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I. PLANE COUETTE FLOW

Plane Couette flow describes the motion of a fluid con-
strained by two long plates moving in opposite directions
(along the streamwise x axis) at the same constant speed.
The distance between the plates in the wall-normal y di-
rection is chosen to be 2, with one plate at 1 and the other
at -1. Periodic boundary conditions are imposed on the
streamwise x and spanwise z directions which allows for
one section of the flow to be analyzed. Given a set of fluid
constants and initial conditions the Navier-Stokes equa-
tions may be solved numerically to find the velocity field
as a function of time (see fluid notes, sect. V). One of the
tools for performing this task is the channelflow code
couette.cpp [1] which works as outlined in sect. I A.
The velocity field u(x, y, z) can be expanded as a set of
orthogonal basis functions

u(x, y, z) =
∑

anΦn(x, y, z) (1)

where the basis set Φn spans the same finite-dimensional
function space as the chosen Nx×Ny×Nz grid. Because
of the periodicity in x and z the basis functions are of
the form

Φj,k,l = φl(y)e
2πi(jx/Lx+kz/Lz) (2)

where j and k are Fourier modes and φl is a poly-
nomial in y which satisfies the boundary conditions.
The coefficients are represented in channelflow as
ColumnVectors. For computations it is often necessary
to write the velocity fields as a DNS spectral expansion
called a FlowField object,

u(x, y, z) =
∑

jkl

ûjklTl(y)e
2πi(jx/Lx+kz/Lz), (3)

where the spectral coefficients ûjkl can be converted back
and forth from FlowFields to ColumnVectors through
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the functions field2vector and vector2field. Use of
this is made in the program couette.cpp where one can
compute the L2 norm of the expansion coefficients and it
is the same as the L2 norm of the velocity field from the
laminar state. The L2 norm ‖f‖ (familiar Hilbert space
from Quantum Mechanics) is defined for a function f on
a volume V [2] as

‖f‖2 =
1

V

∫

V

|f |2 dx dy dz. (4)

A. Program couette.cpp

The program Couette.cpp is used to integrate plane
Couette flow from an initial field for a specified time. I
outline here (with C++ notation) the important parts of
this program.
// Define flow parameters
const Real Reynolds = 400.0;
const Real nu = 1.0/Reynolds;
const Real dPdx = 0.0;
const Real Ubulk = 0.0;
Here we have the first important parameter inputs.

The Reynolds number (19) determines the viscosity of
the flow. We also see the incompressibility condition (18).
// Define DNS parameters
flags.initstepping = CNRK2;
The numerical integration method is a combination of

the Crank-Nicholson and Runge-Kutta 2 methods.
// Define size and smoothness of initial disturbance
Real spectralDecay = 0.3;
Real magnitude = 0.1;
int kxmax = 3;
int kzmax = 3;
The spectral decay number determines the rate at

which the spectral coefficient in y decays back to the
laminar state. The coefficient ûl is defined as

|ûl| = rand[0, 1] ∗ (spectraldecay)l (5)

and thus we see that the dependence of ûl on spectral
decay number is the slope when log |ûl| is plotted against
l.
// Construct data fields: 3d velocity and 1d pressure
cout ≪ “building velocity and pressure fields...” ≪ flush;
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FlowField u(Nx,Ny,Nz,3,Lx,Lz,a,b);
FlowField q(Nx,Ny,Nz,1,Lx,Lz,a,b);
cout ≪ “done” ≪ endl;
Velocity and pressure fields are created for the given

box size (Nx, Ny, Nz) as FlowFields (3).
// Perturb velocity field
u.addPerturbations(kxmax,kzmax,1.0,spectralDecay);
u *= magnitude/L2Norm(u);
After the initial FlowField objects are set up the

perturbations are added and u is updated.
// for (Real t=0; t≤ T; t += n*dt)
cout ≪ ” t == ” ≪ t ≪ endl;
cout ≪” CFL == ” ≪ dns.CFL() ≪ endl;
cout ≪ ” L2Norm(u) == ” ≪ L2Norm(u) ≪ endl;
cout ≪ ”divNorm(u) == ” ≪ divNorm(u) ≪ endl;
These are the printed outputs that show up when the

program is run. “t = ” clearly shows the time step that
the program is on. “CFL” is a number related to the
flow parameters which needs to be between 0 and 1. For
most cases it takes a value around 0.4 - 0.5. It can be
approximately given as CFL ≈

△tu
△x . “L2Norm” (4) gives

the distance of the solutions from laminar flow. It is
interesting to watch the variations in L2Norm as spectral
decay number is varied. It always starts our at the value
0.1 and for large spectral decay rates goes quickly to 0,
but grows for decay rates ∼ 0.5. “divNorm” is a number
which should be very close to zero, O ∼ 10−16.

