilibria, while the out-of-phase mode exists far away from all these

bifurcations. This observation is crucial because for slightly lower values of α, no

limit cycles exist and we deduce the existence of a limit cycle fold along which the

stable and unstable limit cycles coalesce. This bifurcation sequence is given in Figure

3.3. We note that the pictures in Figure 3.3 are drawn as if they are two-dimensional

even though they are in fact three-dimensional. This is because numerical simulation

of the slow-flow equations (2.24)-(2.26) indicates that all trajectories are quickly

drawn onto a somewhat curved two-dimensional surface on which the dynamics

shown in the figure occur. The same situation occurs near points P and H and thus

all of our drawings near those points will also be shown as two-dimensional. We can

also examine a bifurcation diagram by encircling point Q, see Figure 3.4.

The bifurcation sequence occurring to the right of point Q is more intricate and

will be discussed in Chapter 5 during the discussion of point H.
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α

cos τ

Q

(2.38)

Figure 3.3: Bifurcation sequence observed numerically to the left of point
Q in the cos τ − α parameter plane. Note that the out-of-phase mode
exists throughout, but far away from, this sequence. Also, the third
eigendirection is contracting and comes into the plane of this page (nearly
normal).
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IP mode

R , R , φ
1      2

A

B

C

A B C

ULC

2 
S

LC

1 
S

LC

ULC

ULCULC

2 S
LC

1 S
LC

1 
S

LC

1 S
LC

2 
S

LC

2 S
LC

Q

encircling
 point Q

Figure 3.4: Bifurcation diagram encircling point Q. Note that stable and
unstable limit cycles (SLC and ULC, respectively) are shown. The solid
lines represent stability and the dashed lines instability.
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Chapter 4

Point P

4.1 Introduction

Recall point P is defined as the point where the in-phase Hopf bifurcation curve

(2.46) and the in-phase pitchfork bifurcation curve (2.38) join together:

cos τ =
−1√

2
, α =

√
2

3
. (4.1)

In examining point P, we will again pick the root which satisfies 0 < τ < π.

Because two of the eigenvalues are zero, the Center Manifold Theorem (Theorem

3.1.1) tells us that we will have a two-dimensional center manifold which will capture

the behavior of the full three-dimensional system. The corresponding linear system

at point P has two possibilities

d

dt


 y

z


 =


 0 0

0 0




 y

z


 or

d

dt


 y

z


 =


 0 1

0 0




 y

z


 .

45
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The first of these is the trivial case where there exist two linear independent eigen-

vectors. We will see in the next section that the second case actually occurs at point

P. This case corresponds to the case of only one linearly independent eigenvector.

Thus our linear system is not diagonalizable. We seek the next best thing—the

Jordan canonical form [17],[27]. (We give a brief review of Jordan form in the re-

mainder of this section.) For any n-by-n matrix A, there exists an invertible matrix

R such that R−1AR = J where J is in block diagonal form. The number of blocks

in J correspond to the number of eigenvectors possessed by A. Thus

J =




J1 0 · · · 0

0 J2 · · · 0

...
...

. . .
...

0 0 · · · Jm




(4.2)

where A has m linearly independent eigenvectors. The diagonal of each block Ji

has the eigenvalue corresponding to that eigenvector and the superdiagonal has the

entry 1. That is,

Ji =




λ 1 · · · 0

0 λ
. . .

...

...
. . . 1

0 0 · · · λ




.

In the case when A is diagonalizable, we see that each block is of size 1-by-1 and

the matrix J is just the matrix A in eigencoordinates; however, when A does not

possess a full set of eigenvectors, we must construct a set of generalized eigenvectors

from the known ones. In doing so we will construct our matrix R.
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We let v be an eigenvector corresponding to the eigenvalue λ. We seek chain

vectors ui that satisfy (A − λI)ui+1 = ui for i ≥ 1, where u1 ≡ v. When we reach

an integer n such that (A − λI)un+1 = un cannot be solved, we stop. The set of

vectors

S = {v, u2, u3, . . . , un} (4.3)

are the generalized eigenvectors corresponding to λ. The number of generalized

eigenvectors in S indicate the size of the Jordan block corresponding to λ. This

process is repeated with the remaining eigenvalues until a full set of generalized

eigenvectors are found. The vectors in this set S then form the columns of R.

4.2 Linearization

We again begin with the three slow-flow equations (2.24)-(2.26) and linearize about

the in-phase equilibrium point

R1 = R2 = 2
√

1 + α cos τ =
2

3

√
6, φ = 0. (4.4)

Thus, we let

R1 =
2

3

√
6 + x, (4.5)

R2 =
2

3

√
6 + y, (4.6)

φ = 0 + z. (4.7)

The coordinates x, y, z are now local about point P. Substituting (4.5)-(4.7) into

the slow-flow equations (2.24)-(2.26), setting µ = ν = 0 and ignoring higher order
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terms, we obtain

d

dt




x

y

z




= A




x

y

z




(4.8)

where we now have

A =




−1
2

−1
6

−√
6

9

−1
6

−1
2

√
6

9
√

6
12

−√
6

12
1
3




.

We find the eigenvalues of A are

λ1 =
−2

3
, λ2 = 0, λ3 = 0.

Recall that the Center Manifold Theorem (Theorem 3.1.1) tells us that study-

ing the flow of equations (2.24)-(2.26) at point P can be reduced to studying the

flow on a two-dimensional center manifold which is tangent to Ec, while still cap-

turing the essential behavior of the system. We thus need to again rotate to the

appropriate coordinates. A simple calculation shows that A does not have a full set

of eigenvectors and thus is not diagonalizable; however, we know there exists two

distinct eigenvalues and the eigenvalue λ = 0 posseses only one eigenvector. Thus

we find the generalized eigenvector by the above process. One possible choice is

u2 = (3, − 3, 0). Then R is of the form

R =




1 −1 3

1 1 −3

0
√

6
2

0




(4.9)
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and thus

R−1AR = J =




−2
3

0 0

0 0 1

0 0 0




. (4.10)

Comparing with the previously discussed theory, we see that there are two Jordan

blocks —the 1-by-1 block with eigenvalue λ = −2
3

corresponding to the stable eigen-

value and the 2-by-2 block


 0 1

0 0


 corresponding to the double zero eigenvalue.

Now possessing a full set of generalized eigenvectors, we can proceed. We let the

generalized eigenvectors be denoted v1, v2, v3 and we obtain our R (the same as that

in (4.9)) by defining R = (v1 v2 v3). The coordinates corresponding to Jordan

canonical form, (x1, y1, z1), are then defined by the equation




x

y

z




= R




x1

y1

z1




.

We substitute these values of x, y, z into (4.8). We solve for ẋ1, ẏ1, ż1 and Taylor

expand the expressions, keeping quadratic terms in µ, ν and cubic terms in x1, y1, z1.

This will allow us to obtain the flow on the center manifold in terms of the eigenco-

ordinates.

Since we want to unfold point P, we will also make the substitution

τ = cos−1

(−1√
2

)
+ ν

α =

√
2

3
+ µ (4.11)
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into the previous result. We again take 0 < τ < π so that an increase in τ implies a

decrease in cos τ . Unlike with the unfolding of Q, however, we do not have analytic

expressions for all the bifurcation curves emanating from point P. We are able to

calculate two of the expected curves as

α =
− cos τ

1 + cos2 τ
,

α = − 1

3 cos τ
, cos2 τ <

1

2

where the first corresponds to the in-phase pitchfork bifurcation curve (2.38) and

the second to the in-phase Hopf bifurcation curve (2.46). From here we can examine

the corresponding expressions in terms of the local parameter coordinates, µ and ν.

After substituting in equation (4.11) into (2.38), (2.46) and keeping quadratic terms

in µ, ν in the Taylor expansion, we obtain

µ =

√
2

9
ν − 13

√
2

54
ν2 + O(ν3) (4.12)

µ = −
√

2

3
ν +

√
2

2
ν2 + O(ν3) (4.13)

for the local bifurcation curves of the in-phase mode pitchfork and in-phase mode

Hopf, respectively. But since we were not able to calculate the unsymmetrical Hopf

bifurcation curve analytically, we do not know what local expression to expect. The

best expression we have is the polynomial approximation given by equation (2.54).

As we will soon see, this approximation is valid locally only up to linear terms.

Since we have both a subcritical Hopf bifurcation (from the in-phase mode) and

a supercritical Hopf bifurcation (from the unsymmetrical mode) joining at point P,

we might also expect some types of global bifurcation curves to also join at P. This

is indeed the case as the subsequent analysis will reveal.
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4.3 Unfolding P

For the unfolding of P, we begin with the three differential equations in terms of

the eigencoordinates x1, y1, z1. We substitute in equation (4.11) and obtain three

equations:

ẋ1 = G1(x1, y1, z1, µ, ν) (4.14)

ẏ1 = G2(x1, y1, z1, µ, ν) (4.15)

ż1 = G3(x1, y1, z1, µ, ν). (4.16)

We note that although the notation is the same as that used in the analysis of point

Q, the values of the variables Gi (and G̃i mentioned later) are not the same at the

two degenerate points; however, we use the same letters for convenience. Recall that

the flow on the center manifold is going to be given by a two-dimensional system

of equations. In terms of the eigencoordinates, only the x1 direction has a nonzero

eigenvalue, λ = −2
3

, and so our center manifold will involve both y1 and z1 terms.

We thus want to express x1 in terms of y1, z1. To do this, we need to assume an

appropriate form for the center manifold. Trying to stay as general as possible, we

assume the form

x1,cm = z2
1(a1 + a2 µ + a3 ν + a4 µ2 + a5 µ ν + a6 ν2)

+ z1 y1(a7 + a8 µ + a9 ν + a10 µ2 + a11 µ ν + a12 ν2)

+ y2
1(a13 + a14 µ + a15 ν + a16 µ2 + a17 µ ν + a18 ν2)

+ z1(a20 µ + a21 ν + a22 µ2 + a23 µ ν + a24 ν2)

+ y1(a26 µ + a27 ν + a28 µ2 + a29 µ ν + a30 ν2)
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+ (a32 µ + a33 ν + a34 µ2 + a35 µ ν + a36 ν2) (4.17)

where we set a19 = a25 = a31 = 0 since we do not want any O(1) translation in the

linear or constant terms. Comparing with (3.3), we see that the center manifold at

point P will be given by

W c = {(x1, y1, z1)| x1 = h(y1, z1)} (4.18)

with h(0) = Dh(0) = 0 and h(y1, z1) = x1,cm. We substitute equation (4.17) into

(4.14). This will introduce ẏ1, ż1 terms after the differentiation is carried out. We

then substitute equations (4.15)-(4.16) which reintroduces x1 into the equations but

rids them of any ẋ1, ẏ1, ż1 terms. One more substitution of equation (4.17) into the

new version of equation (4.14) gives an equation which only has y1, z1 terms. We

move all the terms to one side and Taylor expand the expressions, keeping quadratic

terms in µ, ν and cubic terms in y1, z1. Our resulting equation G̃1(y1, z1, µ, ν) = 0

can then be compared to equation (4.17) since we want an expression for x1,cm which

is valid at the equilibrium point. We thus obtain the center manifold

x1,cm =
−3

√
6

8
y2

1 +
15
√

6

4
z1y1 − 9

√
6z2

1

+ y2
1

(
159

√
3

32
µ +

5
√

6

32
ν − 16407

√
6

512
µ2 − 115

√
6

256
ν2

)

+ z1y1

(−99
√

3

2
µ − 3

√
6ν +

21627
√

6

64
µ2 +

1125
√

3

16
µν +

147
√

6

32
ν2

)

+ z2
1

(
2079

√
3

16
µ +

261
√

6

16
ν − 114939

√
6

128
µ2 − 10827

√
3

32
µν − 2061

√
6

64
ν2

)

−
√

3

2
µ −

√
6

6
ν − 3

√
6

32
µ2 − 5

√
3

8
µν +

√
6

16
ν2. (4.19)

Now that we have an expression for the center manifold, we substitute equation
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(4.19) into equations (4.15)-(4.16) and obtain

ẏ1 = y3
1

(
5

48
+

161
√

2

128
µ +

41

192
ν − 11169

1024
µ2 − 367

√
2

512
µν − 287

1536
ν2

)

+ z1y
2
1

(
21

16
− 1575

√
2

128
µ − 309

64
ν +

154359

1024
µ2 +

9657
√

2

512
µν +

771

512
ν2

)

+ z2
1y1

(
−45

4
+

2889
√

2

64
µ +

747

32
ν − 2673

4
µ2 − 8289

√
2

64
µν − 1071

64
ν2

)

+ y1

(
−
√

2

8
µ +

7

12
ν − 33

64
µ2 +

25
√

2

32
µν +

3

32
ν2

)

+ z3
1

(
135

8
− 3969

√
2

64
µ − 1107

32
ν +

241299

256
µ2 +

30051
√

2

128
µν +

5481

128
ν2

)

+ z1

(
1 +

15
√

2

8
µ − 3

4
ν +

99

64
µ2 − 27

√
2

32
µν − 25

32
ν2

)
(4.20)

ż1 = y3
1

(
−1

6
+

181
√

2

64
µ +

71

288
ν − 901

√
2

768
νµ − 17097

512
µ2 − 141

256
ν2

)

+ z1y
2
1

(
67

16
− 4497

√
2

128
µ − 339

64
ν +

474957

1024
µ2 +

21843
√

2

512
νµ +

3521

512
ν2

)

+ z2
1y1

(
−171

8
+

4905
√

2

32
µ +

543

16
ν − 271215

128
µ2 − 20475

√
2

64
νµ − 3357

64
ν2

)

+ y1

(
−
√

2

2
µ +

1

9
ν +

7
√

2

48
νµ − 1

32
µ2 +

23

144
ν2

)

+ z3
1

(
63

2
− 14445

√
2

64
µ − 2151

32
ν +

806517

256
µ2 +

81945
√

2

128
νµ +

16083

128
ν2

)

+ z1

(
13
√

2

8
µ +

5

12
ν − 19

32
ν2 +

33

64
µ2 +

23
√

2

32
νµ

)
(4.21)

as the equations describing the flow on the center manifold. We would like to

examine the bifurcations associated with the above equations. When µ = ν = 0 in

the linear case, we see that these equations reduce to

d

dt


 y

z


 =


 0 1

0 0




 y

z


 .
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As expected, this is the case of the double zero eigenvalue, whose universal unfolding

is discussed in Guckenheimer and Holmes [12].

