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overview

1 what this course is about
2 turbulence in large domains



how do clouds solve PDEs?

do clouds integrate Navier-Stokes equations?

?
=⇒ other swirls =⇒

are clouds Navier-Stokes supercomputers in the sky?



1 turbulence in large domains
2 spacetime



goal : enumerate the building blocks of turbulence

describe turbulence
starting from the equations (no statistical assumptions)



challenge : experiments are amazing

T. Mullin lab

B. Hof lab



an example : Kuramoto-Sivashinsky on a large domain

[horizontal] space x ∈ [0, L] [up] time evolution

Gudorf 2018



another example of large spacetime domain turbulence

complex Ginzburg-Landau

[horizontal] space x ∈ [−L/2, L/2] [up] time evolution
codeinthehole.com/static/tutorial/coherent.html



1 turbulence in large domains
2 spacetime



fluid dynamics in large turbulent domains

pipe flow close to onset of turbulence 1

we have a detailed theory of small turbulent fluid cells

can we can we construct the infinite pipe by coupling small
turbulent cells ?

what would that theory look like ?

1M. Avila and B. Hof, Phys. Rev. E 87 (2013)



complex Ginzburg-Landau on a large spacetime domain

goal : enumerate nearly recurrent patterns

[left-right] space x ∈ [−L/2, L/2] [up] time t ∈ [0,T]



Kuramoto-Sivashinsky on a large spacetime domain

the same small tile recurs often in a turbulent pattern

goal : define, enumerate nearly recurrent tiles

Gudorf 2018



use spatiotemporally compact solutions as lego blocks

this ‘exact coherent structure’
shadows a small patch of spacetime solution u(x , t)



evolution of Kuramoto-Sivashinsky on small L = 22 cell
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periodic orbits generalize to d-tori

1 time, 0 space dimensions
a state space point is periodic if its orbit returns to it after a
finite time T ;
such orbit tiles the time axis by infinitely many repeats

1 time, d-1 space dimensions
a state space point is spatiotemporally periodic if it belongs to
an invariant d-torus R ;
such torus tiles the spacetime by infinitely many repeats



a spacetime invariant 2-torus integrated in either time or space
(left) (right)

(left) old : time evolution t = [0,T]
initial condition : space periodic line x = [0, L]

(right) new : space evolution x = [0,L]
initial condition : time periodic line t = [0,T]

Gudorf 2016



1 turbulence in large domains
2 spacetime
3 spacetime computations



how do clouds solve PDEs?

clouds do not NOT integrate Navier-Stokes equations

=⇒ other swirls =⇒

do clouds satisfy Navier-Stokes equations?

yes!
they satisfy them locally, everywhere and at all times



think globally, act locally

for each symbol array M, a periodic lattice state XM



the equations are imposed as local constraints

your equation here, Feynman form:

F (u) = 0

for example, minimize over the entire 2-torus

cost function

G ≡ 1
2
|F (u)|2L×T



does it work at all ?

add strong noise to a known solution,
twice the typical amplitude

test 1
(not how we actually generate guesses)

(left) initial guess: a known invariant 2-torus

(L0,T0) = (22.0,20.5057459345) + strong random noise

(right) the resulting adjoint descent converged invariant 2-torus

(Lf ,Tf ) = (21.95034935834641,20.47026321555662)

Gudorf 2018



test 2 - invariant 2-torus found variationally
(left) (right)

(left) initial : L̄ = 2π
√

2 spatially modulated “noisy” guess
(right) adjoint descent : converged invariant 2-torus

Gudorf 2018



1 turbulence in large domains
2 spacetime
3 fundamental tiles



building blocks of turbulence

how do we recognize a cloud?

WATCH
=⇒ other swirls =⇒

by recurrent shapes!

so, construct an alphabet of possible shapes



extracting a fundamental tile

⇒ ⇒ ⇒

1) invariant 2-torus
2) invariant 2-torus computed from initial guess cut out from 1)
3) “gap" invariant 2-torus, initally cut out from 2)
4) the “gap" prime invariant 2-torus fundamental domain

Gudorf 2018



a trial set of ‘prime’ tiles

an alphabet of Kuramoto-Sivashinsky fundamental tiles

utilize also discrete symmetries :
spatial reflection, spatiotemporal shift-reflect, · · ·

Gudorf 2018



Kuramoto-Sivashinsky tiled by a small tile
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Gudorf 2018



spacetime tiled by a larger tile
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Gudorf 2018



spacetime tiled by a tall tile
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Gudorf 2018



spacetime tiled by a larger tile

0 1 2 3 4 5 6 7 8 9 10

x/(16π)

0

45

90

135

180

225

270

315

360

405

450
t/

(4
5
)

−.

.

.

tiling by relative periodic invariant 2-torus
(L,T ) = (32.02,51)

Gudorf 2018



spacetime tiled by a larger tile
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Gudorf 2018



any single tiling looks nothing like turbulent
Kuramoto-Sivashinsky !
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[horizontal] space x ∈ [−L/2, L/2] [up] time evolution

Gudorf 2018



1 turbulence in large domains
2 spacetime
3 fundamental tiles
4 gluing tiles

Gudorf 2018



a qualitative tiling guess

a tiling and the resulting solution
2-torus

Gudorf 2018



enumerate hierarchically spatiotemporal patterns

2D symbolic encoding ⇒ admissible solutions

each symbol indicates a minimal spatiotemporal tile
glue them in all admissible ways



take home : clouds do not integrate PDEs

do clouds integrate Navier-Stokes equations?

NO!
=⇒ other swirls =⇒

at any spacetime point Navier-Stokes equations describe the
local tangent space

they satisfy them locally, everywhere and at all times



course part 1 geometry of chaos : summary

1 study turbulence in infinite spatiatemporal domains
2 theory : classify all spatiotemporal tilings
3 numerics : future is spatiotemporal

there is no more time

there is only enumeration of spacetime solutions



this solves all your problems :)

1 (semi-)classical field theories



Dreams of Grand Schemes : solve



QFT path integrals : semi-classical quantization

a local unstable
extremum

a fractal set of saddles



think globally, act locally

for each symbol array M, a periodic lattice state XM



1 turbulence in large domains
2 spacetime
3 tilings
4 theory of turbulence



are d-tori

a theory of turbulence ?



the very short answer : POT

if you win : I teach you how

(for details, see ChaosBook.org/course1/index2.html)

http://ChaosBook.org/course1/index2.html


tessellate the state space by
spatiotemporal periodic orbits



classical trace formula for continuous time flows

∞∑
α=0

1
s − sα

=
∑

p

Tp

∞∑
r=1

er(βAp−sTp)∣∣det
(
1 − M r

p
)∣∣

relates the spectrum of the evolution operator

L(x ′, x) = δ
(
x ′ − f t(x)

)
eβA(x ,t)

to the unstable periodic orbits p of the flow f t(x).



classical trace formula for averaging over 2-tori

something like

∞∑
α=0

1
s − sα

=
∑

p

Vp

∞∑
r=1

er(βAp−sVp)

|detJpr |

weighs the unstable relative prime (all symmetries quotiented)
d-torus p by the inverse of its Hill determinant, the determinant
(state space volume) of its orbit Jacobian matrix Jp

detJp

and Vp is the volume
Vp = TpLp

of the prime spacetime tile p


	what this course is about
	dynamics in  dimensions

