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overview

1 what this talk is about
2 turbulence in spacetime
3 space is time
4 bye bye, dynamics



do clouds solve PDEs?

do clouds integrate Navier-Stokes equations?

NO!
=⇒ other swirls =⇒

do clouds obey Navier-Stokes equations?

yes!
they satisfy them locally, everywhere and at all times



1 what this talk is about
2 turbulence in spacetime
3 space is time
4 spacetime
5 bye bye, dynamics



challenge : describe turbulence

use Navier-Stokes equations

∂v
∂t

+ (v · ∇)v =
1
R
∇2v−∇p + f , ∇ · v = 0,

velocity field v ∈ R3 ; pressure field p ; driving force f

to determine the building blocks of turbulence
starting from the equations (no statistical assumptions)



challenge : experiments are amazing

T. Mullin lab

B. Hof lab



pedagogy : for plumbers we do 3D turbulence, but for this talk

Navier-Stokes equations

∂v
∂t

+ (v · ∇)v =
1
R
∇2v + (· · · )

velocity field v(x; t) ∈ R3

not helpful for developing intuition
we cannot visualize 3D velocity field at every 3D spatial point

look instead at 1D ‘flame fronts’



spacetime (3+1)-dimensional Navier-Stokes

Navier-Stokes equations (1822)

∂v
∂t

+ (v · ∇)v =
1
R
∇2v + (· · · )

H
H
H

Kuramoto-Sivashinsky (1+1)-dimensional PDE (1975)

ut + uOu = −O2u−O4u , x ∈ R ,

describes spatially extended systems such as
flame fronts in combustion
reaction-diffusion systems
. . .



Kuramoto-Sivashinsky solutions are ‘turbulent’
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building blocks of turbulence ?

3D Navier-Stokes flow close to the onset of turbulence1

we do have a detailed theory of small turbulent fluid cells

can we can we construct the infinite pipe by coupling small
turbulent cells ?

what would that theory look like ?

1M. Avila and B. Hof, Phys. Rev. E 87, 063012 (2013).

https://doi.org/10.1103/PhysRevE.87.063012


can do : spatiotemporal turbulence building blocks

an alphabet of Kuramoto-Sivashinsky fundamental tiles :

can tile, glue - a typical resulting solution :
2-torus

Gudorf 2019



turbulence.zip : each solution has a symbolic name

symbolic dynamics = 2-dimensional array

each symbol = a spatiotemporal “rubber” tile2

yes, but how do you do this?

2M. N. Gudorf, “Spatiotemporal formulation of the Kuramoto-Sivashinsky equation”, PhD thesis (School of
Physics, Georgia Inst. of Technology, Atlanta, 2019).



1 what this talk is about
2 turbulence in spacetime
3 space is time
4 spacetime
5 bye bye, dynamics



traditionally : compact space, infinite time

Integrate the PDE forward in time

Kuramoto-Sivashinsky equation

ut = −(+O2 + O4)u − uOu , x ∈ [−L/2,L/2] ,
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but, can also do : compact time, infinite space

rewrite Kuramoto-Sivashinsky

ut = −uux − uxx − uxxxx

as 4-fields vector

u> = (u,u
′
,u

′′
,u

′′′
)

u
′ ≡ ux , u

′′ ≡ uxx , u
′′′ ≡ uxxx

Kuramoto-Sivashinsky = four coupled 1st order PDEs
1st order in spatial derivative

d
dx

u(x) = v(x)

‘time’ is now the spatial coordinate x , integrate



can do : integrate in either time or space

(left) (right)

(left) old : time evolution. (right) new : space evolution
x = [0,L] initial condition : time periodic line t = [0,T ]

Gudorf 2016



but : too unstable to compute !

the same for pipe flow close to onset of turbulence

we have hit a wall :
‘exact coherent structures’ are too unstable to compute



the integrations are uncontrollably unstable

neither time nor space integration works
for large domains

rethink the formulation!



