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In this project the quasi-periodicity route to chaos emerging from a seasonally forced delay os-
cillator mechanism designed to study the El Niño - Southern Oscillation (ENSO) cycle is studied.
Variety of atmospheric and oceanic observations show significant irregularity in the cycle. Different
mechanisms have been proposed to explain the ENSO irregular behavior but there no agreement
yet. The dynamical behavior of the delay oscillator is very similar to the one exhibited by the circle
map when the strength of the nonlinear forcing is increased. In our simple model, the nonlinear
parameter refers to the strength of the coupling between the ocean and the atmosphere. Numerical
integrations of the delay equation suggest that the irregularity observed in ENSO is inherent to the
nonlinear interaction between ocean and atmosphere together with the seasonal or annual forcing.

I. INTRODUCTION

The ENSO cycle (El Niño - Southern Oscillation)
refers to the anomalous warming of the east equa-
torial Pacific Ocean, the weakening of the trade
winds about and the changes in the Walker cir-
culation about every 3.5 to 6 years. The role of
the interaction between the ocean and the atmo-
sphere in the tropical Pacific generating the ENSO
cycle was first postulated by Bjerknes [1]. Bjerknes
stated that anomalies in sea surface temperature in
the Pacific cause the trade winds to strengthen or
weaken and, driving changes in ocean circulation
that produce anomalous sea surface temperatures.
During normal conditions the trade winds blow to-
wards the west across the tropical Pacific. The
warm surface water is located at the west Pacific,
which in average has a higher sea surface height
(about 1/2 meter) at Indonesia than at Ecuador.
The sea surface temperature is about 8 degrees C
higher in the west, with cooler temperatures at the
South American coast, due to an upwelling of cold
and nutrient-rich water from deeper levels sustain-
ing the biodiversity. Rainfall is found in rising air
over the warmest water, and the east Pacific is rel-
atively dry. During El Niño, the trade winds get
weaker in the central and western Pacific occasion-
ing a deepening of the thermocline close to South
America, and an elevation of the thermocline in the
west. This reduced the amount of upwelling, which
normally cools the surface, and reduces the supply
of nutrient-rich water to the surface. These condi-
tions lead a rise in sea surface temperature and a
reduction in the fisheries in this region (Figure 1).
Also, the warm pool moves eastward and the rain-
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fall follows it. The name “El Niño” was given by
the Peruvian fishermen describing the warmer wa-
ters appearing at the Peru coast right after Christ-
mas time, referring to Christ child. This is one of
the features reflecting the coupling between ENSO
and the annual cycle. Also, there is a “predictabil-
ity barrier” which statistically refers to the loss of
autocorrelation or persistence in the ENSO indexes
that always occurs during the boreal spring.

Although the basic oscillatory aspects of ENSO
are understood, the observed irregularity of the cy-
cle remains unclear to the community. Several au-
thors have postulated three main hypotheses for
the source of ENSO irregularity [5–9, 11]: i) long-
term variation of the climatic background state; ii)
uncoupled atmospheric weather (stochastic) noise;
iii) deterministic chaos within arising from nonlin-
ear dynamics of the coupled system. In this pa-
per, we concentrate the analysis on the last source
of irregularity, following the work of Tziperman et
al. [11], by studying the quasi-periodicity route to
chaos that appears as the nonlinearity in a forced
delay oscillator model is increased. The first step
to accomplish the objective is to review the first
part of Jensen et al. [4], as well as the chapter “Ir-
rationally Winding” in [2] on mode-locking in circle
maps, as a basis of our study of the resonant re-
sponse occurring in systems of coupled oscillators,
or oscillators coupled to periodic external forcing.

In the following section the basics of the dynam-
ics resulting from circle map is reviewed, including
the construction of the Arnold’s tongues and the
devil’s staircase. In section III the mechanism of
the delay oscillator for ENSO is explained and a
simple model for the Kelvin and Rossby wave dy-
namics with annual forcing is introduced. Details
of integration of the forced delayed equation are
also presented. Section IV is dedicated to present
the results of the integration for several different κs
(strength of the nonlinearity) in order to explore
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FIG. 1: Vertical slice of the Pacific Ocean trough the equator. Left: Normal conditions. Right: El Niño conditions
(source: www.pmel.noaa.gov).