4.3.1 Normal Form at Point P

Although the in-phase mode pitchfork and Hopf bifurcations are straightforward,

albeit tedious, calculations, the above expressions are too algebraically complicated

to find the unsymmetrical Hopf bifurcation; however, the behavior of this system

can be found more readily when they are in normal form. Our goal is to convert

(4.20)-(4.21) to the form

ẏ = z

ż = a1y + a2y
2 + a3y

3 + b1yz + b2y
2z

b3yz2 + c1z + c2z
2 + c3z

3 (4.22)

where ai = ai(µ, ν), bi = bi(µ, ν). Due to the symmetry in our system, we do expect

a2 = b1 = c2 = 0, i.e., we do not expect any quadratic terms but we will assume

this general form for now. By having the flow on the center manifold in the form

of equation (4.22), we are immediately able to identify z = 0 as a condition for

equilibria. Finding y-values that satisfy ż|z=0 = 0 then give the location of the

other equilibria and the subsequent analysis is greatly reduced in difficulty.

A brief explanation of the normal form calculation will be given using equations

(4.20)-(4.21) with µ = ν = 0. The other five transformations are then performed in

a similar manner. Setting µ = 0, ν = 0, equations (4.20)-(4.21) reduce to

ẏ1 =
135

8
z3
1 −

45

4
y1z

2
1 +

21

16
y2

1z1 + z1 +
5

48
y3

1
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ż1 =
63

2
z3
1 −

171

8
y1z

2
1 +

67

16
y2

1z1 − y3
1

6
. (4.23)

The key to converting the equations to normal form is the use of the near-identity

transformation [30]. In our case, we posit a near-identity transformation of the form:

y1 = y2 + a1z
3
2 + a2y2z

2
2 + a3y

2
2z2 + a4y

3
2

z1 = z2 + b1z
3
2 + b2y2z

2
2 + b3y

2
2z2 + b4y

3
2. (4.24)

The ai, bi coefficients (not the same variables as in equation (4.22)) are to be chosen

such that the ẏ equation of (4.23) is of a simpler form, even at the expense of making

the ż equation of (4.23) more complicated. We plug equation (4.24) into equation

(4.23) and obtain new equations on y2 and z2:

ẏ2 = z2 +
(
b4 +

5

48

)
y3

2 +
(
b3 − 3a4 +

21

16

)
z2y

2
2

+
(
b2 − 2a3 − 45

4

)
z2
2y2 +

(
b1 − a2 +

135

8

)
z3
2

ż2 = − 1

6
y3

2 +
(

67

16
− 3b4

)
y2

2z2 +
(
−171

8
− 2b3

)
y2z

2
2

+
(

63

2
− b2

)
z3
2 . (4.25)

Then we choose the ai’s and bi’s to clean up these equations on y2 and z2. The

beauty of the near identity transformation is that we are free to choose any values

we want for the coefficients ai, bi, and so we naturally assign them values which will

zero out as many terms as possible in the ẏ2 equation of (4.25). Appropriate choices

for the ai, bi coefficients leads us to choose the near-identity transformation as

y1 = y2 +
135

8
y2z

2
2 +

81

8
y2

2z2 − 25

8
y3

2

z1 = z2 +
63

2
y2z

2
2 −

171

16
y2

2z2 − 5

48
y3

2. (4.26)
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Substitution of equation (4.26) into equation (4.23) yields

ẏ2 = z2

ż2 =
9

2
y2

2z2 − 1

6
y3

2. (4.27)

Since our goal is to obtain equations of the form given in equation (4.22) with µ, ν

not zero, we must perform successive transformations to convert equations (4.20)-

(4.21) to the correct form. The above example took care of the terms when µ = ν =

0. Now we posit a transformation of the form

y2 = y3 + µ(a1z
3
3 + a2y3z

2
3 + a3y

2
3z3 + a4y

3
3)

z2 = z3 + µ(b1z
3
3 + b2y3z

2
3 + b3y

2
3z3 + b4y

3
3) (4.28)

which will allow us to clean up the O(µ) terms when ν = 0. We then do similar

transformations to clean up the O(µ2) terms when ν = 0, the O(ν) terms when

µ = 0, the O(ν2) terms when µ = 0, and finally the O(µν) terms. After renaming

the variables, the result is that equations (4.20)-(4.21) are now in normal form:

ẏ = z

ż = y3

(
−1

6
− 175

√
2

192
µ − 367

288
ν − 1523

256
µ2 − 317

128
ν2 − 1945

√
2

384
µν

)

+ y2z

(
9

2
+

21
√

2

4
µ +

19

2
ν − 11763

32
µ2 +

729

16
ν2 − 1029

√
2

16
µν

)

+ y

(
−
√

2

2
µ +

1

9
ν − 3

2
µ2 − 1

6
ν2 −

√
2

6
µν

)

+ z

(
3
√

2

2
µ + ν − 1

2
ν2 +

3
√

2

2
µν

)
. (4.29)

These are the equations that we will examine for the remainder of our analysis at

point P, since they too describe the flow on the center manifold at point P.
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4.3.2 Bifurcation Curves

We immediately observe that z = 0 is a condition for equilibria in equation (4.29)

and the other condition, ż = 0, gives

0 = y3

(
−1

6
− 175

√
2

192
µ − 367

288
ν − 1523

256
µ2 − 317

128
ν2 − 1945

√
2

384
µν

)

+ y

(
−
√

2

2
µ +

1

9
ν − 3

2
µ2 − 1

6
ν2 −

√
2

6
µν

)
(4.30)

which is an expression with only y, y3 terms. Thus y = 0 is an equilibrium and we

know this corresponds to the in-phase mode.

To see the bifurcation curves associated with the equilibrium y = 0, z = 0,

we first perform the linearization by calculating the Jacobian of equation (4.29)

evaluated at the equilibrium point and then finding the characteristic equation. For

a pitchfork bifurcation, we set λ = 0 in the characteristic equation. Requiring our

solution to be of the form µ = a1ν + a2ν
2, we find

µ =

√
2

9
ν − 13

√
2

54
ν2 + O(ν3)

which is the in-phase mode pitchfork bifurcation curve (4.12) that we expected. If

instead we substitute λ = iω into the characteristic equation, we find the conditions

describing the in-phase mode Hopf bifurcation. Equating real and imaginary parts

to zero gives us two equations. Since we need ω ∈ R i.e., ω2 > 0, one equation gives

the condition for existence while the other gives the actual equation for the curve.

Again, requiring our solution to be of the form µ = a1ν + a2ν
2, we find

µ = −
√

2

3
ν +

√
2

2
ν2 + O(ν3)
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to be the equation of the Hopf bifurcation curve and it exists as long as

µ >

√
2

9
ν − 13

√
2

54
ν2 + O(ν3)

which corresponds to the condition ω2 > 0. We see that the equation of the Hopf

bifurcation is equation (4.13), as expected, while the condition for its existence states

that equation (4.13) must lie above the in-phase pitchfork bifurcation curve in the

cos τ − α plane.

Calculating the unsymmetrical Hopf bifurcation curve is more algebraically in-

volved. We first find the roots of equation (4.30). We then evaluate the Jacobian

of equation (4.29) at one of these roots and calculate the characteristic equation.

Setting λ = 0 gives equation (4.13). Thus we see there are no new saddle-node

or pitchfork bifurcation curves coming into point P; however, setting λ = iω and

equating real and imaginary parts to zero, we obtain conditions on the unsymmet-

rical Hopf bifurcation curve. Taylor expanding and again requiring our solution to

be of the form µ = a1ν + a2ν
2, we find

µ =

√
2

6
ν +

47
√

2

512
ν2 + O(ν3) (4.31)

as the equation of the unsymmetrical Hopf bifurcation. It will exist as long as

µ <

√
2

9
ν − 13

√
2

54
ν2 + O(ν3) (4.32)

which says that it must lie below the in-phase pitchfork bifurcation curve in the

(−ν) − µ plane, see Figure 4.1. Thus our analysis has allowed us to obtain an

analytic expression which locally describes the unsymmetrical Hopf bifurcation curve

for which we previously only had numerical confirmation of its existence.
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µ

-ν

P0

0

P Q

(4.12)

(4.12)

(4.31)

(4.13)

Figure 4.1: Partial bifurcation set and phase portraits near point P via
center manifold theory.
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We should note at this point that the polynomial approximation for the unsym-

metrical Hopf bifurcation curve (2.54) yields the local curve

µ = 0.00008 + 0.24165ν − 0.045266ν2 + O(ν3) (4.33)

which we see is only a “good” approximation for the linear term to the actual curve

(4.31), given numerically as µ = 0.23570ν + 0.12982ν2 + O(ν3).

4.4 Global Results

When we examine Figure 4.1, we see that the phase portraits to the left of point P

in the (−ν)−µ plane above and below equation (4.12) are not homeomorphic since

there exists a limit cycle below but not above the curve. We thus expect some type

of global bifurcations to occur. From the phase portraits obtained from our analysis

of the flow on the center manifold at point P, we see that we have two stable limit

cycles born as the supercritical unsymmetrical Hopf bifurcation curve is crossed from

above in the cos τ − α plane (oriented as the (−ν) − µ plane in the above analysis,

cf. Figure 4.1). Just above and just below the curve, the unstable limit cycle from

the in-phase Hopf bifurcation encircles (i) the in-phase mode equilibrium, (ii) the

two points born in the supercritical pitchfork bifurcation off of it, and (iii) the two

stable limit cycles born off these two new equilibria. In the unfolding of P, we are

able to see these results locally—even though they are global results. Our local

analysis was performed on a two-dimensional center manifold, which is guaranteed

to capture the full behavior of the system. Thus, when we say “encircle” in the full

system, we can picture it as a limit cycle lying on some two-dimensional surface (the
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center manifold) which also contains the other points in question.

Numerical integration of the equations describing the flow on the center mani-

fold, (4.29), indicates that shortly after the unsymmetrical Hopf bifurcation curve

is crossed, a symmetry-breaking double homoclinic bifurcation occurs where both

stable limit cycles join to the in-phase saddle point separating them and then both

join together to form a single stable limit cycle. For slightly lower α values, a coales-

cence of the newly created stable limit cycle and the unstable limit cycle (from the

in-phase mode) is observed. Due to the narrow strip of parameter values for which

these events occur, it is important that we try and obtain analytical expressions for

these global bifurcation curves in the neighborhood of P, if possible.

4.4.1 Symmetry-breaking Homoclinic Bifurcation

In order to obtain a closed form expression for the homoclinic bifurcation in (4.29),

we perturb off the homoclinic orbit. This works in systems of the form

ẏ = z

ż = ay − N(y) + εg(y, z, t) (4.34)

where a is a non-zero constant, N(y) is a nonlinear function of y with N(0) = 0,

and the ε = 0 system possesses a homoclinic loop through the origin [30]. This last

condition gives motivation to the idea that for small ε, the homoclinic orbit might

still persist. For ε �= 0, we want the contour integral around the closed saddle loop

to vanish. That is, we want M ≡ ∮
gdy to vanish. This condition will result in the

desired homoclinic curve. Our goal is thus to transform (4.29) to the form (4.34)
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and then examine parameter values µ, ν to see when the saddle connection remains

for ε > 0.

The flow on the center manifold at point P is given by equation (4.29) which we

now write as

ẏ = z (4.35)

ż = −A1y − A2y
3 − A3z − A4y

2z (4.36)

where we have merely renamed coefficients. We follow a calculation similar to that

of Guckenheimer and Holmes, who studied the unfolding of systems which preserve

symmetry under rotation through π [12]. We first recall that the derivatives in

(4.35)-(4.36) are given with respect to T where T = 1
ε
t was used to eliminate ε from

(2.21)-(2.23). As mentioned before, we need to convert equations (4.35)-(4.36) to

the form of equation (4.34). To do so we let

y = εu, z = ε2v, T̃ = εT. (4.37)

Then (4.35) becomes u′ = v and (4.36) becomes

ε3v′ = −A1εu − A2ε
3u3 − A3ε

2v − A4ε
4u2v, (4.38)

where ′ denotes differentiation with respect to T̃ . If we then set

A1 = ε2B1, A2 = B2, A3 = ε2B3, A4 = B4, (4.39)

we obtain

u′ = v

v′ = −B1u − B2u
3 − εB3v − εB4u

2v. (4.40)



63

We see that equation (4.40) for ε = 0 is of Hamiltonian form with Hamiltonian

H(u, v) =
v2

2
+ B1

u2

2
+ B2

u4

4
. (4.41)

Thus equation (4.41) can be rewritten as

u′ = Hv

v′ = −Hu + ε(−B3v − B4u
2v). (4.42)

where the subscript denotes partial differentiation.

