Following along a technique for handling Plane Couette Flow[1]

Jonathan Halcrow*
(Dated: February 19, 2004)

Abstract

This document tries to fill in the gaps in the mathematical formulation of Homotopy of exact coherent structures in plane shear flows by Fabian Waleffe. It goes from Navier-Stokes to an expansion appropriate for this system.

Starting from the basic Navier-Stokes equation:

$$
\begin{equation*}
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=-\nabla p+\frac{1}{R e} \nabla^{2} \mathbf{v}+\mathbf{F}, \nabla \cdot \mathbf{v}=0 \tag{1}
\end{equation*}
$$

x will be the streamwise direction, y the wall-normal direction and z the spanwise. The velocity is expanded as a perturbation about a mean velocity (the laminar solution) $\mathbf{v}=y \hat{\mathbf{x}} \equiv \mathbf{U}_{L}^{(C)}$. The corresponding velocity perturbation components are u, v, w. To eliminate the pressure term, we define two operators, called the "roll-streak" projections:

$$
\begin{align*}
& \mathbf{P}_{v}=-\hat{\mathbf{y}} \cdot \nabla \times(\nabla \times(\cdot)) \tag{2}\\
& \mathbf{P}_{\eta}=\hat{\mathbf{y}} \cdot \nabla \times(\cdot) \tag{3}
\end{align*}
$$

We assert that the velocity may be decomposed (called the poloidal-toroidal expansion) as

$$
\begin{align*}
\mathbf{v} & =\nabla \times(\nabla \times \phi \hat{\mathbf{y}})+\nabla \times \psi \hat{\mathbf{y}}+\bar{U} \hat{\mathbf{x}}+\bar{W} \hat{\mathbf{z}} \tag{4}\\
v & =\mathbf{v} \cdot \hat{\mathbf{y}}=-\left(\partial_{x}^{2}+\partial_{z}^{2}\right) \phi \tag{5}\\
\eta & \equiv \partial_{z} u-\partial_{x} w=-\left(\partial_{x}^{2}+\partial_{z}^{2}\right) \psi \tag{6}
\end{align*}
$$

with \bar{U} and \bar{W} defined as the respective means of u and w over both x and z. Note the decomposition is something like $\mathbf{P}_{\mathbf{v}}, \mathbf{P}_{\eta}$, and the mean flows. To show the decomposition works I'll show once v and η are known, u and w may be found from the definition of y-vorticity and incompressibility:

$$
\begin{array}{r}
\eta=\partial_{z} u-\partial_{x} w \\
\nabla \cdot \mathbf{v}=\partial_{x} u+\partial_{y} v+\partial_{z} w=0 \tag{8}
\end{array}
$$

Taking the x and z partial derivatives and summing leaves two independant, parabolic PDEs:

$$
\begin{array}{r}
\partial_{z} \eta-\partial_{x y} v=\partial_{z z} u+\partial_{x x} u \\
\partial_{x} \eta+\partial_{z y} v=-\partial_{x x} w-\partial_{z z} w \tag{10}
\end{array}
$$

Now, we turn the crank on the p-t expansion:

$$
\begin{align*}
u ? & =\partial_{x y} \phi-\partial_{z} \psi+\bar{U} \tag{11}\\
v(?) & =v \tag{12}\\
w(?) & =\partial_{z y} \phi+\partial_{z} \psi \tag{13}
\end{align*}
$$

So the y component is shown right away, but to see that the x and y components work apply $-\left(\partial_{x x}+\partial_{z z}\right)$. With the definitions of ϕ and ψ, we get back the same set of PDEs as above. Applying \mathbf{P}_{v} to Navier Stokes gives:

$$
\begin{equation*}
-\hat{\mathbf{y}} \cdot \nabla \times\left(\nabla \times\left(\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}\right)=-\hat{\mathbf{y}} \cdot \nabla \times\left(\nabla \times\left(-\nabla p+\frac{1}{R e} \nabla^{2} \mathbf{v}+\mathbf{F}\right)\right)\right. \tag{14}
\end{equation*}
$$

This allows us to eliminate the pressure and force terms. Rearranging the derivatives gives:

$$
\begin{equation*}
\left(\partial_{t}-\frac{1}{R e} \nabla^{2}\right) \nabla^{2} v+\mathbf{P}_{v} \cdot(\mathbf{v} \cdot \nabla \mathbf{v})=0 \tag{15}
\end{equation*}
$$

[^0]Define $\nabla \times \mathbf{v} \equiv \eta$ and apply \mathbf{P}_{η} and using the identity $\nabla \times\left(\nabla^{2} \mathbf{v}\right)=\nabla^{2}(\nabla \times \mathbf{v})$

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}-\frac{1}{R e} \nabla^{2}\right) \eta+\mathbf{P}_{\eta} \cdot(\mathbf{v} \cdot \nabla) \mathbf{v}=0 \tag{16}
\end{equation*}
$$

Now, we apply periodic boundary conditions to the x and z directions. Taking the x component of Navier-Stokes and averaging over x and z gives:

$$
\begin{array}{r}
\frac{1}{L_{x} L_{z}} \int_{0}^{L_{x}} \int_{0}^{L_{z}} d x d z\left(\frac{\partial u}{\partial t}+\hat{\mathbf{x}} \cdot(\mathbf{v} \cdot \nabla) \mathbf{v}\right) \\
=\frac{1}{L_{x} L_{z}} \int_{0}^{L_{x}} \int_{0}^{L_{z}} d x d z\left(-\frac{\partial p}{\partial x}+\frac{1}{R e} \hat{\mathbf{x}} \cdot \nabla^{2} \mathbf{v}+\hat{\mathbf{x}} \cdot \mathbf{F}\right) \\
\frac{\partial \bar{U}}{\partial t}-\frac{1}{\operatorname{Re}} \overline{\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)-\frac{\partial p}{\partial x}}+\overline{\hat{\mathbf{x}} \cdot(\mathbf{v} \cdot \nabla) \mathbf{v}-\hat{\mathbf{x}} \cdot \mathbf{F}}=0 \tag{18}
\end{array}
$$