K= 1.2 W= 0.2

0.0 0.2 0.4 0.6 0.8 1.0

q

0.0

0.2

0.4

0.6

0.8

1.0

q n

K= 0.9 W= 0.2

0.0 0.2 0.4 0.6 0.8 1.0

q

0.0

0.2

0.4

0.6

0.8

1.0

q n

K= 1.0 W= 0.2

0.0 0.2 0.4 0.6 0.8 1.0

q

0.0

0.2

0.4

0.6

0.8

1.0

q n

FIG. 2: Iterations of the circle map for Ω = 0.2 and K = 0.9, 1.0, and 1.2.

the quasi-periodicity route to chaos. Different di-
agnostics, like reconstruction of the phase space,
return maps, and power spectrum are used to ex-
amine the obtained time series. A diagram similar
to the devil’s staircase is constructed. Section V
presents some concluding remarks.

II. CIRCLE MAP

The circle map is a one-dimensional map which
maps a circle onto itself. The circle map exhibits
quasi-periodicity route to chaos, which occurs in
periodically forced nonlinear systems. One specific
circle map, the sine map, is defined as follows

Θn+1 = Θn + Ω− K

2π
sin(2πΘn) mod 1 , (1)

where Θn+1 is an angle denoting the location of
the nth iteration on the circle, and Ω represents
the frequency of the system when K = 0. The
sine map is nonlinear, with the strength of non-
linearity parameterized by parameter K. In this

case, the quasi-periodicity route to chaos can be
investigated in the two-parameter plane K and Ω.
Studying the circle map help us understand how
resonances occur when the frequency of a harmonic
Pw1 of one oscillator, approaches some harmonic
Qw2 of another oscillator. In the resonant region
the frequencies of the two oscillators lock into the
rational ratio P/Q. The nonlinear couplings and
the overlap of resonant regions eventually lead to
chaotic behavior. Evolutions of iterations of the
circle map for different parameters is presented in
Figure 2. When 0 < K < 1, the map is monotonic
and the winding number, defined as

W = lim
n→∞

1
n

(Θn −Θ) . (2)

and representing the mean number of cycles per
iteration, locks at every rational P/Q in finite non-
zero intervals of Ω. When 0 < K < 1 the behavior
is periodic and quasi-periodic. At K = 1, the map
develops a singularity at Θ = 0, and almost all the
initial conditions evolve into periodic orbits. For
K > 1 the map is not monotonic anymore, i.e.
non-invertible, resulting in chaotic trajectories.
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Figure 3 shows the winding number W vs Ω for
different Ks and some specific P/Q (Figure 3). The
width of the lines represents the size of the lock-
ing intervals and they might be interpreted as the
probability of being in a locked region if Ω is se-
lected randomly. When K is close to zero, the
chances of W being a rational are very low, while
when K = 1 the probability is almost 1. Figure
4 shows the K − Ω diagram for different values
of P/Q, showing the boundaries of the locking re-
gions. This diagram is know as Arnold’s tongues.
Figure 5 presents the winding number W at K = 1
also know as the devil’s staircase. Above K = 1,
the regions of resonance overlap generating and
chaotic behavior since the system jumps erratically
between the competing resonances.

III. DELAY OSCILLATOR MODEL

Although much of the details of ENSO and its
connection to the global climate remain unknown,
the basic dynamics can be explained in terms of the
“delayed oscillator” idea [10]. This idea is based
on the assumption that the strongest coupling be-
tween the ocean and the atmosphere takes place
in the middle of the Pacific equatorial basin, and
it suggests that wind anomalies introduced by sea
surface temperature (SST) changes in the center of
the Pacific generate a downwelling wave in the ther-
mocline that travels eastward to the South Ameri-
can coast as a Kelvin wave (onset of El Niño) and
westward propagating Rossby wave on the ther-
mocline. The Rossby waves are reflected from the
western boundary of the Pacific Ocean as upwelling
Kelvin waves which travel eastward to balance the
downwelling Kelvin waves, ultimately terminating
the El Niño event (Figure 6).

