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This document tries to fill in the gaps in the mathematical formulation of Homotopy of exact co-
herent structures in plane shear flows by Fabian Waleffe. It goes from Navier-Stokes to an expansion
appropriate for this system.

Starting from the basic Navier-Stokes equation:
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x will be the streamwise direction, y the wall-normal direction and z the spanwise. The velocity is expanded as a

perturbation about a mean velocity (the laminar solution) v = y% = U(LC). The corresponding velocity perturbation
components are u,v,w. To eliminate the pressure term, we define two operators, called the "roll-streak” projections:

P, = —§-Vx (Vx() (2)
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We assert that the velocity may be decomposed (called the poloidal-toroidal expansion) as
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with U and W defined as the respective means of v and w over both = and z. Note the decomposition is something
like Py, P,,, and the mean flows. To show the decomposition works I'll show once v and 7 are known, u and w may
be found from the definition of y-vorticity and incompressibility:
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Taking the x and z partial derivatives and summing leaves two independant, parabolic PDEs:
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Now, we turn the crank on the p-t expansion:

u? = Opyp — 000 +U (11)
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So the y component is shown right away, but to see that the z and y components work apply —(0zz + 9..). With the
definitions of ¢ and 1, we get back the same set of PDEs as above. Applying P, to Navier Stokes gives:
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This allows us to eliminate the pressure and force terms. Rearranging the derivatives gives:
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Define V x v =5 and apply P, and using the identity V x (V2v) = V*(V x v)
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Now, we apply periodic boundary conditions to the x and z directions. Taking the x component of Navier-Stokes
and averaging over x and z gives:
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Intergrating wrt  and z and applying the periodic boundary condition to p, —, and — gives:
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W must be zero according to symmetry (consider rotation by m about the z axis). In summary up to this point,
we have:
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Next, we impose the condition that the velocity distribution may be viewed as a traveling wave perturbation.
That is v = Uéc))“( + u, where u(z,y, 2z,t) = (u,v,w) = u(z — Ct,y, z,0). Applying this constraint to our equations

eliminates time as a degree of freedom. To embed this constraint we set 9, = —C0J, Applying this to our set of
equations:
1
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Note that in the third equation 9,U = 0 since it is a function of 3. Similarly the partial derivative wrt y becomes a
full derivative since u is averaged over z, eliminating ¢-dependance. U becomes w, since the laminar background has
d*Uy,

dy?

= 0. Fixing the phase of this wave, nsin <™= 2” = 0, will yield a unique solution.



To integrate this we expand in Fourier modes in the x,z directions and Chebyshev-based modes in the y:
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Where D*¢,,(y) = Trn(y), D*¥m(y) = Tpn(y) with D = d/dy and Ty, (y) = cos m arccos y, the mth degree Chebyshev
polynomial. The purpose of doing it this way as opposed to using the usual Chebyshev expansion is to allow matching
of boundary conditions.
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