We know from the discussion at the beginning of this section that the condition

for a homoclinic bifurcation in our case is

∮
(B3v + B4u

2v)du = 0, (4.43)

since this is the condition for the saddle loop becoming the separatrix when ε = 0.

Back substitution shows this to be

∮
(A3z + A4y

2z)dy = 0, (4.44)

or equivalently

M(µ, ν) ≡
∫ ∞

−∞
(A3ẏ + A4y

2ẏ)ẏdt = 0, (4.45)

where we have used ẏ = dy
dt

to convert the contour integral over the closed orbit to

a time integral. For the homoclinic solution, equations (4.35)-(4.36) become

ÿ + A1y + A2y
3 = 0, (4.46)

where

A1 =

√
2

2
µ − 1

9
ν + O(µ2, ν2, µν) < 0,

A2 =
1

6
+ O(µ, ν). (4.47)
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0

0

y→

y′→

Figure 4.2: Homoclinic solution, y = α
cosh βt

, plotted in the y − ẏ plane.

Equation (4.46) has a solution of the form y = α
cosh βt

, where β =
√−A1 and

α =
√−2A1

A2
, representing the flow along the separatrix (see Figure 4.2). Calculating

the parts in equation (4.45), we find

∫ ∞

−∞
ẏ2dt =

2

3
α2β,

∫ ∞

−∞
y2ẏ2dt =

4

15
α4β, (4.48)

and thus we have

2

3
A3α

2β +
4

15
A4α

4β = 0

i.e.,

2

3
A3

(−2A1

A2

)√
−A1 +

4

15
A4

(−2A1

A2

)2 √
−A1 = 0. (4.49)

Solutions of equation (4.49) are A1 = 0 and 4A1A4 = 5A2A3. Since we required A1 <

0 for the homoclinic solution, only the second solution is of concern. Substituting
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the known expressions for A1, A2, (4.47), noting that

A3 = −ν − 3
√

2

2
µ,

A4 = −9

2
− 19

2
ν − 21

√
2

4
µ, (4.50)

and assuming a solution of the form µ = a1ν + a2ν
2, we obtain the homoclinic

bifurcation curve

µ =
17
√

2

93
ν +

38173
√

2

178746
ν2 + O(ν3). (4.51)

Numerically, this is given as µ ≈ 0.2585ν + 0.3020ν2 + O(ν3), see Figure 4.3.

4.4.2 Coalescence of Limit Cycles

In order to find the bifurcation curve along which the limit cycles coalesce, we will

need to perturb using Jacobian elliptic functions. These functions can be thought of

as generalizations of the well-known trigonometric functions. Unlike trig functions

that are functions of only one variable (the argument), elliptic functions depend on

two variables—the argument u and the modulus k [3],[30]. There are three main

elliptic functions:

sn(u, k), cn(u, k), dn(u, k). (4.52)

When k = 0, we have

sn(u, 0) = sin(u), cn(u, 0) = cos(u), dn(u, 0) = 1, (4.53)

which illustrates why these can be thought of as generalizations of the trig func-

tions. (Note, however, that there is no trigonometric function which is analagous
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to dn(u, k).) In addition, for k = 1, we have sn(u, 1) = tanh(u), cn(u, 1) =

sech(u), dn(u, 1) = sech(u). The modulus k, which normally ranges between 0

and 1, is thus seen to affect the period of the function. For notational purposes,

we write cn(u, k) = cn and similarly sn(u, k) = sn, dn(u, k) = dn. Each of these

elliptic functions is periodic—the first two having period 4K(k) while the last has

period 2K(k) where K(k) is the complete elliptic integral of the first kind. Defining

∂cn(u, k)

∂u
≡ cn′ (4.54)

and similarly for sn and dn, we note the identities

cn′ = −sn dn, sn′ = cn dn, dn′ = −k2sn cn,

sn2 + cn2 = 1, dn2 = 1 − k2sn2. (4.55)

One final note: we adopt the notation used by Byrd and Friedman, as opposed to

Abramowitz and Stegun. The latter use m = k2 instead of k [1], [3], [30].

As discussed in the previous sections, numerical integration suggests that the

symmetry-breaking homoclinic bifurcation creates one stable limit cycle which even-

tually coalesces with the unstable limit cycles created from the in-phase mode Hopf

bifurcation. Alternatively, we recall

Bendixon’s Criterion ([12]) Consider the system ẏ = f1(y, z), ż = f2(y, z) on a

simply connected region D ⊆ R2 and denote it’s Jacobian matrix A =




∂f1

∂y
∂f1

∂z

∂f2

∂y
∂f2

∂z


.

If tr A is not identically zero and does not change sign, then the system has no closed

orbits lying entirely in D.

The coalescence of limit cycles is suggested by observing that for our system the
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trace of the Jacobian matrix of equation (4.29)

tr(Df) = y2

(
9

2
+

21
√

2

4
µ +

19

2
ν

)
+

(
3
√

2

2
µ + ν

)
+ O(µ2, ν2, µν) (4.56)

together with Bendixon’s criterion imply that no closed orbits exist for µ > −
√

2
3

ν.

This condition corresponds to the in-phase mode Hopf bifurcation curve which only

exists above the in-phase pitchfork bifurcation curve (in the parameter plane) but

now gives a bound on the existence of this limit cycle and the one created in the

symmetry-breaking homoclinic bifurcation when both are below the in-phase mode

pitchfork bifurcation curve. We therefore expect a bifurcation curve corresponding

to the coalescence of limit cycles to occur somewhere between µ = 17
√

2
93

ν in the

third quadrant and µ = −
√

2
3

ν in the fourth quadrant of the ν − µ plane. We will

see it is far closer to the first of these curves and we will show this analytically by

perturbation using Jacobian elliptic funtions (cf. [3],[8],[12]).

As with the homoclinic bifurcation, we consider the integrable system

ÿ + A1y + A2y
3 = 0, (4.57)

where A1, A2 are defined by equation (4.47). Whereas we previously considered

perturbations of the homoclinic orbit, we now must consider perturbations of the

closed level curves of the Hamiltonian lying inside and outside of this homoclinic

orbit. We again consider the Melnikov function

M(µ, ν) = A3

∫ ∞

−∞
ẏ2dt + A4

∫ ∞

−∞
y2ẏ2dt (4.58)

and note that the condition M(µ, ν) = 0 must be satisfied in order for a given closed
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orbit to remain after perturbation. We assume a solution of the form

y = Ccn(u, k), u = At + B (4.59)

for M(µ, ν) = 0, where cn(u, k) is a Jacobian elliptic function, A and C are positive

constants and B is the phase angle.

Substituting equation (4.59) into equation (4.57), we find

[CA2(2k2 − 1) + A1C]cn + [C3A2 − 2k2A2C]cn3 = 0. (4.60)

We seek nontrivial solutions, i.e., C �= 0 and thus obtain

A2(1 − 2k2) = A1, (4.61)

C2A2 = 2k2A2. (4.62)

Solving equations (4.61)-(4.62), we find

A2 = A1 + A2C
2, (4.63)

k2 =
A2C

2

2(A1 + A2C2)
. (4.64)

Recall our purpose for performing these calculations is to evaluate the Melnikov

function M(µ, ν) given by (4.58). The first term can be written

A3

∫ ∞

−∞
ẏ2dt = A3

∮
C2A2(cn′)2du

dt

du

= A3C
2A

∮
sn2dn2du

= A3C
2A

{∮
sn2du − k2

∮
sn4du

}
. (4.65)

Because both integrals are evaluated over a closed path, equation (4.65) becomes

A3C
2A

{
1

k2
[K − E] − k2

[
1

3k4

(
(2 + k2)K − 2(1 + k2)E

)]}
(4.66)
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where E is the complete elliptic integral of the second kind and the dependence of

E and K on k has been supressed. Equation (4.66) further simplifies to

A3C
2A

{
K
[

1

3k2

(
1 − k2

)]
+ E

[
1

3k2

(
−1 + 2k2

)]}
. (4.67)

The second term of the Melnikov function can also be evaluated. We have

A4

∫ ∞

−∞
y2ẏ2dt = A4C

4A
∮

cn2(cn′)2du

= A4C
4A

∮
cn2(sn2(1 − k2sn2))du

= A4C
4A

∮
[(1 − k2)cn2 + (2k2 − 1)cn4 − k2cn6]du. (4.68)

Evaluating each term of the contour integral and simplifying, we find equation (4.68)

becomes

A4C
4A

{
− 1

15k4

(
K[k4 − 3k2 + 2] + E[−2k4 + 2k2 − 2]

)}
. (4.69)

Our Melnikov function M(µ, ν) now has a dependence on C and so we write

M(C, µ, ν) = A3C
2A

{
1

k2
[K − E] − k2

[
1

3k4

(
(2 + k2)K − 2(1 + k2)E

)]}

+ A4C
4A

{
− 1

15k4

(
K[k4 − 3k2 + 2] + E[−2k4 + 2k2 − 2]

)}
(4.70)

where k2 = A2C2

2(A1+A2C2)
.

We know that the existence of a limit cycle corresponds to M(C, µ, ν) = 0. Just

after the symmetry-breaking homoclinic bifurcation, M(C, µ, ν) = 0 has two roots,

corresponding to the unstable limit cycle and the stable limit cycle created from

the in-phase mode Hopf and symmetry-breaking homoclinic bifurcations, respec-

tively. The coalescence of these two limit cycles implies a second condition, namely
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∂
∂C

M(C, µ, ν) = 0. Thus our task is to simultaneously solve

M(C, µ, ν) = 0,
∂M

∂C
= 0, (4.71)

by eliminating C and examining the remaining equation in µ, ν.

Using equation (4.64) and the identities

dK

dk
=

E − (1 − k2)K

k(1 − k2)
,

dE

dk
=

E − k

k
(4.72)

we can calculate ∂M
∂C

= ∂M
∂k

∂k
∂C

. Equation (4.64) can then be used to eliminate C

from (4.71), leaving equations involving k and not C; however, only even powers

of k appear. Thus we make the substitution m = k2 and proceed to solve f ≡
M(m, µ, ν), g ≡ ∂M(m,µ,ν)

∂C
for the value of m that satisfies both equations. Since

µ, ν are assumed to be small, we make the substitutions

m = m0 + m1µ + m2ν, (4.73)

K(m) = K(m0) +

(
E(m0) − (1 − m)K(m0)

2m(1 − m)

)
(m1µ + m2ν), (4.74)

E(m) = E(m0) +

(
E(m0) − K(m0)

2m

)
(m1µ + m2ν) (4.75)

into f and g and Taylor expand, keeping only up to linear terms in µ, ν. We now

have two homogeneous linear algebraic equations in µ, ν. For a nontrivial solution,

we must have ∣∣∣∣∣∣∣∣
∂f
∂µ

∂f
∂ν

∂g
∂µ

∂g
∂ν

∣∣∣∣∣∣∣∣ = 0. (4.76)

Equation (4.76) is given by

(−4K2m2 + 7K2m − 3K2 + 8Km2E − 18KmE + 8KE

+10mE2 − 5E2)(m − 1)(2m − 1)m6 = 0. (4.77)
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At this point we pause to consider the roots of this equation. The root m = 0

can immediately be discarded as it corresponds to the trivial solution y = 0, since

m = 0 ⇒ C = 0. Likewise, the root m = 1 can be discarded because it corresponds

to the condition A1 = 0, i.e., µ =
√

2
9

ν which is the equation for the in-phase mode

pitchfork bifurcation and we know limit cycles exist on both sides of this curve in

the parameter plane. The root m = 1
2

might be considered valid but if we consider

the case µ = ν = 0 (which implies A3 = A1 = 0), we find the limit cycle has zero

size. Thus the value of m corresponding to the condition for coalescence of the two

limit cycles is given by

(−4K2m2 +7K2m−3K2 +8Km2E−18KmE +8KE +10mE2−5E2) = 0. (4.78)

We denote the root of this equation by m0 and note m0 ≈ 0.92939. (Note that

m0 = 1
2

is also a root of equation (4.78) but we ignore it for the reasons mentioned

above.) Solving M(m0, µ, ν) = 0 for µ then gives

µ =

√
2

3

[
32m2

0E − 17K + 33Km0 − 16m2
0K + 17E − 32Em0

−31K − 8m2
0K + 31E + 39Km0 + 16m2

0E − 16Em0

]
ν (4.79)

where E = E(k) = E(
√

m0), K = K(k) = K(
√

m0) are known quantities. Thus,

numerically, the curve along which the limit cycles coalesce is

µ ≈ 0.26606ν + O(ν2). (4.80)

Figure 4.3 shows the completed bifurcation set and phase portraits at point P. We

can also examine the bifurcation diagram by encircling point P, as seen in Figure

4.4.
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µ

-ν

P
0

0

P Q

(4.12)

(4.12)

(4.31)

(4.51)

(4.75)

(4.13)

Figure 4.3: Bifurcation set at point P, with curves drawn distorted for
better viewing. Note that the out-of-phase mode exists throughout, but
far away from, this sequence. Also, the third eigendirection comes into
the plane of this page (nearly normal).
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IP mode

R , R , φ
1      2

A

B

C

A

ULC
2 

S
LC

1 
S

LC

1 S
LC

2 S
LC

P

encircling
 point P

A

B

C
P

c b
a

B Ca b c

ULC

a, b, c

Figure 4.4: Bifurcation diagram encircling point P. Note that stable and
unstable limit cycles are shown.
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Chapter 5

Point H

5.1 Introduction

We have finished the analysis of point Q which had a one-dimensional center man-

ifold and of point P which had a two-dimensional center manifold. Recall that we

defined point H as the one point along the double saddle-node bifurcation curve in

cos τ − α parameter space which has two eigenvalues satisfying λ = 0 (where we

pick cos τ ≤ 0 as we did with points Q and P since all have a mirror image for

cos τ �→ − cos τ). But unlike points Q and P, we have no analytic expression for

the parameter values corresponding to point H. We can only hope to proceed in

the same manner as with our analysis of point P, since both have two-dimensional

center manifolds; however, we must be extra careful in interpreting our (numeri-

cal) results. We will also see that some of the straightfoward calculations used in

the analysis of points Q and P will be altered because of problems caused by not

75
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having the values of R1, R2, φ, τ, α in closed form. Before proceeding, we note that

point H—although defined uniquely in the parameter plane—has two different sets

of (R1, R2, φ) values in the phase plane, since it is the unsymmetrical equilibria

which undergo bifurcations. These values are related by (2.27):

(R1, R2, φ) �→ (R2, R1,−φ).