Different authors have proposed different mathe-

matical “toy models” for the delay oscillator, some
of them directly derived from the barotropic mode
of a simple two layer model. As the main objec-
tive of this project is to study the phase-locking
between the annual and the ENSO cycles, we are
going to base our numerical experiments in the fol-
lowing delay equation proposed by Tziperman et.
al. [11]

dh(t)
dt

= c1A

(
h

(
t− L

2CK

))
(3)

−c2A

(
h

(
t− L

CK
− L

2CR

))
+ c3 cos(ωat) ,

where h(t) represents the thermocline depth devi-
ations from seasonal depth values at the eastern
boundary, t is time, L is the Pacific basin width,
ωa is the annual frequency of the idealized seasonal
forcing. The first term of the right represents the
wind-forced Kelvin mode travelling at speed CK

to the eastern boundary. The wave is generated
at the middle of the basin, taking L

2CK
time to

reach the boundary. The second term represents
the westward-travelling Rossby wave of speed CR

excited by the wind at time t − L
CK

− L
2CR

, and is
reflected as a Kelvin wave. The Pacific basin width
at the equator is about L ∼ 16000km, and the typ-
ical speed of a Kelvin wave is about CK ∼ 2.4m/s.
Rossby waves travel at approximately 1/3 of the
speed of a Kelvin wave. The selection of reason-
able values must lead to L

CK
∼ 2.3− 2.5 months.

The function A(h) relates wind stress to SST and
SST to thermocline depth. Here we are going to
use the function proposed by Münnich et al. [7]
which was fashioned after the shape of the Tropical
thermocline

A(h) =





b+ + b+
a+

{
tanh

[
κa+
b+

(h− h+)
]
− 1

}
, h+ < h

κh , h− ≤ h ≤ h+

−b− − b−
a−

{
tanh

[
κa−
b−

(h− h−)
]
− 1

}
, h < h−

. (4)

In the equation we have a± > 1 and

h+ =
b+

κa+
(a+ − 1)

h− =
−b−
κa−

(a− − 1) , (5)

κ parameterized the strength of the nonlinearity.
Here the nonlinearity is given by the variation of
the strength of the coupling with h. Selection of
the values for all parameters will be shown at sec-
tion IV. To integrate equation 3 we use a fourth
order RungeKutta scheme with fixed step size, ap-
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FIG. 3: Winding number W vs Ω for different K and at P/Q = 0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1.
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FIG. 4: K-Ω diagram for the circle map (Arnold tongues).
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FIG. 5: Winding number W vs Ω for the circle map
with K = 1 (Devil’s staricase).
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FIG. 6: Sketch of the delayed oscillator mechanism.

propriately modified to account for delay [3].

A. Integration of the delay equation

Our original system is of the form

dh(t)
dt

= f (h(t− T1), h(t− T2), t) (6)

with T2 > T1 > 0. Recall the fourth order Runge-
Kutta scheme with fixed step size s for the system

˙h(t) = f (h(t), t), involves the evaluation of

k1 = sf (hn, tn) ,

k2 = sf

(
hn +

k1

2
, tn +

s

2

)
,

k3 = sf

(
hn +

k2

2
, tn +

s

2

)
,

k4 = sf (hn + k3, tn + s) (7)

in order to compute hn+1 = hn + k1
6 + k2

3 + k3
3 +

k4
6 + O(s5). In our delay case, using the notation
h

n−T1
s
≡ h (tn − T1) with T1 = sm for some integer

m (similar for T2),we need to evaluate

k1 = sf
(
h

n−T1
s

, h
n−T2

s
, tn

)
,

k2 = sf

(
h

n−T1
s

+ h
n+1−T1

s

2
,
h

n−T2
s

+ h
n+1−T2

s

2
, tn +

s

2

)
,

k3 = sf

(
h

n−T1
s

+ h
n+1−T1

s

2
,
h

n−T2
s

+ h
n+1−T2

s

2
, tn +

s

2

)
,

k2 = sf
(
h

n+1−T1
s

, h
n+1−T2

s
, tn +

s

2

)
, (8)