1 turbulence in spacetime
2 space is time
3 spacetime
4 bye bye, dynamics



here is a thought. Forget Newton. Instead :

build : a chaotic field theory
from : the simplest chaotic blocks

using
time invariance
space invariance

of the defining partial differential equations



traditionally : compact space, infinite time

Kuramoto-Sivashinsky equation

ut = −(+O2 + O4)u − uOu , x ∈ [−L/2,L/2] ,

in terms of discrete spatial Fourier modes
N ordinary differential equations (ODEs) in time

φ̇k (t) = (q2
k − q4

k )φk (t)− i
qk

2

N−1∑
k ′=0

φk ′(t)φk−k ′(t) .



new : chaos for field theorists, 3rd millennium

lattice formulation



always do : compact space, infinite time discrete lattice cylinder

so far : Navier-Stokes on compact spatial domains, all times



can do : compact time, infinite space discrete lattice cylinder



use spatiotemporally compact solutions as spacetime ‘tiles’



every compact solution is a fixed point on a discrete lattice

discretize unm = u(xn, tm) over NM points of spatiotemporal
periodic lattice xn = nL/N, tm = mT/M, Fourier transform :

φk` =
1

NM

N−1∑
n=0

M−1∑
m=0

unm e−i(qk xn+ω`tm) , qk =
2πk

L
, ω` =

2π`
T

Kuramoto-Sivashinsky is no more a PDE,
but an algebraic [N×M]-dimensional problem
of determining global solution Φ to

fixed point condition

(
−iω` − (q2

k − q4
k )
)
φk` + i

qk

2

N−1∑
k ′=0

M−1∑
m′=0

φk ′m′φk−k ′,m−m′ = 0



every calculation is a spatiotemporal lattice calculation

field is discretized as φk` values
over NM points of a periodic lattice



there is no more time or space evolution

A solution is now given as

condition that
at each lattice point k`
the tangent field at φk`

satisfies

the global fixed point condition

F [φ] = 0

where for Kuramoto-Sivashinsky

F [φ] =
(
−iω` − (q2

k − q4
k )
)
φk` + i

qk

2

N−1∑
k ′=0

M−1∑
m′=0

φk ′m′φk−k ′,m−m′

this is a local tangent field constraint on a global solution



think globally, act locally

for each symbol array M, a periodic lattice state ΦM



Mephistopheles knocks at Faust’s door and says,
“Du mußt es dreimal sagen!"
. “You have to say it three times"

— Johann Wolfgang von Goethe
. Faust I - Studierzimmer 2. Teil

1 temporal cat
2 spatiotemporal cat
3 bye bye, dynamics



what ? We need a simple, pencil & paper example !

we now illustrate the approach with

the cat map in 1 spacetime dimension
then we generalize to

d-dimensional spatiotemporal cat

traditional cat map (a recap, then)
modern, temporal lattice cat
(so much more elegant!)



think of turbulence as herding cats



(1) the traditional cat

evolution in time



take the simplest mechanical system : a single kicked rotor

an electron circling an atom, subject to
a discrete time sequence of angle-dependent kicks F (xt )

Taylor, Chirikov and Greene standard map

velocity xt+1 − xt = pt+1 mod 1
acceleration pt+1 − pt = F (xt )

→ chaos in Hamiltonian systems



the simplest example : a cat map evolving in time

if force F (x) = Kx linear in the displacement x (Hooke’s law),
the equations are linear, and can be written in a matrix form, or
Continuous Automorphism of the Torus, or

cat map
a linear, area preserving map of a 2-torus onto itself[

φt
φt+1

]
= J

[
φt−1
φt

]
−
[

0
mt

]
, J =

[
0 1
−1 s

]

for integer ‘stretching’ s > 2
the map is beloved by ergodicists :
hyperbolic⇒ perfect chaotic Hamiltonian dynamical system



a cat is literally Hooke’s wild, ‘anti-harmonic’ sister

for stretch s < 2 Hooke rules
local restoring oscillations
around the sleepy z-z-z-zzz resting state