Without loss of generality, we pick the equilibrium point

R1 = 2.0151, R2 = 1.3926, φ = 0.56394 (5.1)

for the values about which we linearize. For points Q and P, we chose 0 < τ < π. Our

unfolding resulted in a picture that needed to be reflected about cos τ = 0 to compare

with the expected incoming curves. Since we expect many other difficulties here, we

avoid this situation by taking π < τ < 2π. Thus point H is given approximately by

τ = 4.2026, α = 0.40506, (5.2)

where we are able to find these values to as many significant figures as desired, even

though we cannot obtain a closed form answer. That is, we can obtain values for

R1, R2, φ, τ, α which are as accurate as we want but they are no more accurate than

specified. Thus, we cannot require arbitrarily small errors but we can require them

to be less than, say, 10−50.

We note that point H can be written in an exact, implicit representation. We

solve the three equations which give the condition for the existence of slow-flow

equilibria, f(R1, R2, φ, τ, α) = 0, together with the equations c1 = c0 = 0 where c1
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and c0 are the coefficients of the linear and the constant terms in the characteris-

tic polynomial of the Jacobian of the system given by f . Explicity, we have the

characteristic equation for f as λ3 + c2λ + c1λ + c0 where c0 and c1 are

c0 =
R2

1α

128R2
2

(
16αR4

1 cos2(φ − τ) − 12R6
1α cos2(φ − τ) + 16αR4

2 cos2(φ + τ)

+ 12αR6
2 − 12αR6

2 cos2(φ + τ) − 16α2R2R
3
1 cos(φ + τ) − 16αR4

1 + 12R6
1α

− 16αR4
2 − 16R1R

3
2α

2 cos(φ − τ) − 12R3
2R

3
1 cos(φ − τ) + 16R2R

3
1 cos(φ − τ)

+ 32αR2
1R

2
2 sin(φ − τ) sin(φ + τ) − 12R3

1R
3
2 cos(φ + τ) − 12R5

1R2 cos(φ − τ)

+ 9R3
1R

5
2 cos(φ + τ) + 9R5

1R
3
2 cos(φ − τ) − 12R4

1R
2
2α sin(φ − τ) sin(φ + τ)

− 12R1R
5
2 cos(φ + τ) + 16α2R1R

3
2 sin(φ + τ) cos(φ + τ) sin(φ − τ)

+ 16R1R
3
2 cos(φ + τ) − 12αR4

2R
2
1 sin(φ − τ) sin(φ + τ)

+ 16R3
1R2α

2 cos(φ − τ) sin(φ + τ) sin(φ − τ)
)

, (5.3)

c1 =
−R2

1

64R2
2

(
−16R2

1R
2
2 + 32α2R4

1 cos2 φ cos2 τ − 16α2R4
1 cos2 τ − 16α2R4

2 cos2 τ

− 24R3
2αR3

1 cos φ cos τ + 32R2αR3
1 cos φ cos τ + 32R2αR3

1 sin φ sin τ

− 16α2R4
2 cos2 φ − 16α2R2

1R
2
2 + 32α2R4

2 cos2 φ cos2 τ

− 32α2R4
2 cos φ cos τ sin φ sin τ + 32R1αR3

2 cos φ cos τ − 32R1αR3
2 sin φ sin τ

− 12R1R
5
2α cos φ cos τ + 12R1R

5
2α sin φ sin τ − 12R5

1R2α cos φ cos τ

− 12R5
1R2α sin φ sin τ − 16α2R4

1 cos2 φ + 32α2R4
1 cos φ cos τ sin φ sin τ

− 9R4
1R

4
2 + 12R4

1R
2
2 + 12R4

2R
2
1 − 16α2R2

1R
2
2 cos2 φ + 48α2R2

1R
2
2 cos2 τ

)
. (5.4)

The solution of f(R1, R2, φ, τ, α) = 0, together with equations (5.3)-(5.4) both

set equal to zero gives us point H; however, trying to manipulate these equations to

produce an explicit representation has produced little success. We have tried solving
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for the fixed points as a function of the parameters as R1(τ, α), R2(τ, α), φ(τ, α),

and have also tried solving for the parameter values as functions of the phase space

variables as τ = τ(R1, R2, φ), α = α(R1, R2, φ). In both instances, we tried to

solve using τ as the delay parameter and then separately using cos τ as the delay

parameter. We thus resorted to numerically estimating the values R1, R2, φ, τ, α at

point H. Substitution of these values into (2.24)-(2.26) shows the accuracy to be the

same order as the last decimal place kept.

To see how our analysis may be affected since we only have estimates of all

the values, we will at various times consider simple examples which illustrate the

problems we may expect in a given calculation. We will thus bootstrap our way

through the analysis of point H. If we follow the analysis of point P, our first step

would be to linearize about the equilibrium point (5.1). Our system is then in the

form ẋ = Ax; however, the entries of A are not exact. It is known that O(ε) changes

in our matrix can result in O(
√

ε) changes in the eigenvalue [10]. And although the

sensitivity of a numerical estimate is important, the stability of the method chosen

for calculating the desired quantities will be very crucial.

5.2 An Example of Expected Problems

We consider the system

ẋ = x2 + y2

ẏ = −y + x2. (5.5)
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We first will analyze this analytically and then contrast what happens when small

errors are introduced.

Linearization of (5.5) gives

ẋ = 0

ẏ = −y. (5.6)

This has one zero eigenvalue and thus we can examine the corresponding one-

dimensional center manifold. We assume a center manifold of the form

y = ax2 + · · · (5.7)

so that

ẏ = 2axẋ + · · · . (5.8)

As in the previous center manifold calculations, we substitute equations (5.7),(5.8)

into the ẏ equation of (5.5) and obtain

2aẋx = −(ax2 + · · ·) + x2. (5.9)

This introduces ẋ terms which we clear from the equation by substitution, using

equation (5.5):

2a(x2 + y2)x = −(ax2 + · · ·) + x2. (5.10)

This introduces y terms and we then substitute in for y using (5.7) to obtain

2a(x2 + (ax2 + · · ·)2)x = −ax2 − bx3 + x2. (5.11)

Taylor expanding and keeping quadratic terms in x gives 0 = −ax2 + x2. Equating

the coefficient of x2 to zero gives a = 1 and the center manifold is thus y = x2.
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Substitution into equation (5.5) shows that the flow on our one-dimensional center

manifold is then described by

ẋ = x2 + x4. (5.12)

If we slightly misidentified our eigenvectors in the above analysis (since inaccu-

rate eigenvalues give inaccurate eigenvectors), our system would be given by
 x

y


 =


 1 β

α 1




 x1

y1


 , (5.13)

where α, β are small. Here x, y correspond to our physical coordinates x, y, z at

point H, while x1, y1 correspond to the approximate eigencoordinates. In our original

example, equation (5.5), we thus have

ẋ = (x1 + βy1)
2 + (αx1 + y1)

2

ẏ = −(αx1 + y1) + (x1 + βy1)
2. (5.14)

Differentiating (5.13) and substituting into (5.14), we are able to solve for x1, y1 to

obtain expressions of the form

ẋ1 = f(x1, y1), ẏ1 = g(x1, y1) (5.15)

for some functions f, g. Even though these equations have small error terms in-

cluded, we still hope to be able to perform a one-dimensional center manifold anal-

ysis. Proceeding as before, we assume a center manifold of the form y1 = Ax2
1 + · · ·

so that ẏ1 = 2Ax1ẋ1. Substituting these expressions into the ẏ1 equation of (5.15)

and Taylor expanding (keeping quadratic terms in x1) gives

0 = − α

αβ − 1
x1 −

(
2Aβα

αβ − 1
+

α + α3 − 1 + A

αβ − 1

)
x2

1. (5.16)
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We ignore the x1 term since we know it is zero and proceed to set the coefficient of

the x2
1 term to zero and obtain

A =
1 − α − α3

1 + 2αβ + 1
. (5.17)

Thus the center manifold is known since y = Ax2
1. Ignoring terms of O(β2, α2, αβ)

(since the product is assumed small in each case), the flow on the center manifold

is then described by the equation

ẋ1 = x2
1 + (2α + 2β)x3

1 + (1 − 2α)x4
1. (5.18)

For this example, if we take α = .0001, β = .0001, we see that the flow on the

center manifold becomes

ẋ1 = x2
1 + 0.0004x3

1 + 0.9998x4
1. (5.19)

Stepping back and comparing (5.19) with the exact flow on the center manifold,

equation (5.12), we see that different behavior may occur depending on α, β.

The above error analysis assumed incorrect eigenvectors. If the equilibrium point

was also off:

x = x2 + δ, y = y2 + ξ, (5.20)

equation (5.5) becomes (after ignoring higher order terms in δ, ξ):

ẋ2 = x2
2 + y2

2 + 2(x2δ + y2ξ)

ẏ2 = −y2 + x2
2 + (2x2δ − ξ). (5.21)

Again we see that errors in the beginning will propagate throughout. Keeping these

examples in mind, we proceed with the analysis of point H.



82

5.3 Jordan Form

Recall that point H is defined to be the point along the double saddle-node bi-

furcation curve (in the cos τ − α plane) which has two zero eigenvalues; however,

numerical roundoff error prevents us from finding point H exactly, no matter how

many significant figures are kept. The analysis performed at point H will be, in

theory, the same as that performed at point P since both have a two-dimensional

center manifold. The standard calculation at point P is to use chain vectors to find

the second generalized eigenvector for λ = 0. But we take a simple example to show

our current case will require a more stable algorithm.

5.3.1 Double Zero Eigenvalue

Consider the matrix

A =


 1 −1

1 −1


 (5.22)

which has repeated eigenvalue zero with eigenvector (1, 1). If we pick the chain

vector u = 1
2
(1, − 1), this gives

R =


 1 1

2

1 −1
2


 .

Since R−1AR = J , we find

J =


 0 1

0 0


 .
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We recall that this was the case at point P. In the present case, we consider a slight

change in A:

Ã = A + εM, ε << 1. (5.23)

It turns out that Ã has approximate eigenvalues λ,−λ with eigenvectors v = (1, 1−
λ), (1, 1+λ) where λ ∼ √

ε (cf. [10]). With point P, we computed a chain vector via

Au = v and obtained two linearly independent equations. But Ã is now invertible

(with probability one since the set of singular n-by-n matrices has measure zero [40])

and thus we have u = Ã−1v. But

Ã−1 ∼ 1

λ2
Ã (5.24)

so that

u ∼ 1

λ2
Ãv ∼ 1

λ
v (5.25)

which is parallel to v, whereas for exact A, we know u ⊥ v. Thus an alternative

method for computing the chain vector is sought.

