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what is this? some background

this talk is an introduction to the

spatiotemporal cat1

the simplest example of

spatiotemporal turbulence2

1P. Cvitanović and H. Liang, Spatiotemporal cat: a chaotic field theory, in preparation, 2020.
2M. N. Gudorf and P. Cvitanović, Spatiotemporal tiling of the Kuramoto-Sivashinsky flow, in preparation, 2020.



a motivation : need a theory of large fluid domains

pipe flow close to onset of turbulence 3

we have a detailed theory of small turbulent fluid cells

can we can we construct the infinite pipe by coupling small
turbulent cells ?

what would that theory look like ?

3M. Avila and B. Hof, Phys. Rev. E 87 (2013)



the goal

build
a chaotic field theory

from
the simplest chaotic blocks

using
time invariance
space invariance

of the defining partial differential equations



take-home :

traditional field theory

Helmholtz

chaotic field theory

damped Poisson, Yukawa



Mephistopheles knocks at Faust’s door and
says, “Du mußt es dreimal sagen!"
. “You have to say it three times"

— Johann Wolfgang von Goethe
. Faust I - Studierzimmer 2. Teil

1 coin toss
2 temporal cat
3 spatiotemporal cat
4 bye bye, dynamics



fair coin toss (AKA Bernoulli map)

the essence of deterministic chaos

xt+1 =

{
f0(xt ) = 2xt
f1(xt ) = 2xt (mod 1)

⇒ fixed point 0, 2-cycle 01, · · ·

a coin toss
the simplest example of deterministic chaos

https://www.random.org/coins/?num=2&cur=40-antique.aurelian


what is (mod 1) ?

map with integer-valued ‘stretching’ parameter s ≥ 2 :

xt+1 = s xt

(mod 1) : subtract the integer part mt+1 = bsxtc
so fractional part φt+1 stays in the unit interval [0,1)

φt+1 = sφt −mt+1 , φt ∈Mmt

mt takes values in the s-letter alphabet

m ∈ A = {0,1,2, · · · , s − 1}



a fair dice throw

slope 6 Bernoulli map

φt+1 = 6φt−mt+1 , φt ∈Mmt

6-letter alphabet
mt ∈ A = {0,1,2, · · · ,5}

6 subintervals {Mm1}



what is chaos ?

a fair dice throw

6 subintervals {Mm1}, 62 subintervals {Mm1m2}, · · ·

each subinterval contains a
periodic point, labeled by
M = m1m2 · · ·mn

Nn = 6n unstable orbits

definition : chaos is

positive Lyapunov (ln s) - positive entropy ( 1
n ln Nn)



definition : chaos is

positive Lyapunov (ln s) - positive entropy ( 1
n ln Nn)

the precise sense in which dice throw
is an example of deterministic chaos

https://www.random.org/dice/


lattice Bernoulli

now recast the time-evolution Bernoulli map

φt+1 = sφt −mt+1

as 1-step difference equation on the temporal lattice

φt − sφt−1 = −mt , φt ∈ [0,1)

field φt , source mt
on each site t of a 1-dimensional lattice t ∈ Z

write an n-sites lattice segment as
the lattice state and the symbol block

Φ = (φt+1, · · · , φt+n) , M = (mt+1, · · · ,mt+n)



exponentially many distinct walks through Bernoulliland



think globally, act locally

Bernoulli equation at every instant t , local in time

φt − sφt−1 = −mt

is enforced by the global equation(
1− sσ−1

)
Φ = −M ,

where the [n×n] matrix

σjk = δj+1,k , σ =


0 1

0 1
. . .
0 1

1 0


implements the 1-time step operation



think globally, act locally

solving the lattice Bernoulli equation

JΦ = −M ,

with the [n×n] matrix J = 1− sσ−1 ,

can be viewed as a search for zeros of the function

F [Φ] = JΦ + M = 0

the entire global lattice state ΦM is now

a single fixed point (φ1, φ2, · · · , φn)

in the n-dimensional unit hyper-cube Φ ∈ [0,1)n



orbit Jacobian matrix

solving a nonlinear F [Φ] = 0 fixed point condition with Newton
method requires evaluation of the [n×n] orbit Jacobian matrix

Jij =
δF [Φ]i
δφj

what does this global orbit Jacobian matrix do?

1 fundamental fact !
2 global stability of lattice state Φ, perturbed everywhere



(1) fundamental fact

to satisfy the fixed point condition

JΦ + M = 0

the orbit Jacobian matrix J
1 stretches the unit hyper-cube Φ ∈ [0,1)n into the

n-dimensional fundamental parallelepiped
2 maps each periodic point ΦM into an integer lattice Zn point
3 then translate by integers M into the origin

hence Nn , the total number of solutions = the number of
integer lattice points within the fundamental parallelepiped

the fundamental fact4 : Hill determinant counts solutions

Nn = |DetJ |

# integer points in fundamental parallelepiped = its volume
4M. Baake et al., J. Phys. A 30, 3029–3056 (1997).

https://doi.org/10.1088/0305-4470/30/9/016


example : fundamental parallelepiped for n = 2

orbit Jacobian matrix, unit square basis vectors, their images :