for stretch s > 2 cats rule
exponential runaway
wrapped globally around a phase space torus

cat is to chaos what harmonic oscillator is to order

there is no more fundamental example of chaos in mechanics



(2) a modern cat

temporal lattice formulation



a modern cat lives on the temporal lattice

replace momentum by velocity

pt+1 = (φt+1 − φt )/∆t

obtain [
φt
φt+1

]
=

[
0 1
−1 s

] [
φt−1
φt

]
−
[

0
mt

]
rewrite as

2-step difference equation

φt+1 − s φt + φt−1 = −mt

temporal lattice formulation3 is pretty !

3I. Percival and F. Vivaldi, Physica D 27, 373–386 (1987).

https://doi.org/10.1016/0167-2789(87)90037-6


think globally, act locally

temporal cat law at every instant t , local in time

φt+1 − s φt + φt−1 = −mt

is enforced by the global equation

J Φ = −M

with
Φ = (φt+1, · · · , φt+n) , M = (mt+1, · · · ,mt+n)

a lattice state, a symbol block and [n×n] orbit Jacobian matrix

J = σ − s 11 + σ−1



orbit Jacobian matrix

solving a
F [Φ] = 0 fixed point condition

requires evaluation of the [n×n]

orbit Jacobian matrix

Jij =
δF [Φ]i
δφj

what does this global orbit Jacobian matrix do?

1 global stability of lattice state Φ, perturbed everywhere



the meaning of Hill determinant

Hill determinant4 DetJM determines the size of the phase
space neighborhood5 of a periodic lattice state M

in periodic orbit theory
this is known as the flow conservation sum rule :∑

M

1
|DetJM|

= 1

sum over periodic lattice states ΦM of period n

phase space is divided into
neighborhoods of periodic lattice states of period n

4G. W. Hill, Acta Math. 8, 1–36 (1886).
5P. Cvitanović, “Why cycle?”, in Chaos: Classical and Quantum, edited by P. Cvitanović et al. (Niels Bohr Inst.,

Copenhagen, 2020).

http://chaosbook.org/chapters/ChaosBook.pdf#section.27.4
https://doi.org/10.1007/bf02417081
http://ChaosBook.org/paper.shtml#getused


old : chaos for ergodicists, 20th century

definition : chaos is
positive Lyapunov - positive entropy

Lyapunov : how fast is local escape?
entropy : how many ways of getting back?

⇒ ergodicity



modern : field theorist’s chaos, 3rd millennium

definition : chaos is
expanding Hill determinants DetJM
exponential # periodic lattice states ΦM

the precise sense in which a
(discretized) field theory is deterministically chaotic

note : there is no ‘time’ in this definition



think globally, act locally - summary

the problem of enumerating and determining all global solutions
stripped to its essentials :

1 each solution is a zero of the global fixed point condition

F [Φ] = 0

here the entire global lattice state Φ is

a single fixed point Φ = (φ1, φ2, · · · , φn)

in the n-dimensional unit hyper-cube Φ ∈ [0,1)n

2 global stability : the orbit Jacobian matrix

Jij =
δF [Φ]i
δφj



Du mußt es dreimal sagen!
— Mephistopheles

1 temporal cat
2 spatiotemporal cat
3 bye bye, dynamics



herding cats in d spacetime dimensions

start with

a cat at each lattice site

talk to neighbors :

spacetime d-dimensional spatiotemporal cat



spatiotemporal cat



spatiotemporal cat

consider a 1 spatial dimension lattice, with field φnt
(the angle of a kicked rotor “particle” at instant t , at site n)

require
each site couples to its nearest neighbors φn±1,t

invariance under spatial translations
invariance under spatial reflections
invariance under the space-time exchange

Gutkin & Osipov6 obtain

2-dimensional coupled cat map lattice

φn,t+1 + φn,t−1 − 2s φnt + φn+1,t + φn−1,t = −mnt

6B. Gutkin and V. Osipov, Nonlinearity 29, 325–356 (2016).