Since Av = 0 and Au = v, we consider A2u = 0 as a more stable method

of finding the companion matrix for the Jordan form. Using Ã from before, we

calculate

Ã2 = A2 + ε(AM + MA) + O(ε2). (5.26)

Since Ã has eigenvalues λ,−λ with eigenvectors v = (1, 1 − λ), (1, 1 + λ), we see

that Ã2 has eigenvalues λ2, 2 + · · · with eigenvectors v = (1, − 1 + · · ·), (1, 1 + · · ·).
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We now consider this type of example in a three-dimensional problem by considering

A =




3
2

0 −1
2

3
2

0 −1
2

7
2

−2 −1
2




,

which has eigenvalues λ = 0, 0, 1 with

J =




0 1 0

0 0 0

0 0 1




, R =




1 1 1

1 0 0

3 1 1




,

where A = RJR−1. If we again assume Ã = A+εM, ε << 1, the eigenvalues satisfy

λ ∼ √
ε,−√

ε, 1. Taking ε ∼ O(10−4), the eigenvector for λ = 1 is (1, .9994, 1.0003)

whereas it is exactly (1, 1, 1) for A. One of the eigenvectors for λ = 0 is calculated

to be (1, 1.004, 2.9982) whereas it is exactly (1, 1, 3) for A. For the chain vector

u, we want (Ã − λI)u = v, i.e., Ãu = v (since λ = 0). and so we assume u =

(u1, u2, u3). We need to find 3 equations in our three unknowns u1, u2, u3. From

the previous discussion we know that Ã2u = 0 gives one equation and Ãu = v gives

one equation (whereas with point P, the latter gave two equations). We can always

use an orthogonal projection to make u unique:

ũ = u −
(

u · v
v · v

)
v. (5.27)

The third equation is thus obtained by subtracting off the v component. In our

current example, we find u = (u1, u2, 2u2 + u1) from the Ã2u = 0 equation. From

the Ãu = v equation, we find u = (u1, − 1 + u1, − 2 + 3u1). To make this unique,
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we put

ũ = u −
(

u · v
v · v

)
v =




7
11

−4
11

−1
11




. (5.28)

Numerically, we find

ũ =




.636 − .0007u1

−.363 − .0014u1

−.0911 + .0007u1




. (5.29)

The terms with u1 will always appear at the significant figure that we have rounded

to and in practice, we take care of this by setting u1 = 0 to obtain ũ = (.636, .363, −
.0911). The important point in these calculations is that the error introduced al-

ways appears near the order of the number of decimal places kept. To see this

mathematically, we consider the system of equations to be solved as F (ae) = 0,

where ae is the exact answer (and is a row of the matrix A in the present case). For

a ≈ ae, we have F (a) = F (ae) + DFae(a − ae) + · · · . Then the error w is given by

w = DFae(a − ae), ignoring higher order terms. If DFae is invertible, the error will

then propagate linearly and the system we are solving is said to be regular. In the

above calculations and the analogous ones at point H, this is always the case.

In dealing with point H, we know λ = 0,−1 are the eigenvalues with λ = 0 being

a double zero eigenvalue, by definition. The second eigenvalue is seen to approach

λ = −1 as more significant figures are kept. We calculate the first eigenvector

of λ = 0 by assuming v = (1, v1, v2) (since eigenvectors can always be scaled in

magnitude) and solving for v1, v2 in the two linearly independent equations generated

by Av = 0. We then proceed to find the chain vector by the above algorithm.
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5.4 Unfolding H

We begin by linearizing about point H by using

R1 = 2.0151 + x, (5.30)

R2 = 1.3926 + y, (5.31)

φ = 0.56394 + z (5.32)

so that the coordinates x, y, z are physical coordinates which are local about point

H. Substituting (5.30)-(5.32) into the slow-flow equations (2.24)-(2.26), setting µ =

ν = 0 and ignoring higher order terms, we obtain


x

y

z




= A




x1

y1

z1




, (5.33)

where

A =




−1.0227 0.010972 0.28162

−0.17801 −0.22725 −0.19462

−0.13871 0.20071 0.25000




. (5.34)

We now impose the eigenvalues (by definition of point H) λ = 0, 0,−1. Center

manifold theory tells us that we can expect a two-dimensional center manifold. As

the exact matrix A is not diagonalizable, we follow the above discussion to obtain

a generalized set of eigenvectors. We find

R =




1 1 1.5826

0.24827 −4.0279 8.8157

0.071101 3.7886 8.9548




(5.35)
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and

R−1AR = J =




−1.0000 0 0

0 0 1.0000

0 0 0




. (5.36)

Now with our full set of generalized eigenvectors, we can rotate to generalized eigen-

coordinates so that we may apply center manifold theory. The eigencoordinates,

x1, y1, z1, are defined by the equation


x

y

z




= R




x1

y1

z1




.

We substitute these values of x, y, z into (5.33), which will allow us to obtain the

flow on the center manifold in terms of the eigencoordinates.

Since we want to unfold point H, we make the substitution

τ = 4.2026 + ν (5.37)

α = 0.40505 + µ, (5.38)

into the previous result. We note here that the analysis at point H was done keeping

answers to 50 decimal places in all the variables. (By carefully watching the error

propagate, we see that error introduced at each calculation increases linearly since

the systems being solve are regular but we do not run into problems similar to

those that we encountered in finding the chain vector via an unstable method.) We

calculate the expected double saddle-node bifurcation curve

α2 =
1

8(1 − cos2 τ)
, cos2 τ <

1

3
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to be given, in local coordinates by the equation

µ = −.2264ν + .3291ν2. (5.39)

The empirical polynomial expression for the unsymmetrical Hopf bifurcation curve

(2.54) is the other curve we expect to see and is given by

µ = 0.000047 − 0.2260ν (5.40)

at point H; however, as with point P, we expect this equation to only roughly

approximate the actual curve.

For the unfolding of H, we begin with the three differential equations in terms

of the eigencoordinates x1, y1, z1. Proceeding as with point P, we solve for ẋ1, ẏ1, ż1

and Taylor expand the equations keeping cubic terms in x1, y1, z1 (cf. point P) and

quadratic terms in µ, ν. We then have three equations:

ẋ1 = G1(x1, y1, z1, µ, ν) (5.41)

ẏ1 = G2(x1, y1, z1, µ, ν) (5.42)

ż1 = G3(x1, y1, z1, µ, ν). (5.43)

We again note that although the notation is the same as that used in the analysis

of point Q and P, the values of the variables Gi (and G̃i which is used later) are not

the same in any of the cases. From center manifold theory, we know the flow on the

center manifold is going to be given by a two-dimensional system of equations. In

terms of the eigencoordinates, only the x1 direction has nonzero eigenvalue λ = −1

and so our center manifold will involve both y1 and z1 terms. We thus want to
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express x1 in terms of y1, z1. To do this, we need to assume an appropriate form for

the center manifold. Trying to stay as general as possible, we assume the form

x1,cm = z2
1(a1 + a2 µ + a3 ν + a4 µ2 + a5 µ ν + a6 ν2)

+ z1 y1(a7 + a8 µ + a9 ν + a10 µ2 + a11 µ ν + a12 ν2)

+ y2
1(a13 + a14 µ + a15 ν + a16 µ2 + a17 µ ν + a18 ν2)

+ z1(a20 µ + a21 ν + a22 µ2 + a23 µ ν + a24 ν2)

+ y1(a26 µ + a27 ν + a28 µ2 + a29 µ ν + a30 ν2)

+ (a32 µ + a33 ν + a34 µ2 + a35 µ ν + a36 ν2) (5.44)

where we set a19 = a25 = a31 = 0 since we do not want any O(1) translation in the

constant or linear terms. Comparing with (3.3), we see that the center manifold at

point H will be given by

W c = {(x1, y1, z1)| x1 = h(y1, z1)} (5.45)

with h(0) = Dh(0) = 0 and h(y1, z1) = x1,cm. We substitute this equation into

(5.41). This will introduce ẏ1, ż1 terms after the differentiation is carried out. We

then substitute equations (5.42)-(5.43) which reintroduces x1 into the equations

but rids them of any ẋ1, ẏ1, ż1 terms. One more substitution of equation (5.44)

into the new version of equation (5.41) gives an equation which only has y1, z1

terms. We move all the terms to one side and Taylor expand the expressions,

keeping cubic terms in x1, y1, z1 and quadratic terms in µ, ν. Our resulting equation

G̃1(y1, z1, µ, ν) = 0 can then be compared to equation (5.44). We thus obtain the
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center manifold

x1,cm = z2
1(10.089 − 22.225µ + 24.131ν − 227.48µ2 + 221.51µν − 22.448ν2)

+ z1y1(6.3626 + 50.924µ− 34.518ν + 152.32µ2 − 218.23µν + 26.190ν2)

+ y2
1(−4.7379 − 14.327µ + 3.8614ν − 8.1954µ2 + 26.445µν − 4.5501ν2)

+ z1(0.64599µ + 3.0357ν − 19.987µ2 + 20.377µν − 2.1065ν2)

+ y1(3.8299µ − 1.4431ν + 5.3981µ2 − 7.9593µν + 0.15185ν2)

+ 0.34963ν − 0.40602µ2 + 1.4019µν − 0.10759ν2. (5.46)

Note that unlike with point P, we now have linear terms (even though none are O(1)

terms). We substitute the above expression for the center manifold into (5.42)-(5.43)

and obtain

ẏ = y2(0.98661− 0.60929µ + 0.39509ν − 0.13803ν2 + 1.6947νµ − 0.044578µ2)

+ yz(−5.2574 + 0.57278µ + 1.7861ν + 7.5440µ2 − 1.0240νµ + 1.5074ν2)

+ z2(1.5616 − 8.1958µ + 2.1465ν − 8.3280µ2 + 12.295νµ + 1.4497ν2)

+ y(0.34740µ− 0.11105ν + 0.17847µ2 − 0.36642νµ − .0010127ν2)

+ z(1 + 1.9284µ + 0.42867 − 0.13104µ2 + 1.5027µν − 0.41588ν2)

+ (0.11416µ − 0.050703ν − 0.11102νµ − 0.031126ν2)

ż = y2(−0.12636 + 1.3503µ − 0.27086ν + 1.4980µ2 − 1.6311νµ − 0.082164ν2)

+ yz(3.1092 + 2.1009µ + 1.6089ν − 4.9572µ2 + 8.5392νµ − 1.1615ν2)

+ z2(−2.8774 − 2.2378µ − 0.43067ν + 2.6039µ2 − 2.8088νµ + 0.82512ν2)

+ y(−0.16636µ− 0.13440ν − 0.18469µ2 − 0.18154νµ + 0.000409834ν2)
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+ z(0.19507µ − 0.29706ν + 0.015631µ2 − 0.91043νµ − 0.031066ν2)

+ (−0.048298µ − 0.010936ν − 0.040051νµ + 0.10317ν2) (5.47)

as the equations describing the flow on the center manifold.

5.5 Normal Form at Point H

Recall that in performing the normal form calculation at point P, we used successive

near-identity transformations to convert the ẏ equation of our system to the form

ẏ = z (cf. (4.29)). In our attempt to perfom the same analysis at point H, we

unfortunately run into problems due to error propagation. The problems are seen

because adding cubic terms to the normal form equations, for instance, changes the

bifurcations that we observe while keeping cubic terms in (5.47) doesn’t change the

bifurcation curves we observe. As we know our entire analysis was approximate,

we cannot trust any results which are not stable to small changes such as higher

order corrections. But the flow on the center manifold, given by equation (5.47)

does illustrate the behavior we expect, namely a saddle-node bifurcation and a

supercritical Hopf bifurcation both coming in tangent to each other and the Hopf

terminating at the intersection point H, as is seen using DsTool. In addition, we

observe that the homoclinic bifurcation curve terminates at point H. (See Figure 5.1

and note that the same bifurcation sequence is happening for the partner given by

(R2, R1,−φ).) In addition, we graphically estimate the slope of the incoming curves

to be given by

µ ≈ −0.226ν (5.48)
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(1) : Double saddle-node bifurcation
(2) : Hopf bifn of unsymmetrical equilibria
(3) : Homoclinic bifurcation

(1)

(2)

(3)

H

µ

0

ν 0

P
Q

H

Figure 5.1: Numerical estimates of bifurcation set at point H and corre-
sponding phase portraits. By symmetry, this bifurcation sequence occurs
at its mirror image under (2.27) in the cos τ − α plane. The bifurcation
curves are drawn slightly distorted for better viewing.
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which agrees with the linear term of the expected incoming curves; however, these

results are only local results and thus we must restrict our variables to a small

neighborhood around the origin. In this case, we need to keep −0.0004 < y1, z1 <

0.0004 and −0.004 < µ, ν < 0.004 in order to keep extraneous roots from appearing.

A closer examination of equation (5.47) and the corresponding bifurcation sequence

seen at point H reveals that we actually have an unsymmetric Takens-Bogdanov

bifurcation (as opposed to the symmetric Takens-Bogdanov bifurcation which was

seen at point P) and numerical simulation using DsTool—both the full equations

(2.24)-(2.26) and via center manifold theory—confirms the phase portraits are the

ones expected [12].

5.6 Global Results

Recall that we were able to see, through a local analysis, a symmetry-breaking

double homoclinic bifurcation at point P (cf. (4.4)) because the two unsymmetrical

equilibria were bifurcating off the in-phase mode and the in-phase mode formed the

saddle connection for both homoclinic orbits. Now, however, our local behavior is

not in the neighborhood of the in-phase mode but is instead local in the neigh-

borhood of one of the unsymmetrical equilibria. This difference turns out to be

extremely important because we are not able to infer what happens to the in-phase

mode throughout this bifurcation sequence. To be more specific, we observe a sta-

ble limit cycle being born as the unsymmetrical Hopf bifurcation curve is crossed

from above in the ν −µ (or equivalently, the cos τ −α) parameter plane. This limit
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cycle grows and eventually becomes a homoclinic orbit for certain values of µ, ν, see

Figure 5.1.

By symmetry arguments, we know this same bifurcation sequence is also occur-

ring at the other unsymmetrical equilibria given by (R2, R1,−φ) in terms of the

original slow-flow variables. For slightly lower values of ν with µ fixed, no stable

limit cycle exists. Recall that at point P, one large stable limit cycle resulted from

the double homoclinic connection. Thus it does not appear that we have anything

that can merge with the unstable limit cycle (created from the in-phase mode Hopf

bifurcation) which still surrounds all of the equilibria (excluding the out-of-phase

mode). We must go back to equations (2.24)-(2.26) to examine the fate of the

unstable limit cycle.