Intergrating wrt x and z and applying the periodic boundary condition to $p, \frac{\partial u}{\partial x}$, and $\frac{\partial u}{\partial z}$ gives:

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}-\frac{1}{R e} \frac{\partial^{2}}{\partial y^{2}}\right) \bar{U}+\overline{\hat{\mathbf{x}} \cdot(\mathbf{v} \cdot \nabla) \mathbf{v}-\hat{\mathbf{x}} \cdot \mathbf{F}}=0 \tag{19}
\end{equation*}
$$

\bar{W} must be zero according to symmetry (consider rotation by π about the z axis). In summary up to this point, we have:

$$
\begin{align*}
&\left(\partial_{t}-\frac{1}{R e} \nabla^{2}\right) \nabla^{2} v+\mathbf{P}_{v} \cdot(\mathbf{v} \cdot \nabla \mathbf{v})=0 \tag{20}\\
&\left(\frac{\partial}{\partial t}-\frac{1}{R e} \nabla^{2}\right) \eta+\mathbf{P}_{\eta} \cdot(\mathbf{v} \cdot \nabla) \mathbf{v}=0 \tag{21}\\
&\left(\frac{\partial}{\partial t}-\frac{1}{R e} \frac{\partial^{2}}{\partial y^{2}}\right) \bar{U}+\overline{\hat{\mathbf{x}} \cdot(\mathbf{v} \cdot \nabla) \mathbf{v}-\hat{\mathbf{x}} \cdot \mathbf{F}}=0 \tag{22}
\end{align*}
$$

Next, we impose the condition that the velocity distribution may be viewed as a traveling wave perturbation. That is $\mathbf{v}=U_{L}^{(C)} \hat{\mathbf{x}}+\mathbf{u}$, where $\mathbf{u}(x, y, z, t)=(u, v, w)=\mathbf{u}(x-C t, y, z, 0)$. Applying this constraint to our equations eliminates time as a degree of freedom. To embed this constraint we set $\partial_{t}=-C \partial_{x}$ Applying this to our set of equations:

$$
\begin{align*}
&\left(C \partial_{x}+\frac{1}{R e} \nabla^{2}\right) \nabla^{2} v-\mathbf{P}_{v} \cdot(\mathbf{v} \cdot \nabla \mathbf{v})=0 \tag{23}\\
&\left(C \frac{\partial}{\partial x}+\frac{1}{R e} \nabla^{2}\right) \eta-\mathbf{P}_{\eta} \cdot(\mathbf{v} \cdot \nabla) \mathbf{v}=0 \tag{24}\\
& \frac{1}{R e} \frac{d^{2} \bar{u}}{d y^{2}}-\overline{\hat{\mathbf{x}} \cdot(\mathbf{v} \cdot \nabla) \mathbf{v}+\hat{\mathbf{x}} \cdot \mathbf{F}}=0 \tag{25}
\end{align*}
$$

Note that in the third equation $\partial_{x} \bar{U}=0$ since it is a function of y. Similarly the partial derivative wrt y becomes a full derivative since u is averaged over x, eliminating t-dependance. \bar{U} becomes \bar{u}, since the laminar background has $\frac{d^{2} U_{L}}{d y^{2}}=0$. Fixing the phase of this wave, $\eta \sin \frac{2 \pi x}{L_{x}}=0$, will yield a unique solution.

To integrate this we expand in Fourier modes in the x, z directions and Chebyshev-based modes in the y :

$$
\begin{align*}
v & =\sum_{l=-L_{T}}^{L_{T}} \sum_{m=0}^{M_{T}} \sum_{n=-N_{T}}^{N_{T}} A_{l m n} e^{i l \alpha x} e^{i n \gamma z} \phi_{m}(y) \tag{26}\\
\eta & =\sum_{l=-L_{T}}^{L_{T}} \sum_{m=0}^{M_{T}} \sum_{n=-N_{T}}^{N_{T}} B_{l m n} e^{i l \alpha x} e^{i n \gamma z} \psi_{m}(y) \tag{27}\\
\bar{u} & =\sum_{m=0}^{M_{T}} \hat{u}_{m} \psi_{m}(y) \tag{28}\\
\hat{u}_{m} & =\frac{1}{c_{k}} \int_{-1}^{1} u(y) T_{k}(y)\left(1-y^{2}\right)^{-1 / 2} d y \tag{29}\\
c_{k} & = \begin{cases}\pi & \text { if } k=0, \\
\pi / 2 & \text { if } k \neq 0\end{cases} \tag{30}
\end{align*}
$$

Where $D^{4} \phi_{m}(y)=T_{m}(y), D^{2} \psi_{m}(y)=T_{m}(y)$ with $D \equiv d / d y$ and $T_{m}(y)=\cos m \arccos y$, the mth degree Chebyshev polynomial. The purpose of doing it this way as opposed to using the usual Chebyshev expansion is to allow matching of boundary conditions.
[1] Fabian Waleffe. Homotopy of exact coherent structures in plane shear flows. Physics of Fluids, 15(6):1517, 2003.

[^0]: *Electronic address: jonathan.halcrow@gonzo.physics.gatech.edu