Note that the evaluation of k2 and k3 requires the
evaluation of h(t) at midpoints of intervals defined
by our time step. Here this evaluation is approx-
imated using linear interpolation, or which is the
same, the average of h

n−T1
s

and h
n+1−T1

s
(same for

T2).
The slow dynamics resulting from equation 3 re-

mains unchanged if we use time steps smaller than
10 days.

IV. RESULTS

Since the main objective of the paper is to study
the quasi-periodicity route to chaos that appears
from equation 3 as the nonlinearity is increased,
the only parameter that changes in the integration
is κ. We need to select reasonable values for all pa-
rameters that would remain fixed throughout the
integrations. It is important to note that the idea
is to be able to study the general and most basic
dynamics arising from the delay mechanism rather
that having h(t) close to the observations. In other
words, here the resemblance of the power spectrum
of h(t) to the one computed from observations is
more important than the actual values of h(t). In
fact, the magnitude of the output is easily con-
trollable by the parameters in equation 4, but the
actual dynamics depends more on the relationship
between parameters than their gross values.
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FIG. 7: Forcing function A(h) given in Eq. 4.

In the integrations, L/CK was set to 72 days
and L/CR to 216 days. Following Tziperman et
al. [11] c1 = 1/180, c2 = 1/120, and c3 = 1/138.
To obtain good power spectra, a+ = 1, a− = 1,
b+ = 2, b− = −1. Figure 7 shows A(h) for κ = 1
(solid line) and κ = 1.5 (dashed line). A second set
of integrations was performed using L/CK = 69,
L/CR = 207, and b− = −0.4.

Using the selected parameters, 75 runs for differ-
ent values of κ were performed. The total integra-
tion period was 400 years for each run, and the time
step used correspond to 5 days. First 50 years of
integration were removed for the analysis. Figures
8 to 11 show some typical results of the integration.
Figures 8 and 9 correspond to the first set of param-
eters, and they show the Fourier spectrum of the
h(t) time series (not show), the reconstructed phase
space using sub-sampling with lag τ = 365 days,
and the return map calculated from the geomet-
ric center of each attractor (red line) and from the
point (0,0) in the reconstructed phase space (blue
line). In general, the integration resulted in peri-
odic, quasi-periodic and chaotic time series. For
low values of κ (. 0.9), the atmosphere-ocean in-
teraction is not strong enough to generate impor-
tant Kelvin and Rossby waves and consequently
the seasonal forcing dominates resulting in a single
peaked Fourier spectrum at 1 year period. In the
phase space this trajectory degenerates to a single
point.

When the nonlinearity increases slightly (κ in-
creases), a second significant period appears in the
Fourier spectrum around 3.8-4 years. The new
period is incommensurate with the annual cycle
and corresponds to the natural frequency of the
unforced delay oscillator for the equatorial Pacific
case. Remember that the typical ENSO cycle is be-

tween 3.5 to 6 years. Both, the phase space, which
is a simple closed loop, and the return map become
very similar to those for the circle map (see Section
II). The motion is irregular but not chaotic. If κ
increases further, the loop in the phase space de-
forms according to the new but not dominant pe-
riods seen in the Fourier spectrum. The dominant
period is in all cases between 3.5 and 4 years.

Note that when the return map is estimated us-
ing the geometric center, the results are better in
general than when using (0,0) as the center. When
(0,0) is “outside” of the attractor the return map
is not useful at all. This comment is valid in gen-
eral so from now on we will refer to the return map
estimated from geometric center (red line in the
Figures 8 to 11).