Using DsTool, we were able to see that the unstable limit cycle created in the

Hopf bifurcation (2.46) and destroyed near point P in the limit cycle coalescence

(cf. (2.54),(4.79)) disappears for values of α slightly below the homoclinic bifurcation

curve (and thus to the left of point H) which terminates at point H, cf. Figure 5.1.

For example, fixing τ = 4.15 and varying α we see that

i) two stable limit cycles exist below α ≈ 0.4172; unstable limit cycle exists

ii) a homoclinic connection of stable limit cycles occurs at α ≈ 0.4167; unstable

limit cycle exists

iii) no limit cycles exist at or below α ≈ 0.4163

The last observation was inferred as curves beginning close to the unsymmetrical

spiral ended up at the out-of-phase mode, since they are no longer restricted by the

unstable limit cycle. We note that the phase portraits for the latter two cases are not
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homeomorphic since in one case we have one unstable and two stable limit cycles and

in the next case we have no limit cycles. Careful numerical exploration reveals an

additional bifurcation curve which creates a stable limit cycle in this region (through

a heteroclinic connection) and occurs near α ≈ 0.41636, see Figure 5.2. (We again

note that the pictures in Figures 5.2-5.3 are drawn as if they are two-dimensional

because numerical simulation of the slow-flow equations (2.24)-(2.26) indicates that

all trajectories are quickly drawn onto a somewhat curved two-dimensional surface

on which the dynamics shown in the figure occur.) Independent numerical checks

reveal that a limit cycle does indeed exist for certain parameter values, including

for instance τ = 4.15, α = 0.41635. As the homoclinic connection curve emanating

from point P terminated at point H, we now seek to find the beginning point of

this curve of heteroclinic connections which give rise to the large stable limit cycle.

Numerical exploration leads us to conjecture that this curve of heteroclinic connec-

tions begins at the point where the homoclinic curve passes through the pitchfork

bifurcation curve given by equation (2.38) and we label this point S. We also label

the intersection of the limit cycle coalescence curve and the in-phase mode pitch-

fork bifurcation curve as point A. Figure 5.3 shows the bifurcation curves in the

neighborhood of point S, while Figure 5.4 shows the bifurcation diagram found by

encircling point H. From the discussion above, we know the homoclinic bifurcation

curve extends into point H in the cos τ −α plane but we now must also consider the

fate of the heteroclinic connection curve and the limit cycle fold curve. Although

they appear to approach point H they cannot terminate at point H because the

stable and unstable manifolds of the unsymmetrical equilibria are needed to sepa-
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(1) : Double saddle-node bifurcation
(2) : Hopf bifn of unsymmetrical equilibria
(3) : Homoclinic bifurcation
(4) : Heteroclinic connection
(5) : Limit cycle coalescence

H

(1)

(2)

(3)

(4)

(5)

α

cos τ

(1)
(2)
(3)
(4)
(5)

Figure 5.2: Bifurcation sequence to the left of point H. The out-of-phase
mode exists (and is stable) throughout. The third eigendirection is con-
tracting and (nearly) normal to the plane of this page.
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(1) : In-phase mode pitchfork bifurcation
(2) : Hopf bifn. of unsymmetrical equilibria
(3) : Homoclinic bifurcation
(4) : Heteroclinic connection
(5) : Limit cycle coalescence

(2)

(3)

(4)(5)

α

cos τ

(1)

T

S

(1)
(2)
(3)

(0): Double Saddle-Node Bifurcation

(0) to pt. Q
H

A

Figure 5.3: Bifurcation set (numerical) near points T, S and A. The out-
of-phase mode exists (and is stable) throughout. The third eigendirection
is (nearly) normal to the page and has negative eigenvalue. Note that
curve (1) is drawn distorted for better viewing.
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IP mode

R , R , φ
1      2

A
B

C

C

ULC

2 
S

LC 1 
S

LC
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ULCULC

2 S
LC

1 S
LC

1 
S

LC
1 S

LC

encircling
 point HedcbaBA

Ha
b
c

d
e

Figure 5.4: Bifurcation diagram encircling point H. Note that stable and
unstable limit cycles are shown.
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rate the basins of attraction of the stable in-phase mode and the stable limit cycle,

see Figures 5.2-5.3. We can also see this by trying to collapse the unsymmetrical

equilibria together (which occurs at point H) and then realizing that as a result of

the double saddle-node bifurcation, we would have a stable limit cycle surrounding

the stable in-phase mode and this clearly cannot happen. The termination point of

these two curves will be discussed in the next chapter.
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Chapter 6

The Completed Picture

6.1 Introduction

We are now in a position to piece together most of the bifurcation set for the slow-

flow equations (2.24)-(2.26). Through unfoldings of the degenerate points Q, P and

H, we are able to see the bifurcation sets near these points. Figures 2.4, 3.2, 4.3,

5.1 and 5.3 together with equations (2.37), (2.38), (2.46) and (2.49) give us a nearly

complete picture. We will attempt to complete the bifurcation set by considering

separately what happens above and below the curve H-H’, given by equation (2.49).

6.2 The Unstable Limit Cycle Above H-H’

In determining the termination point of the limit cycle fold and heteroclinic bifurca-

tion curves, we will first examine what happens to the unstable limit cycle created

in the Hopf bifurcation across (2.46) by looking along the line cos τ = 0, where

101



102

we will take τ = 3π
2

for the sake of definiteness. (Choosing τ = π
2

simply changes

the directions in which the flow rotates.) At this τ value, the slow-flow equations

become

Ṙ1 =
1

2

[
R1

(
1 − R2

1

4

)
+ α R2 sin φ

]
, (6.1)

Ṙ2 =
1

2

[
R2

(
1 − R2

2

4

)
− α R1 sin φ

]
, (6.2)

φ̇ =
α

2

[
R2

R1
− R1

R2

]
cos φ. (6.3)

Equation (6.3) is zero for φ = π
2
,−π

2
and thus φ = π

2
,−π

2
are invariant planes.

Although we are chasing an unstable limit cycle in a three-dimensional system

via numerical integration, we are able to analyze it analytically at cos τ = 0 because

it lies in the invariant planes φ = π
2
, R2 = 0, φ = −π

2
, R1 = 0. More specifically, we

are able to do this because the unstable limit cycle is actually a stable limit cycle

in these planes and its only direction of instability is transverse to these invariant

planes.

A key step in how this occurs involves what happens as we cross the midpoint

of the line segment given by equations (6.1)-(6.3) along which cos τ = 0. Recall that

R1, R2 ≥ 0 and φ is 2π periodic. At cos τ = 0 the unstable limit cycle touches

the singular planes R1 = 0, R2 = 0. By blowing up the singularity at R2 = 0 via

the transformation dη = dt
R2

we see that R2 = 0 is an invariant manifold with non-

isolated equilibria occurring at φ = π
2
,−π

2
[5]. A similar situation occurs in the

R1 = 0 plane. Thus the flow along the unstable limit cycle involves two jumps

along the singular planes R1 = 0 and R2 = 0, see Figure 6.1. Just to the left of the

midpoint, i.e., when cos τ < 0, the jump occurs from φ = π
2

to φ = −π
2
, and then
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0

π
R1

R2

φ

Figure 6.1: Flow in the R1 = 0 and R2 = 0 planes. The solid lines
represent non-isolated equilibria. The lines with arrows in the R1 = 0
and R2 = 0 planes represent flow along constant R2 and R1, respectively.

back up, from φ = −π
2

to φ = π
2
. The unstable limit cycle has grown from its initial

little circle shape surrounding the in-phase mode to a large closed orbit, which still

may be said to surround the in-phase mode, in the sense that the jumps go past

φ = 0; however, when we cross the midpoint of the line segment in parameter space

(so that now cos τ > 0), the jump occurs from φ = π
2

to φ = 3π
2

(≡ −π
2

since φ is 2π

periodic) and then back from φ = 3π
2

to φ = π
2
. The unstable limit cycle has grown

from its initial little circle shape surrounding the out-of-phase mode to a large closed

orbit, which still may be said to surround the out-of-phase mode, in the sense that

the jumps go past φ = π.

We now show the unstable limit cycle exists for all coupling values satisfying

α > 1√
8

along the line τ = 3π
2

. We note that when the flow requires that trajectories

leave the first quadrant, we interpret them as having a phase change of 180 degrees,
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i.e. xi = Ri cos(t + φi) = −Ri cos(t + φi + π), i = 1, 2. This corresponds to a jump

in R1 − R2 − φ space from φ = π
2

to φ = −π
2

or vice-versa, as will be shown in the

ensuing discussion. (When τ isn’t quite equal to 3π
2

, φ = π
2

is no longer an invariant

plane, and the orbit in R1−R2−φ space gets close to the jump, but forms a smooth

curve.) The equations in the φ = π
2

invariant plane become

Ṙ1 =
1

2

[
R1

(
1 − R2

1

4

)
+ α R2

]
, (6.4)

Ṙ2 =
1

2

[
R2

(
1 − R2

2

4

)
− α R1

]
. (6.5)

We construct a trapping region D in the first quadrant of the φ = π
2

plane as follows

(see Figure 6.2):

i) cut out a circle of radius ε << 1 from the origin (since R1 = R2 = 0 is an

unstable equilibrium point of (6.4)-(6.5).

ii) choose the box 0 ≤ R1, R2 ≤ αb where

αb =




7 if α ≤ 2(1 +
√

2)

α if α > 2(1 +
√

2).

A simple calculation shows all trajectories are drawn into this region except along

R2 = 0 where Ṙ2 < 0 for all α > 0. But any trajectory touching this line, say at

R1 = k ≤ αb is immediately taken to the φ = −π
2

plane and is thus at R1 = k, R2 =

0, φ = −π
2
. By the invariance (2.27) which states (R1, R2, φ) �→ (R2, R1,−φ), we

can map the current position to the line R1 = 0, R2 = k, φ = π
2

and we are again in

the situation shown in Figure 6.2. The conclusion is that there exists a stable limit

cycle in region D and hence an unstable limit cycle in the full R1 − R2 − φ space

and that it exists for all α > 1√
8
.
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α b

α b

R 2

R
1

Figure 6.2: Trapping region D in φ = π
2

plane for τ = 3π
2

, α > 1√
8
. Note

that R2 = 0 maps to R1 = 0.

Now that we have shown an unstable limit cycle exists for all α > 1√
8
, consider

what happens as we move along a horizontal straight line in the parameter plane,

above point P, say for α = 1 (see Figure 6.3). When we cross the in-phase Hopf

curve, given by (2.46), an unstable limit cycle is born which surrounds the in-phase

mode, i.e., it is a little circle enclosing R1 = R2 = 4, φ = 0, from equation (2.32).

Similarly, when we cross the Hopf curve through point P’ an unstable limit cycle

is born which surrounds the out-of-phase mode, i.e., it is a little circle enclosing

R1 = R2 = 4, φ = π, from equation (2.47). As we move along this straight line, the

unstable limit cycle thus transforms from a little circle around φ = 0 to a little circle

around φ = π for R1 = R2 = 4. Thus we now understand the unstable limit cycle

for all parameter values in which only the in-phase and out-of-phase modes exist.
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(a): -1/3 < cos τ << 0 (b): -1/3 < cos τ < 0

(c): cos τ = 0 (d): cos τ = 0

(e): 0 < cos τ < 1/3 (f): 0 << cos τ < 1/3

π

0

R1

R2

φ

Figure 6.3: Unstable limit cycle for increasing values of cos τ (with π <
τ < 2π) for α = 1. Note that (c) and (d) are the same picture since φ is
2π periodic. See (a) for labeling of axes.
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6.3 The Unstable Limit Cycle Below H-H’

We begin by defining point V, which lies on H-H’ in the cos τ − α parameter plane,

by cos τ = 0, α = 1√
8
. Examining the phase portrait for α > 1√

8
(with cos τ = 0)

allowed us to complete the picture for large coupling and we will see that this also

happens for α < 1√
8
. At point V, the double saddle-node bifurcation given by (2.49)

occurs and the two pair of unsymmetrical equilibria are born at

R1 =

√
3 + 1√

2

(
3 −

√
3
)
, R2 =

(
3 −

√
3
)
, φ =

π

2
(6.6)

and its partner under (2.27). The eigenvalues at that point are 0, 1
4
,−5

4
with corre-

sponding eigenvectors


−5
√

2+3
√

6
2

1

0




,




0

0

1




,




5
√

2+3
√

6
2

1

0




(6.7)

which have approximate values (.1387, 1, 0), (0, 0, 1), (7.210, 1, 0). If we again

consider the first quadrant of the φ = π
2

plane, we see a saddle-node bifurcation

occurring in the trapping region D defined above.

