
Following along a technique for handling Plane Couette Flow[1]

Jonathan Halcrow∗
(Dated: February 19, 2004)

This document tries to fill in the gaps in the mathematical formulation of Homotopy of exact co-
herent structures in plane shear flows by Fabian Waleffe. It goes from Navier-Stokes to an expansion
appropriate for this system.

Starting from the basic Navier-Stokes equation:

∂v
∂t

+ (v · ∇)v = −∇p+
1
Re
∇2v + F,∇ · v = 0 (1)

x will be the streamwise direction, y the wall-normal direction and z the spanwise. The velocity is expanded as a
perturbation about a mean velocity (the laminar solution) v = yx̂ ≡ U(C)

L . The corresponding velocity perturbation
components are u,v,w. To eliminate the pressure term, we define two operators, called the ”roll-streak” projections:

Pv = −ŷ · ∇ × (∇× (·)) (2)
Pη = ŷ · ∇ × (·) (3)

We assert that the velocity may be decomposed (called the poloidal-toroidal expansion) as

v = ∇× (∇× φŷ) +∇× ψŷ + U x̂ +W ẑ (4)
v = v · ŷ = −(∂2

x + ∂2
z )φ (5)

η ≡ ∂zu− ∂xw = −(∂2
x + ∂2

z )ψ (6)

with U and W defined as the respective means of u and w over both x and z. Note the decomposition is something
like Pv, Pη, and the mean flows. To show the decomposition works I’ll show once v and η are known, u and w may
be found from the definition of y-vorticity and incompressibility:

η = ∂zu− ∂xw (7)
∇ · v = ∂xu+ ∂yv + ∂zw = 0 (8)

Taking the x and z partial derivatives and summing leaves two independant, parabolic PDEs:

∂zη − ∂xyv = ∂zzu+ ∂xxu (9)
∂xη + ∂zyv = −∂xxw − ∂zzw (10)

Now, we turn the crank on the p-t expansion:

u? = ∂xyφ− ∂zψ + U (11)
v(?) = v (12)
w(?) = ∂zyφ+ ∂zψ (13)

So the y component is shown right away, but to see that the x and y components work apply −(∂xx + ∂zz). With the
definitions of φ and ψ, we get back the same set of PDEs as above. Applying Pv to Navier Stokes gives:

−ŷ · ∇ × (∇×
(
∂v
∂t

+ (v · ∇)v
)

= −ŷ · ∇ ×
(
∇×

(
−∇p+

1
Re
∇2v + F

))
(14)

This allows us to eliminate the pressure and force terms. Rearranging the derivatives gives:

(∂t −
1
Re
∇2)∇2v + Pv · (v · ∇v) = 0 (15)
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Define ∇× v ≡ η and apply Pη and using the identity ∇× (∇2v) = ∇2(∇× v)

(
∂

∂t
− 1
Re
∇2

)
η + Pη · (v · ∇)v = 0 (16)

Now, we apply periodic boundary conditions to the x and z directions. Taking the x component of Navier-Stokes
and averaging over x and z gives:

1
LxLz

∫ Lx

0

∫ Lz

0

dxdz

(
∂u

∂t
+ x̂ · (v · ∇)v

)
=

1
LxLz

∫ Lx

0

∫ Lz

0

dxdz

(
−∂p
∂x

+
1
Re

x̂ · ∇2v + x̂ · F
)

(17)

∂U

∂t
− 1
Re

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
− ∂p

∂x
+ x̂ · (v · ∇)v − x̂ · F = 0 (18)

Intergrating wrt x and z and applying the periodic boundary condition to p,
∂u

∂x
, and

∂u

∂z
gives:

(
∂

∂t
− 1
Re

∂2

∂y2
)U + x̂ · (v · ∇)v − x̂ · F = 0 (19)

W must be zero according to symmetry (consider rotation by π about the z axis). In summary up to this point,
we have: (

∂t −
1
Re
∇2

)
∇2v + Pv · (v · ∇v) = 0 (20)(

∂

∂t
− 1
Re
∇2

)
η + Pη · (v · ∇)v = 0 (21)(

∂

∂t
− 1
Re

∂2

∂y2

)
U + x̂ · (v · ∇)v − x̂ · F = 0 (22)

Next, we impose the condition that the velocity distribution may be viewed as a traveling wave perturbation.
That is v = U

(C)
L x̂ + u, where u(x, y, z, t) = (u, v, w) = u(x − Ct, y, z, 0). Applying this constraint to our equations

eliminates time as a degree of freedom. To embed this constraint we set ∂t = −C∂x Applying this to our set of
equations:

(C∂x +
1
Re
∇2)∇2v −Pv · (v · ∇v) = 0 (23)

(C
∂

∂x
+

1
Re
∇2)η −Pη · (v · ∇)v = 0 (24)

1
Re

d2u

dy2
− x̂ · (v · ∇)v + x̂ · F = 0 (25)

Note that in the third equation ∂xU = 0 since it is a function of y. Similarly the partial derivative wrt y becomes a
full derivative since u is averaged over x, eliminating t-dependance. U becomes u, since the laminar background has
d2UL

dy2
= 0. Fixing the phase of this wave, η sin 2πx

Lx
= 0, will yield a unique solution.
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To integrate this we expand in Fourier modes in the x,z directions and Chebyshev-based modes in the y:

v =
LT∑

l=−LT

MT∑
m=0

NT∑
n=−NT

Almne
ilαxeinγzφm(y) (26)

η =
LT∑

l=−LT

MT∑
m=0

NT∑
n=−NT

Blmne
ilαxeinγzψm(y) (27)

u =
MT∑
m=0

ûmψm(y) (28)

ûm =
1
ck

∫ 1

−1

u(y)Tk(y)(1− y2)−1/2dy (29)

ck =

{
π if k = 0,
π/2 if k 6= 0

(30)

Where D4φm(y) = Tm(y), D2ψm(y) = Tm(y) with D ≡ d/dy and Tm(y) = cosm arccos y, the mth degree Chebyshev
polynomial. The purpose of doing it this way as opposed to using the usual Chebyshev expansion is to allow matching
of boundary conditions.

[1] Fabian Waleffe. Homotopy of exact coherent structures in plane shear flows. Physics of Fluids, 15(6):1517, 2003.