II. WALL LAW AND VERTICAL VORTICITY

Upon reading Gibson’s ”Upper/lower/laminar branch”
blog [3], I found that for plane Couette flow one may
linearize the Navier-Stokes equations about a base flow
by letting

~v → U(y)x̂+ ~v(x, t) (6)

where the base flow is U(y)x̂. In this approximation,
how does the base flow respond to a variation in the flow
parameters? The theoretical approximation for the base
shear flow is the ‘Wall Law’. It predicts

U(y) ∼ y (7)

for y < 10 and

U(y) ∼ 5 + 2.5 ∗ log(y) (8)

for y > 10. Here I look at the Wall law program in
channelflow, which computes the average velocity pro-
file U(y) of a pressure-driven flow and compares it to the
theoretical approximation for U(y). This program allows
one to investigate the behavior of the base flow and check
that it remains fairly stable.
The vertical vorticity, η, is defined by

η = (∇× ~v) · ŷ, (9)

so according to the following simple calculation, a ‘wall-
law’ base flow should contribute nothing to the vertical

vorticity. That is, the base flow should be stable with
respect to a variation in the flow parameters.

~U(y) = yx̂, (10)

∇× ~U = x̂(
∂Uz

∂y
−
∂Uy

∂z
)− ŷ(

∂Uz

∂x
−
∂Ux

∂z
)+ ẑ(

∂Uy

∂x
−
∂Ux

∂y
)

= −
∂Ux

∂y
ẑ = −ẑ,

(∇× ~U) · ŷ = η = 0. (11)

No vertical vorticity. This being the case, if one plots
the mean velocity profile against y, the theoretical ap-
proximation should be more or less returned regardless
of the magnitude of the parameters, though the parame-
ters strongly affect the non-laminar part of the flow. This
seems somewhat obvious, but it is a good check never-
theless. To check it I have run the wall-law program
and plotted results for several different cases in which
the Reynolds number, the perturbation magnitude, and
the spectral decay rate were varied against a base flow
with no perturbations. One can see from Figs. 1 and 2
that despite considerable changes in the perturbation pa-
rameters and Reynolds number, there is little deviation
from the wall law. In fact the perturbation changes are
hardly even visible. One can see the slight changes due
to the variation in Reynolds number, but to obtain even
this small deviation, the Reynolds number was decreased
by an order of 100. This confirms the η = 0 calculation
for the mean base flow.

III. PCF-UTILS METHODS AND RESULTS

I have been able to produce some phase space trajec-
tories for random initial fields, and random initial con-
ditions along eigenvectors from equilibria. First I will
document the use of the various channelflow programs
for the phase space flows, and then give some plots and
results.

A. How to implement

The documentation and descriptions here are similar
to those provided in the PCF-utils repository, but with
specifics and details to running on my machine.
Method I : A random initial condition

1.) Create a random initial field.
This is done by the program randomfield which takes
the arguments of box size, magnitude, and smoothness
of field. To run:
./randomfield.x -Nx 48 -Ny 35 -Nz 48 -a 1.14 -g 2.5 -s 0.5
-m 0.3 urand.48.35.48
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FIG. 1: Variation in Re with perturbation magnitude = 0.01,
decay rate = 0.01. (a) Base flow (b) Re = 4,000 (c) Re =
40

where urand.48.35.48 is the output file name.
Random field satisfies the boundary and zero-divergence
conditions.

2.) From the initial field, integrate the Navier-Stokes
equations. Program couette does this for a specified
time interval and saves the flowfield in data/u1 as file-
name u1. The path data/u1 needs to be created before
running. To run:
./couette.x -T0 0 -T1 400 -o data/u1 -l u1 urand.48.35.48
Program couette takes a rather long time to run.