For stronger nonlinearity the system becomes
mode-locked as in the circle map. The frequency
of the delay oscillator adjust to a rational multiple
of the seasonal forcing. The resulting time series is
periodic. In Figure 9 there is an example where the
delay oscillator and the annual forcing lock into a
period 4 years. In the nonlinearity is big enough,
the system becomes chaotic, the Fourier spectrum
shows variance at all time scales, the phase space
shows a strange attractor, and the return map is
not monotonic anymore. In the first set of inte-
grations, even for very high nonlinearity, the time
series is very irregular but not quite chaotic, the
phase space shows significant convex regions but is
not folded yet, and the return map is very close
to monotonic. Although it is not “fully chaotic”,
this is the kind of irregularity seen in the data.
In the second set of integrations a similar general
response appears when increasing the nonlinearity.
The main difference is that for high values of κ (e.g.
κ = 1.725 , 2.0) the phase space appears folded, and
the return map develops a local minimum. In gen-
eral, the reconstructed attractors are very thin; in
other words, there is no interesting details when
zooming into the plots.

Motivated by the great similarity between the
dynamics observed in the circle map and the forced
delay oscillator, and with the aim of construction
a diagram similar to the Arnold’s tongues for our
simple ENSO model, the estimated return map was
fitted to cosine functions using Fourier transform
such that

Θn+1 = Θn+Ω+
∑

i

Ai cos(2πωiΘn+φi) mod 1 ,

(9)
where ωi are all the frequencies analyzed with the
Fast Fourier Transform, Ai and φi are the cor-
responding amplitude and phase found with the
FFT. Originally, only most important modes found
with the FFT were used to fit the return map but
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FIG. 8: Integration of the forced delay equation for the selected parameters and different values of κ. The left
column shows the Fourier spectrum of each run. The corresponding κ and the period of the spectral maximum
are shown in each spectrum. The center column shows the phase space reconstruction using τ = 365 days. The
blue star is at (0,0) while the blue plus sign is at the geometric center of each attractor. The right column shows
the corresponding return map, using both (0,0) and the geometric center to compute the subtended angle.

in the majority of cases this introduced unrealistic
local minima changing the dynamics of the map
(see Figure 12). For that reason all Fourier modes
were used. Figure 13 shows three fitting examples
for different behaviors. The left plot correspond to
a quasi-periodic behavior (first set of parameters,

κ = 0.92). In this kind of cases, the Fourier fit-
ting is very good since the system visits all points
in the attractor with almost equal likelihood. In
the second case (κ = 0.92), the corresponding time
series is very irregular but the return map is very
close monotonic and the Fourier fitting works well.
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FIG. 9: Continuation of Figure 8.

However, it can be seen that the fitting is not as
smooth as in the previous case and high frequency
variability appears in the Fourier fitted map. The
third case correspond to a chaotic time series with
a non-smooth return map. The map is specially
“noisy” between θ = 0.8 and θ = 1. and the fitting
does not work well in this region.

After having the fitting functions for every κ
value, we could explore periodic orbits by iterating
the fitting function itself, and construct diagrams

similar to the devil’s staircase by changing Ω in
equation 9. In general, Ω results as a combina-
tion of all parameters in function A(h) and in the
equation 3, which means changing Ω is similar to
exploring the delay model in all domain of param-
eters, some of them not representative of ENSO
cycle.

Figures 14 and 15 show two examples of return
map iteration, one with κ = 0.98 and the other
with κ = 2.2. In general, in the range of parameters
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FIG. 10: Same of Figure 8 with second set of parameters (L/CK = 69. days, bn = −0.4).

representative of ENSO, when the map is smooth
and monotonic there appear no single fixed when
the map is iterated, but at some iteration the orig-
inal map transforms into the θn = θn+1 line (see
Figure 14). In return maps coming from very ir-
regular time series, there is a significant deforma-
tion of the map, probably and artifact due to the
high frequencies in the fitting. However, it can be
seen that every multiple of 4, which is the domi-
nant period of ENSO and the predominant period

in our test, the map becomes tangent or crosses the
θn = θn+1 line.