https://doi.org/10.1088/0951-7715/29/2/325


herding cats : a discrete Euclidean space-time field theory

write the spatial-temporal differences as discrete derivatives

Laplacian in d = 2 dimensions
�φnt = φn,t+1 + φn,t−1 − 4φnt + φn+1,t + φn−1,t

subtract 2-dimensional coupled cat map lattice equation

−mnt = φn,t+1 + φn,t−1 − 2s φnt + φn+1,t + φn−1,t

cat herd is thus governed by the law of the

spatiotemporal cat

(−�+ µ2) Φ = M , µ2 = d(s − 2)

where d is the spacetime dimension, s is local ‘stretching’, and
µ is the Klein-Gordon scalar particle mass



that’s it! for spacetime of any dimension

spatiotemporal cat is the Klein-Gordon equation

(−� + µ2) Φ = M
can work out completely and analytically!

did you know that a cat map can be so cool?



discretized linear PDE

d-dimensional spatiotemporal cat

(−�+ µ2) Φ = M

is known as
tight-binding model or Helmholtz equation
if stretching is weak, s < 2
[oscillatory sine, cosine solutions]
Euclidean Klein-Gordon or (damped Poisson)
if stretching is strong, s > 2
[hyperbolic sinches, coshes, ‘mass’ µ2 = d(s − 2)]

nonlinearity is hidden in the ‘sources’ M



spring mattress vs field of rotors

traditional field theory

Helmholtz

chaotic field theory

damped Klein-Gordon



think globally, act locally

solving the spatiotemporal cat equation

JΦ = −M ,

with the [n×n] matrix J =
∑2

j=1

(
σj − s1 + σ−1

j

)
can be viewed as a search for zeros of the function

F [Φ] = JΦ + M = 0

where the entire global lattice state ΦM is

a single fixed point ΦM = {φz}

in the LT-dimensional unit hyper-cube Φ ∈ [0,1)LT

L is the ‘spatial’, T the ‘temporal’ lattice period



think globally, act locally

for each symbol array M, a periodic lattice state ΦM



our song of chaos has been sang – what next ?

1 temporal cat
2 spatiotemporal cat
3 bye bye, dynamics



what have we learned about spatiotemporal chaos?

spatiotemporal cat



insight 1 : how is turbulence described?

not by the evolution of an initial state
exponentially unstable system have finite (Lyapunov) time and
space prediction horizons

but

by enumeration of admissible field configurations
and their natural weights



insight 2 : symbolic dynamics for turbulent flows

applies to all PDEs with d translational symmetries

a d-dimensional spatiotemporal field configuration

{φz} = {φz , z ∈ Zd}

is labelled by a d-dimensional spatiotemporal block of symbols

{mz} = {mz , z ∈ Zd} ,

rather than a single temporal symbol sequence

(as is done when describing a small coupled few-“body”
system, or a small computational domain).



insight 3 : description of turbulence by invariant d-tori

1 time, 0 space dimensions
a temporal periodic orbit returns after a time T
tiles the time axis by infinitely many repeats

1 time, d-1 space dimensions
a spatiotemporally periodic orbit = invariant d-torus
tiles the lattice state with period `j in j th lattice direction



Kuramoto-Sivashinsky tiled by a small tile
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bye bye, dynamics

1 now can describe states of turbulence in infinite
spatiatemporal domains

2 theory : classify, enuremate all spatiotemporal tilings
3 example : spatiotemporal cat, the simplest model of

“turbulence”

there is no more time

there is only enumeration of
admissible spacetime field configurations



Verbrechen des Jahrhunderts : das Ende der Zeit

die Zeit ist tot !



crime of the century : this is the end of time

time is dead !



in future there will be no future

goodbye

to long time and/or space integrators

they never worked and could never work



how do clouds solve Navier-Stokes ?

clouds do not integrate Navier-Stokes equations

⇐= all possible clouds =⇒

do clouds obey Navier-Stokes equations?

yes!
they satisfy them locally, everywhere and at all times
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