3.) From a linearly independent set of fields on
the trajectory, create an orthonormal basis. Program
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FIG. 2: Perturbation variations at Re = 40. (a) Base flow (b)
Magnitude = 1.0, decay rate = 0.01 (c) Magnitude = 0.01,
decay rate = 0.1

makebasis outputs this set to a specified directory. To
run:
./makebasis.x -o basis1 data/u1/u10 data/u1/u110
data/u1/u120 data/u1/u130
where {u10, u110, u120, u130} is the basis set.
4.) Project fields onto the basis set for a specified in-

terval of time. Program projectseries inputs the basis
and outputs to the file u1.asc. To run:
./projectseries.x -T0 0 -T1 400 -bd basis1/ -Nb 4 -d
data/u1 -ul u1 -o u1.asc

5.) With the file u1.asc at hand, all that is left is to
load into matlab and graph. In order to do this matlab
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needs to have PCF-utils in its path. In the matlab
window type:
path(path,’C:/cygwin/home/OWNER/workspace/
channelflow/PCF-utils’)
Next load the file by entering:
load u1.asc
Finally to plot the trajectory enter:
plot3(u1(:,1), u1(:,2), u1(:,3));
Method II : A random perturbation from an

equilibrium

1.) Suppose we already have an equilibrium point uUB,
and an associated eigenfunction, UBef1, such as for the
upper branch. Adding a perturbation along the eigen-
function simply involves taking a linear combination of
the two (in which the perturbation coefficient is small)
using the program addfields. To run:
./addfields.x 1 uUB 0.01 UB ef1 uUB 0.01 ef1
where 1 and .01 are the coefficients. uUB 0.01 ef1 is the
output field.
2.) Now take this field uUB 0.01 ef1 close to the equi-

librium and go back to step 2.) of method 1 to perform
the integration, make the basis set, project, and plot.

B. Method 1 results: 3/22/07

Using method 1 I have added trajectories for several
different random initial fields, see Fig. 3. The parameters
I use in randomfield are smoothness and magnitude of
the initial field. For Fig. 3(a), values of s = 0.5, m = 0.8
are used. For Fig. 3(b) I decreased magnitude to m = 0.3
and smoothness to s = 0.1.
The difference in the plots for these varied values is

quite interesting. There is a similar dense area at about
y = 0.15. More could be extracted from many more com-
parisons of nearby values and longer integration times.
There may be a particular value of either of these pa-
rameters for which the structure of the state space flow
changes quickly.

C. Method 1 results: 4/29/07

Upon longer integration times of Fig. 3 more can be
seen about the suspicious region in Fig. 4. I have at-
tempted to bound this region by projection onto the
xy and yz planes to give the rough values 0.1 ≤ x ≤
0.15, 0.15 ≤ y ≤ 0.2, 0 ≤ z ≤ 0.05. As can be see from
Fig. 4, upon running the time out to T = 400 the trajec-
tories do eventually leave this region, but not for quite
some time. It is curious that each random trajectory
finds this region and stays trapped for some time. This
seems to suggest that the region must be fairly strongly
attracting. In Fig. 5 I have added Fig. 4(b) along with
a phase space plot of the upper branch in order to get a
better feel for where this region lies. In comparison with
the upper branch plot my figure is in an entirely different
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FIG. 3: Trajectories for a random initial condition for smooth-
ness and magnitude values of (a) s = 0.5, m = 0.8, T = 100
(b) s = 0.1, m = 0.3, T = 100

(a)
−0.2 0 0.2 0.4 0.6 0.8

−0.5

0

0.5

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b)
−0.1

0
0.1

0.2
0.3

−0.1
0

0.1
0.2

0.3
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
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FIG. 5: UB and u2

region of the space. There may be an interesting behav-
ior connecting the regions or possibly another unstable
manifold in the area near flowfield u2.

D. Method 2 results 4/29/2007

Starting from Waleffe’s upper branch, as recomputed
at higher accuracy by Gibson [4], I have added plots for
perturbations along each of the 7 eigenfunctions in Figs. 6
and 7. The difficulty is determining and computing an
equilibrium (I have used a precomputed Waleffe’s upper
branch) and deciding where to start. This having been
done already, I have the following in Figs. 6 and 7. The
region connecting the UB and the NB would be an inter-
esting place to look as it is a little less well understood.
For this it would be necessary to know which eigenfunc-
tion points in that direction. It is necessary to compare
these plots with previously computed data to make sure
they are sensible and to get more of a feel for what the
behavior means. The spiral behavior at the onset of (e)
and (f) would suggest a comparatively large imaginary
part of the eigenvalues for these two. Sure enough, from
Table 1 of Gibson’s blog ”State space portraits of the LB,
NB, UB” [5], eigenfunctions (e) and (f) of Fig. 7) have
eigenvalues λ = 0.01539 + i(0.28418) which have much
larger imaginary part than any of the others.
In Figs. 8 and 9 perturbations from the same eigenfunc-