We now piece together the remainder of the bifurcation set by process of elim-

ination. Recall that we are considering the termination point of the heteroclinic

and limit cycle fold curves, cf. Figures (2.4), (4.3) and (5.4). Numerical simulation

in the reduced system (6.4)-(6.5) at and below point V shows that the saddle-

node bifurcation appears to occur on the limit cycle in an infinite period bifurca-

tion, thereby destroying the limit cycle. Thus the limit cycle does not exist along

cos τ = 0 when α ≤ 1√
8
. In considering what happens to the heteroclinic and limit
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cycle fold curves, we can discount the case of the curves extending, uninterrupted

from P to P’ (i.e., never touching the double saddle-node curve (2.49)), the reason

being that the pictures at the line cos τ = 0 would then be inconsistent. We can

also discount the case where the curves join point O, defined by cos τ = α = 0 be-

cause the pictures would again be inconsistent. Thus we conclude the curves must

terminate along the double saddle-node (2.49) and to the right of point H in the

cos τ − α plane.

We now consider the scenario shown in Figure 6.4. We note that due to the

type of Takens-Bogdanov bifurcation that occurred at point H, there exists a curve

extending to the right of point H satisfying Σλi = 0 where λi are the two principal

eigenvalues. Since this is just the trace of the matrix corresponding to these eigen-

values, we will refer to the curve as the tr = 0 curve. This curve may be thought of

as an extension of the unsymmetrical Hopf bifurcation curve and indeed, we used

this extension to calculate the empirical equation for the Hopf, given by (2.54). This

extension goes from H to H’ and enters tangent to (2.49) at the respective points.

The significance of this curve is that the heteroclinic and limit cycle fold curves

must intersect it. For values of α below the tr = 0 extension, the limit cycle born

in the heteroclinic bifurcation must be stable; however, for values of α above the

tr = 0 extension, the limit cycle born in the heteroclinic bifurcation must be unsta-

ble. Thus the limit cycle fold curve and the heteroclinic bifurcation curves must join

together at the tr = 0 extension curve with only the heteroclinic bifurcation curve

continuing on the other side, see Figure 6.5. We label this point along the tr = 0

curve at which the two curves join as point B.
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H

(1)
(2)
(3)

(4)

(5)
(6)
(1)

P

Q Q’

P’
H H’

(1): Double saddle-node bifurcation (2.49)
(2): Hopf bifn of unsymmetrical equilibria
(3): Homoclinic bifurcation
(4): Heteroclinic bifurcation
(5): Limit cycle coalescence
(6): tr=0 extension of (2)

cos τ

α

Figure 6.4: Scenario under consideration for termination point of hete-
roclinic bifurcation and limit cycle coalescence curves.
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(4)

(1)

P

Q Q’

P’
H H’

(1): Double saddle-node bifurcation (2.49)
(2a): Heteroclinic bifurcation (SLC born)
(2b): Heteroclinic bifurcation (ULC destroyed)
(3): Limit cycle coalescence
(4): tr=0 extension of Hopf bifn from point H

(1)

(4)
(3)
(2)

(2a)

(3)

(2b)

H

α

cos τ

B

Figure 6.5: Intersection of heteroclinic bifurcation and limit cycle coa-
lescence curves at the tr=0 extension of the Hopf bifurcation. Note only
the heteroclinic bifurcation survives above this tr=0 curve.
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Note that when the portion of the heteroclinic bifurcation curve lying above the

tr = 0 extension is crossed from above, the unstable limit cycle created in the Hopf

bifurcation across (2.46) is destroyed.

We are thus left with two possible scenarios which can be consistent with Figure

6.5 and these are shown in Figure 6.6. In the case of (a), we have the heteroclinic

bifurcation curve joining to some point N which lies along H-H’ (equation (2.49)) and

to the left of point V. In the case of (b), we have the heteroclinic bifurcation curve

joining with point V. We now argue that the latter scenario gives an inconsistent

picture.

From Figures 5.2-5.3, we see that the heteroclinic connection, shown there as a

two-dimensional projection, has the structure of that shown in Figure 6.7. But at

point V, we know the saddle-node bifurcations occur in the φ = ±π
2

planes and this

situation is shown in Figure 6.8, where we have used the eigenvalues and eigenvectors

from equation (6.7) to draw the picture. Recall that φ = ±π
2

are invariant planes.

If scenario (b) of Figure 6.6 is to occur, at point V the heteroclinic orbit must be

able to leave the invariant plane and then cross back through it which clearly cannot

happen. In other words, it is the nature of this particular heteroclinic connection

to have an unstable manifold leaving in a direction different from that along which

the saddle-node bifurcation occurs, even though it joins to the stable manifold of

the other saddle-node along the same direction that the saddle-node occurs, see

Figure 6.7. Thus we conjecture that scenario (a) of Figure 6.6 must occur and that

there exists a point N on H-H’, lying neither close to H nor to V at which point the

heteroclinic bifurcation curve terminates (see Figure 6.9 for the phase portraits).



112

(4)

(1)

(1): Double saddle-node bifurcation (2.49)
(2a): Heteroclinic bifurcation (SLC born)
(2b): Heteroclinic bifurcation (ULC destroyed)
(3): Limit cycle coalescence
(4): tr=0 extension of Hopf bifn from point H

(2a)

(3)

(2b)

α

cos τ

(4)

(1)

(2a)

(3)

(2b)
N V V

(a) (b)

B B

Figure 6.6: Two possible scenarios for the termination point of the het-
eroclinic bifurcation curve.
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in-phase
  mode

out-of-phase
     mode R2φ

R1 π/2

-π/2

(a)

(b)

in-phase
  mode

Figure 6.7: Heteroclinic connection close to H-H’. (a) shows the two-
dimensional projection of this connection observed in Figures 5.2, 5.3
while (b) shows the full three-dimensional connection.
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in-phase
  mode

out-of-phase
     mode R2φ

R1 π/2

-π/2

eigenvalue: 1/4
eigenvector: (0, 0, 1)

eigenvalue: 0
eigenvector: (.14, 1, 0)

eigenvalue: -5/4
eigenvector: (7.2, 1, 0)

Equilibrium point 
in φ = π / 2 plane. 

(a)

(b)

Figure 6.8: Double saddle-node bifurcation on unstable limit cycle at point V.
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This then implies that along N-V-N’, the saddle-node bifurcation occurs on the

unstable limit cycle, thus destroying it. Although this occurrence may seem highly

unusual, it has been observed in similar systems [12],[18].

The complete bifurcation sets for the slow-flow equations (2.24)-(2.26) are shown

in Figure 6.10. See the previous chapters for the corresponding phase portraits.

6.4 Physical Implications

We now are able to discuss the behavior of the slow-flow equations (2.24)-(2.26)

for all pairs of parameters. The first important point to note is the existence of a

stable mode for all parameter values. Thus we never will have the case of phase

drift (i.e., φ(t) growing unbounded). We also note that as the coupling continues

to increase, the range of delay values for which the in-phase and out-of-phase mode

exist and are stable approaches zero. Recall that the respective modes gain their

stability in a Hopf bifurcation (cf. Figures 2.2-2.3) and the limit cycle created is

unstable. It is thus of no practical importance except to note whether the in-phase

mode or out-of-phase mode has the larger basin of attraction of initial values. In

the region in which only the in-phase and/or out-of-phase modes exist, we expect

the characteristic hysteresis to occur as we vary the delay [41]. We also expect this

hysteresis to occur as we vary the delay for sufficiently low coupling, where all the

unsymmetrical equilibria are unstable and no periodic motions exist in (2.24)-(2.26).

For moderate coupling strengths, varying the delay and coupling slightly can

lead to drastically different behavior in the system. In the region where it exists,
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(5)

(1)

(1): Double saddle-node bifurcation (2.49)
(2): Hopf bifn of unsymmetrical equilibria
(3): Homoclinic bifurcation
(4a): Heteroclinic bifurcation (SLC born)
(4b): Heteroclinic bifurcation (ULC destroyed)
(5): Limit cycle coalescence
(6): tr=0 extension of Hopf bifn from point H

(4a)

(6)

(4b)

α

cos τ

N

N
H

(1)
(2)
(3)

(4a)
(5)

(4b) (6)

(1)

B

B

Figure 6.9: Bifurcation set and phase portraits near point N with curves
drawn distorted for better viewing. Note that the phase portraits above
and below (6) are identical and are thus only drawn once. Also, the third
eigendirection is contracting and in a direction (nearly normal) to the
plane of the page.
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P

Q
H H’

H

α

cos τ

VN N’

P

Q

H
N

(i)
(ii)

(iii)
(iv)

(v)

(i): See Figure 4.3

(iii): See Figure 5.3

P

T

S

to pt. Q
to pt. H

For (v), see Figure 6.9

(iv): See Figures 5.1 - 5.2, 6.9

    See
 Figure 6.9

Q

(ii): See Figures 3.1- 3.3

P’

Q’

A

B

Figure 6.10: Complete bifurcation set of equations (2.24)-(2.26). For the
top left frame, cf. Figure 2.3 and for the top right frame, cf. Figure 2.4.
Note also that the same bifurcation curves exist under cos τ �→ − cos τ.
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the stable limit cycle is an attractor for the system. For certain parameter values

the stable limit cycle exists along with one or two other attractors. As the stable

limit cycle itself is attracting, it does have physical importance. As we cross PB

(the curve of limit cycle coalescence, see Figure 6.10) from right to left, the stable

limit cycle is destroyed. Oscillations in the neighborhood of this stable limit cycle

(and hence near 1:1 phase entrainment) must then jump to the nearest attractor,

thereby approaching a phase locked state. Along PA the only attractor is the out-

of-phase mode, while along AB both in-phase and out-of-phase modes are stable.

This annhilation of an attractor is known as a strong bifurcation and has physical

importance in control applications as the system exhibits a sudden jump in behavior.

In contrast, weak bifurcations involve the continuous evolution of attractors and

hysteresis, both of which were observed in the case of large and small coupling

discussed above [18].

We also see strong bifurcations along SB and SH as limit cycles are born in

heteroclinic and destroyed in homoclinic bifurcations, respectively. Along SB and

SH, both in-phase and out-of-phase modes are attractors to which trajectories are

now drawn. The limit cycles created in weak bifurcations along PH (the Hopf

bifurcation of the unsymmetrical equilibria) are stable and it is interesting that the

homoclinic bifurcation along PS is not a strong bifurcation (as it was along SH) since

it is a symmetry breaking bifurcation in which the two limit cycles gives rise to a

single large limit cycle in the neighborhood of the two smaller stable limit cycles.



Chapter 7

Numerical Integration

7.1 Introduction

Since our analysis is approximate, it is desirable to compare our analytical results

with direct numerical integration of equations (2.1)-(2.2):

ẍ1 + x1 − ε (1 − x2
1) ẋ1 = ε α ẋ2 (t − τ),

ẍ2 + x2 − ε (1 − x2
2) ẋ2 = ε α ẋ1 (t − τ),

where α is a coupling parameter, τ is the delay time, and where ε << 1. We

approximated this system twice—first with the method of averaging and then with

a Taylor expansion of the delay terms. Thus our entire analysis can be considered

two steps removed from the original motivating problem, equations (2.1)-(2.2). The

first approximation has well-known results for non-delay cases [5],[32],[37],[38],[43].

In the second approximation, however, we profoundly changed the nature of the

system in question. Even assuming small expansion parameters, i.e., ετ << 1,
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we might suspect problems to arise. Fortunately, this is not the case. For small

values of ε, and O(1) values of τ , we find excellent agreement between numerical

integration of equations (2.1),(2.2) and stable periodicity predicted by the analytic

results obtained in this work. We now address the question of the methods used in

the numerical integration of our original equations.

7.2 Modified Runge-Kutta

Our original system is of the form

ẋ(t) = f(x(t),x(t − τ)) (7.1)

where we will consider only the case of strictly positive delays, τ > 0. Although we

will usually restrict ourselves to discussing our particular system, the results hold

for more general systems of differential delay equations (cf. [14]). If we can find a

solution of the form

x(t) = Φ(t), t0 − τ ≤ t ≤ t0 (7.2)

then x(t) will be a known function of t for all t satisfying t0 ≤ t ≤ t0 + τ and (7.1)

becomes an ordinary differential equation. Known existence theories for ordinary

differential equations thus assure us that we know x(t) for t0 ≤ t ≤ t0 +τ (e.g. [40]).

We can then use these values to calculate the solution of x(t) for t0+τ ≤ t ≤ t0+2τ .

Continuing in a similar manner with this “method of steps” thus gives us existence

and uniqueness of the solution for all time.