Figure 16 shows the devil’s staircases con-
structed from different values of κ by using the
fitted return maps and changing ω. The winding
number was computed as in equation 2. There is
a strong similarity with the staircases coming from
the circle map. The width of the steps increases
as the nonlinearity increases. An important point
is that the step in the diagrams that concern us
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FIG. 11: Continuation of Figure 10.

(1/4) is very small compared to the other impor-
tant steps. Other steps correspond to non realistic
parameters for the Earth case. In that sense, they
represent the locking in planets with wider oceanic
basins, smaller seasonal forcing (orbital parame-
ters), etc... In some of those unknown planets, the
locking itself is more stable since the step is present
for wider range of parameters here represented in
Ω, giving “them” an advantage point towards pre-
diction.

It has been suggested that the Madden-Julian
Oscillation (MJO), which is the dominant compo-
nent of the intraseasonal variability in the tropi-
cal atmosphere, may influence the tropical climate
by modulating the timing and strength of El Niño
events. As a simple test, here we introduced the
MJO in our simple model by introducing a new
term that generates every 30 days (typical MJO
scale) pulse-like Kelvin waves at the west of the
Pacific that travel all the basin to modify oceanic
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FIG. 12: Example of fitting using different number modes for κ = 2.20. Left: 3 modes. Center: 5 modes. Right:
15 modes.
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FIG. 13: Fourier fitting for different values of κ. Left: First set of parameters, κ = 0.92. Center: First set,
κ = 2.20. Right: Second set, κ = 2..

conditions at the east side of the basin. Integra-
tions were performed with the first set of parame-
ters and the results for same values of κ as in Fig-
ures 8 and 9 are shown in Figures 17 and 18. It can
be seen that the global behavior does not change,
but longer periods than 4 years appear when the
nonlinearity is increased. This fact is important in
practice because according to the strength of an
MJO, it can modify not only the strength of the
following ENSO but also the dominant periodicity.

V. DISCUSSION

A simple nonlinear seasonally forced model of
ENSO based on the delay oscillator hypothesis was
introduced, and results numerical integration show
the quasi-periodicity route to chaos appears when
the nonlinearity, here representing the degree of
ocean-atmosphere coupling, was increased. The
dynamics is much similar to the one exhibit by
the circle map. The parameters used in the in-

tegration intend to simulate the conditions of the
tropical Pacific basin, and the resulting dominant
period, aside from the annual cycle, corresponds to
the observed ENSO cycle. This suggest that the
periodicity and the observed ENSO irregularity is
inherent to the wave delay dynamics and its mode-
locking to the seasonal cycle.

The fact that the dominant periodicity changed
when the MJO was included is practically impor-
tant and it deserves a more careful analysis. This
means that phenomena like MJO, that may be
classified as weather noise, are not a key factor in
the generating the observed ENSO irregularity but
they do affect its timing and its strength.
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FIG. 14: Iteration of the return map for the first set of parameters and κ = 0.98.

APPENDIX A: ORIGINAL OUTLINE

Thu Oct 23 2003: Study of the Circle Map. Con-
struction of Arnold tongues, devil’s staircase. The
code will be developed in IDL.
Thu Oct 30 2003: Integration of the forced delayed
oscillator. Code in IDL or C depending of the effi-
ciency of the algorithms.
Thu Nov 06 2003: Start construction of power spec-
tra, reconstruction of the phase space, and return
maps.
Thu Nov 13 2003: Finish the previous task and con-
struct diagrams analogous to the Arnold tongues
and the devil’s staircase.

Thu Nov 20 2003: General review of the previ-
ous work. I expect to add and/or implement the
ideas and suggestions arising from the interaction
the professor and the class.
Thu Nov 27 2003: Write up of the results until this
point. This completes the minimal realistic goals of
the project. If possible, modify the forced delayed
oscillator equation to include the MJO effects. In-
tegrate the new equation
Thu Dec 04 2003: Compare the 2-oscillator route
to chaos with the 3-oscillator case. Finish writing
the main draft of the project.
Thu Dec 11 2003: Term paper deadline.
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FIG. 17: Similar as Figure 8 including generation of Kelvin waves due to MJO.
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FIG. 18: Continuation of Figure 17