tions have been plotted only this time using the same

basis for each. The chosen basis is one which sustains
typical upper branch behavior for the given flow param-
eters. This allows for a comparison between these plots
and previously computed upper branch data in, for ex-
ample, Gibson [5].

IV. DISCUSSION

The preceding results summarize my efforts at discov-
ering and attaining information about the dynamics of
plane Couette turbulence. From the outset my approach
has been to try something, see what happens, and possi-
bly adjust. The nature of the problem forces this some-
what ”hit or miss” technique. The most important re-
sults produced in this way are the random initial con-
dition trajectories from Fig. 4 and the trajectories from
equilibrium in figures Figs. 8 and 9. The ’knotted’ re-
gion in Fig. 4 would probably be the most interesting
property to look at in future investigations. I would like
to have been able to draw more comparisons and con-
clusions between my data and previously computed data
from other sources, and to give more results, but ulti-
mately time and complexity of the problem did not allow
this. The methods set up would however provide a nice
starting point for a future investigation project by my-
self or another. The method relies heavily on the use of
all of the channelflow programs aforementioned as well
as PCF data which has already been compiled and an-
alyzed. Numerical computation power is therefore very
important in investigating this problem.
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V. APPENDIX: SOME NOTES ON FLUIDS

I have compiled some reference notes on the material
which I have been reading out of Lautrup [6] that can be
referred back to as a guide or quick reminder.

A. Conservation of Mass

The rate at which mass is gained in a volume V is equal
to the rate of loss through its surface S.

d

dt

∫

ρdV +

∮

ρ(~v · n̂)dS = 0 (12)

Using Gauss’ Theorem, this can be reformulated as the
continuity equation,

∂ρ

∂t
+ (~v · ∇)ρ = −ρ∇ · ~v (13)

For an incompressible velocity field the divergence of v
is 0 and a slightly simplified continuity equation can be
used. Defining the ‘material time derivative’ as D

Dt =
∂
∂t + ~v · ∇, the comoving acceleration is given as

D~v

Dt
=

∂~v

∂t
+ (~v · ∇)~v (14)

The nonlinear term (~v · ∇)~v is known as the ‘convective’
or ‘inertia’ term. It is the acceleration that is due to the
material transporting the particle. In cartesian coordi-
nates it can be written as,

(~v · ∇)~v = (vx
∂vx

∂x
)̂i+ (vy

∂vy

∂y
)ĵ + (vz

∂vz

∂z
)k̂ (15)

For a steady flow, ∂~v
∂t = 0 and the inertia term is the only

source of acceleration. Finally, from Newton’s second
law, we have Cauchy’s equation of motion for a force
density f:

f = ρ

(

∂~v

∂t
+ (~v · ∇)~v

)

(16)

The Cauchy equation is the governing equation for the
motion of all fluids.

B. Viscosity, Reynolds Number Re, and
Navier-Stokes

A fluid which flows along the x axis with velocity v(y)
which is independent of the coordinate x is said to be
laminar. The shear stress between layers due to friction is
a measure of the viscosity of the fluid. The force density
in Cauchy’s equation is made up of a pressure gradient
and of the stress tensor, which incorporates a viscosity
term ν∇2v. ν is known as the kinematic viscosity of
the fluid. Combining all of these terms and assuming
the density of the fluid to be constant we arrive at the
incompressible Navier-Stokes equations:

∂~v

∂t
+ (~v · ∇)~v = −

1

ρ
∇p+ ν∇2v (17)

∇ · ~v = 0 . (18)

The relation between the inertia of a fluid and its viscos-
ity gives rise to the Reynolds Number

Re =
ρ(~v · ∇)~v

η∇2v
(19)

This ratio implies that large Re fluids flow freely while
small Re fluids are highly viscous. For a flow between
2 plates separated by a distance d (problem at hand)
with average flow velocity U , the Reynolds number can
be given as

Re =
Ud

ν
. (20)
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