Our numerical integration scheme starts the oscillators out as uncoupled at time

t = 0 and lets them run backward in time until t = −τ . This allows us to obtain
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an interval of initial conditions x(t) = Φ(t), t0 − τ ≤ t ≤ t0. We then reset the

time to t = 0, and begin numerically integrating the coupled delay equations, taking

into account what happened τ units ago. Here we use a fourth order Runge-Kutta

scheme with fixed step size, appropriately modified to account for delay [14]. Recall

the numerical integration of the (non-delayed) system ẋ = f(t, x(t)) involves the

evaluation of

k1 = hf(tn, xn), k2 = hf(tn +
h

2
, xn +

k1

2
), (7.3)

k3 = hf(tn +
h

2
, xn +

k2

2
), k4 = hf(tn + h, xn + k3) (7.4)

in order to calculate the next value, given by xn+1 = xn + k1

6
+ k2

3
+ k3

3
+ k4

6
+O(h5),

where h is the fixed step size [28]. For the case of delay, our system is of the form

ẋ = f(t, x(t), x(t − τ)) and we use the notation Φn− τ
h
≡ x(tn − τ) to denote the

value of the system τ time units ago (and we assume for convenience that hm = τ ,

for some integer m). We now must evaluate

k1 = hf(tn, xn, Φn− τ
h
), (7.5)

k2 = hf(tn +
h

2
, xn +

k1

2
,
Φn− τ

h
+ Φn+1− τ

h

2
), (7.6)

k3 = hf(tn +
h

2
, xn +

k2

2
,
Φn− τ

h
+ Φn+1− τ

h

2
), (7.7)

k4 = hf(tn + h, xn + k3, Φn+1− τ
h
) (7.8)

where Φn+1− τ
h

is the system τ time units before xn+1. Note that since the evaluation

of k2, k3 requires an evaluation of x(t) at the midpoint between tn and tn+1 ≡ tn+h in

the non-delay case, here the corresponding evaluation is at the average of the known

delayed values Φn− τ
h
, Φn+1− τ

h
, which is the function value between tn− τ

h
and tn+1− τ

h
.
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Thus at every step of the integration, we see that we must carry the behavior of the

system for the previous τ time units with us. The only other modification needed is

to update the entries of the delay interval at each step by 1) shifting the entries to

overwrite the value of the system at x(t − τ) and 2) inserting the newly calculated

value of the system in the appropriate position. For example, if φ[j], j = 1, · · · , m
(where m = τ

h
is an integer) contains the values of the system for tc − τ ≤ t < tc

where tc is the current time, φ[1] = x(tc − τ) and xnew = x(tc), the update line

would be

for j = 1 to m

φ[j] = φ[j + 1]

end

φ[m] = xnew

7.3 Results

So as to avoid unnecessarily long runs, we begin “close” to the equilibrium point

whose stability we are checking. For example, in the case of the in-phase mode

we will have x1 ≈ x2, ẋ1 ≈ ẋ2. To check stability, we see if the trajectory in

four-dimensional space is continuing to spiral into the in-phase mode, defined by

x1 ≡ x2, ẋ1 ≡ ẋ2. In this way we were able to confirm that the stability of the in-

phase and out-of-phase modes agreed with the predictions of the analytical method

made in Figure 2.2. (see Figures 7.1-7.2).

In addition, by carefully choosing initial conditions based on the bifurcation

sequence in Figure 3.3, we were able to observe periodic motions other than the in-
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Figure 7.1: In-phase mode stability: solid line is analytic prediction of
stability given by (2.38),(2.46); dots represent stability via numerical
integration of (2.1)-(2.2).
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Figure 7.2: Out-of-phase mode stability: solid line is analytic prediction
of stability given by (2.38),(2.46); dots represent stability via numerical
integration of (2.1)-(2.2).
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phase and out-of-phase modes in the original delay equations (2.1)-(2.2). It might

be expected that the existence of stable periodic motions in such a small region of

parameter space as seen in Figure 3.3 is simply a construct of our numerous approx-

imations. The fact that we actually do see these periodic motions predicted by the

slow-flow equations is important because it demonstrates that the approximations

made still allow us to capture the behavior of the original equations under certain

assumptions. In the case of Figure 7.3, we chose τ = 2.26, α = .45, ε = 0.01 which

corresponds to a slow-flow equilibrium at R1 = 1.5253234, R2 = 1.8161932, φ =

0.20669649. Using (2.3)-(2.4), we calculate the initial conditions:

x1 = R1 cos φ, ẋ1 = −R1 sin φ, (7.9)

x2 = R2, ẋ2 = 0.0 (7.10)

where the value for ẋ2 is found by choosing θ1 = φ, θ2 = 0.0. As stated previously,

we run the uncoupled system backward for τ time units to generate the necessary

interval of initial conditions. We then couple the system together and integrate

forward in time, beginning at t = 0, for 30, 000 time units and plot the last 2, 000

points.

We obtain a similar figure for the unsymmetrical equilibrium’s stable partner

obtained from (R1, R2, φ) �→ (R2, R1,−φ). To be more precise, the unsymmetrical

periodic motion in (2.1)-(2.2) which corresponds to the slow-flow equilibria R1 =

1.8161932, R2 = 1.5253234, φ = −0.20669649 is obtained from Figure 7.3 by letting

(x1, x2) �→ (x2, x1).

In terms of the slow-flow equilibria, the periodic motion displayed in Figure 7.3



126

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x
2

Unsymmetrical periodic motions in (2.1)−(2.2): τ=2.26, cos τ=−0.6359, α=0.45, ε=0.01

Figure 7.3: Unsymmetrical periodic motions in (2.1)-(2.2) which corre-
spond to unsymmetrical equilibria in (2.24)-(2.26). The initial condition
used to generate the interval of delay values is R1 = 1.5253234, R2 =
1.8161932, φ = 0.20669649. Equations (2.3)-(2.4) are also plotted.
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and its partner periodic motion under (x1, x2) �→ (x2, x1) represent the two stable un-

symmetrical equilibria which occur below the unsymmetrical Hopf bifurcation curve

(cf.(2.54)) and the in-phase pitchfork bifurcation curve (2.38). Since ε is small, we

would expect equations (2.3)-(2.4) to give a good approximation to these unsymmet-

rical equilibria for the same R1, R2, φ values. This is indeed the case and Figure 7.3

actually has equations (2.3)-(2.4) superimposed, only the respective curves cannot

be distinguished from those of the integrated differential delay equations.

The numerical integration thus confirms that our analysis of the approximate

system (2.24)-(2.26) is an excellent approximation of the differential delay equa-

tions (2.1)-(2.2) under the assumption that ετ is small. In terms of the physical

implications, perhaps the most important conclusion of this work is the prediction

that both the in-phase and out-of-phase modes are stable for values of cos τ close

to zero, i.e., for delays of about 1
4

of the uncoupled period of the oscillators, see

Figure 2.1, 7.1, 7.2. In addition, with a knowledge of the bifurcations that occur

in the slow-flow equations, we are better able to understand the transition between

periodic motions in the original delay equations.
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Chapter 8

Concluding Remarks

In this work we studied the dynamics of two van der Pol oscillators with delay cou-

pling in the limit in which (i) the oscillators behave sinusoidally, (ii) the coupling

is weak, and (iii) the delay is not too large. We found that the in-phase and out-

of-phase modes coexisted and were both stable in the parameter range for which

the delay is about 1
4

of the unperturbed limit cycle period. We also found that the

in-phase mode ceased to exist if the delay was about 1
2

of the unperturbed period

and the coupling was strong enough. Similarly the out-of-phase mode ceased to

exist if the delay was approximately the same as that of the unperturbed period.

We also found that if the coupling was sufficiently small, various other motions were

predicted to exist besides the in-phase and out-of-phase modes. These additional

motions were predicted to change their form through a series of elaborate bifurca-

tions. Nevertheless all these motions were predicted to be periodic, and we did not

observe chaos for any parameter values.
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Our analysis was approximate, based on a perturbation theory called averaging.

The original differential delay equations were replaced by the “slow-flow” of ordinary

differential equations given in (2.24)-(2.26), a step expected to be valid for small

values of a parameter ε. Our analysis of the slow-flow equations then utilized a

variety of theorems about center manifolds, normal forms, Hopf bifurcations, etc.

Although these theorems are exact, the conclusions drawn from them apply exactly

only to the slow-flow equations and not to the original differential delay equations

(2.1)-(2.2). Although such theorems exist for differential delay equations, we have

not applied them here due to the approximate nature of our analysis [9],[16],[15].

Our treatment of this problem involves three time scales:

1) the period of the unforced oscillator, 2π

2) the delay time, τ

3) the slow time scale, 1
ε
.

(We note that the slow time scale arises due to the nature of the perturbation

method we used.) In this work, we have restricted attention to cases where ε << 1

and where τ = O(1), that is, we have assumed that time scales 1) and 2) are of the

same order, while time scale 3) is much longer than both 1) and 2). Specifically, we

have assumed ετ << 1.

The research in this thesis may be extended in a number of directions:

1) In checking the stability results from the numerical integration of the original

equations (2.1)-(2.2) against the slow-flow predictions as the limits of these time

scales are reached, we restricted ourself to the case ε << 1. We could also do

comparisons for larger values of ε.
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2) The delay appears in our system as cos τ and our numerical integration only

considered the case τ = O(1). Thus our results predict that the bifurcation set is

periodic with respect to τ. We expect, however, that for fixed ε, taking τ = O(1
ε
)

would give non-periodic dependence on τ [19],[45].

3) In obtaining the first time scale above, we assumed a sinusoidal solution since

ε was small. We could also consider the case where ε was not small, i.e. where

the oscillators function in the relaxation range instead of the sinusoidal range. This

would be an extension of previous work which did not include delay [35],[36].

4) After obtaining, (2.15)-(2.18), we immediately approximated the delay terms

without first attempting a stability analysis with the delay terms R̃i, θ̃i still present.

Performing a stability check of this kind would help in confirming the validity of our

subsequent approximations.

5) We could also consider some generalizations of the model:

a) We began by assuming in (2.1)-(2.2) that our nonlinear coupling was

symmetrical. One possible extension would involve considering the effects of two

different coupling parameters. The equations that we would analyze would then be

ẍ1 + x1 − ε (1 − x2
1) ẋ1 = α1 ẋ2 (t − τ), (8.1)

ẍ2 + x2 − ε (1 − x2
2) ẋ2 = α2 ẋ1 (t − τ). (8.2)

Now there would be two different coupling parameters in our system and the results

could be compared with the symmetrical version.

b) Another possibility of extending this work would be to consider different
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forms of coupling. One could generalize equations (2.1)-(2.2) in the form

ẍ1 + x1 − ε (1 − x2
1) ẋ1 = ε α ẋ2(t − τ) + ε β x2(t − τ), (8.3)

ẍ2 + x2 − ε (1 − x2
2) ẋ2 = ε α ẋ1(t − τ) + ε β x1(t − τ) (8.4)

where α, β are coupling parameters, τ is the delay time, and where ε << 1. Similar

equations without delay have been considered by others [39]. We have considered

only the case β = 0 thus far. One could also consider the case with α = 0 (with

β �= 0) and then the general case in which both α and β are nonzero. Since the

stability of the in-phase and out-of-phase modes is expected to depend on both

parameters, we foresee the possibility of using displacement coupling to stabilize the

system, i.e., to increase the region in parameter space where the in-phase mode is

the only stable attractor. Comparing the analytical work with numerical integration

of the original system would also be of interest.

c) Either of the forms of coupling (displacement or velocity) could be used in

considering a system of N oscillators. Thus one could consider an array of oscillators

(assuming nearest neighbor velocity coupling, for example):

ẍ1 + ω2
1 x1 − ε (1 − x2

1) ẋ1 = ε α ẋ2 (t − τ), (8.5)

...

ẍi + ω2
i xi − ε (1 − x2

i ) ẋi = ε α (ẋi−1 (t − τ) + ẋi+1 (t − τ)), (8.6)

...

ẍN + ω2
N xN − ε (1 − x2

N ) ẋN = ε α ẋN−1 (t − τ), (8.7)

where ωi = 1 + δi represents a slight detuning of the oscillators from its own uncou-
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pled frequency. Then set xi = Ri cos(t + θi) and after averaging obtain

Ṙi =
ε

2


Ri (1 − R2

i

4
) + α

∑
j

Rj sin(θj − θi − τ)


 (8.8)

θ̇i = ε δi +
ε α

2

∑
j

Rj

Ri
sin(θj − θi − τ), (8.9)

where the sum is taken over the nearest neighbors.

d) Although equations (8.5)-(8.7) represent the full generalization of our

original equations, a natural step to simplify the system is to consider phase only

oscillators. Such simplifications in the non-delayed cases have been useful in under-

standing the dynamics of large numbers of coupled oscillators [7],[31]. To be more

specific, one could study the dynamics of larger systems of delay-coupled limit cycle

oscillators by simplifying the model equations in a manner similar to that used in

previous studies of non-delayed systems (e.g., [20],[41]). Non-delayed systems similar

to equations (8.3)-(8.4) have been modeled by considering phase-only, a step which

has been accomplished by assuming that R1 = R2 = 2 (the uncoupled, small ε limit

cycle amplitude). While sacrificing some of the dynamics, this assumption hopefully

still captures some basic features of the original system. The phase-only simplifica-

tion comes from ignoring the Ri equations and setting R1 = R2 = · · · = RN in the

phase-only equations (cf. [45]):

θ̇i = ε δi +
ε α

2

∑
j

sin(θj − θi − τ). (8.10)

These equations may be reduced in number by one by setting

φ1 = θ1 − θ2, φ2 = θ2 − θ3, · · · , φN−1 = θN−1 − θN , (8.11)

Ω1 = (δ1 − δ2)
2

α
, Ω2 = (δ2 − δ3)

2

α
, · · · , ΩN−1 = (δN−1 − δN )

2

α
, (8.12)



134

where the appearance of 2
α

is due to the choice of the independent variable as

T = ε α t
2

. In the case of three oscillators, the system becomes

φ′
1 = Ω1 − sin(φ1 + τ) − sin(φ1 − τ) + sin(φ2 + τ), (8.13)

φ′
2 = Ω2 + sin(φ1 − τ) − sin(φ2 + τ) − sin(φ2 − τ). (8.14)

Any number of oscillators could then be studied, with the goal being to understand

the dynamics in the general case of N oscillators.
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