J =

(
1 −2
−2 1

)
; ΦB =

(
1
0

)
→ ΦB′ = J ΦB =

(
1
−2

)
· · · ,

Bernoulli periodic points of period 2

N2 = 3

fixed point Φ00
2-cycle Φ01, Φ10

square [0BCD]⇒ J ⇒ fundamental parallelepiped [0B′C′D′]



fundamental fact for any n

an n = 3 example
J [unit hyper-cube] = [fundamental parallelepiped]

unit hyper-cube Φ ∈ [0,1)n

n > 3 cannot visualize

a periodic point→ integer lattice point, • on a face, • in the interior



(2) orbit stability vs. temporal stability

orbit Jacobian matrix

Jij = δF [Φ]i
δφj

stability under global perturbation of the whole orbit
for n large, a huge [dn×dn] matrix

temporal Jacobian matrix
J propagates initial perturbation n time steps

small [d×d ] matrix

J and J are related by5

Hill’s (1886) remarkable formula

|DetJM| = |det (1− JM)|

J is huge, even∞-dimensional matrix
J is tiny, few degrees of freedom matrix

5G. W. Hill, Acta Math. 8, 1–36 (1886).

https://doi.org/10.1007/bf02417081


periodic orbit theory

how come Hill determinant DetJ counts periodic points ?

in 1984 Ozorio de Almeida and Hannay6 related the number of
periodic points to a Jacobian matrix by their

principle of uniformity
“periodic points of an ergodic system, counted with their natural
weighting, are uniformly dense in phase space”

where

‘natural weight’ of periodic orbit M

1
|det (1− JM)|

6A. M. Ozorio de Almeida and J. H. Hannay, J. Phys. A 17, 3429 (1984).

https://doi.org/10.1088/0305-4470/17/18/013


periodic orbit theory

how come a DetJ counts periodic points ?

“principle of uniformity” is in7

periodic orbit theory
known as the flow conservation sum rule :∑

M

1
|det (1− JM)| =

∑
M

1
|DetJM|

= 1

sum over periodic points ΦM of period n

state space is divided into
neighborhoods of periodic points of period n

7P. Cvitanović, “Why cycle?”, in Chaos: Classical and Quantum, edited by P. Cvitanović et al. (Niels Bohr Inst.,
Copenhagen, 2020).

http://chaosbook.org/chapters/ChaosBook.pdf#section.27.4
http://ChaosBook.org/paper.shtml#getused


tile the ergodic state space by recurrent neighborhoods

a fixed point

a 2-cycle, etc.

smooth dynamics (left frame)
tesselated by the skeleton of recurrent flows,
together with (right frame) their linearized neighborhoods



periodic orbit theory

how come a DetJ counts periodic points ?

flow conservation sum rule :∑
φi∈Fixf n

1
|DetJi |

= 1

Bernoulli system ‘natural weighting’ is simple :

the determinant DetJi = DetJ the same for all periodic points,
whose number thus verifies the fundamental fact

Nn = |DetJ |

the number of Bernoulli periodic lattice states
Nn = |DetJ | = sn − 1 for any n



periodic orbit theory
how does 1-time step transition matrix T count periodic lattice
states ? For any matrix ln det = tr ln, so

ln det (1− zT ) = tr ln(1− zT ) = sum over loops

det (1− zT ) = exp

−∑
n=1

zn

n
tr T n


AKA

‘topological zeta function’

1/ζtop(z) = exp

− ∞∑
n=1

zn

n
Nn


1 weight 1/n as by (cyclic) translation invariance, n lattice

states are equivalent
2 zeta function counts prime orbits, one per each set of

equivalent lattice states



topological zeta function

counts prime orbits, one per each set of Bernoulli periodic
states Nn = sn − 1

1/ζtop(z) = exp

− ∞∑
n=1

zn

n
Nn

 =
1− sz
1− z

numerator (1− sz) says that Bernoulli orbits are built from
s fundamental primitive lattice states,

the fixed points {φ0, φ1, · · · , φs−1}
every other lattice state is built from their concatenations and
repeats.

solved!
this is ‘periodic orbit theory’
And if you don’t know, now you know

https://www.youtube.com/watch?v=_JZom_gVfuw


think globally, act locally - summary

the problem of enumerating and determining all global solutions
stripped to its essentials :

1 each solution is a zero of the global fixed point condition

F [Φ] = 0

2 global stability : the orbit Jacobian matrix

Jij =
δF [Φ]i
δφj

3 fundamental fact : the number of period-n orbits

Nn = |DetJ |

4 zeta function 1/ζtop(z) : all predictions of the theory



coin toss ? that’s not physics !

a field theory should be Hamiltonian and energy conserving,
and Quantum Mechanics requires it

because that is physics !

need a system as simple as the Bernoulli, but mechanical

so, we move on from running in circles,
to a mechanical rotor to kick.



Du mußt es dreimal sagen!
— Mephistopheles

1 coin toss
2 kicked rotor
3 spatiotemporal cat
4 bye bye, dynamics



field theory in 1 spacetime dimension

we now define

the cat map in 1 spacetime dimension
then we generalize to

d-dimensional spatiotemporal cat

cat map in Hamiltonian formulation
cat map in Lagrangian formulation
(so much more elegant!)



(1) the traditional cat

Hamiltonian formulation



example of a “small domain” dynamics : a single kicked rotor

an electron circling an atom, subject to
a discrete time sequence of angle-dependent kicks F (xt )

Taylor, Chirikov and Greene standard map

xt+1 = xt + pt+1 mod 1,
pt+1 = pt + F (xt )

→ chaos in Hamiltonian systems



the simplest example : a cat map evolving in time

force F (x) = Kx linear in the displacement x , K ∈ Z

xt+1 = xt + pt+1 mod 1
pt+1 = pt + Kxt mod 1

Continuous Automorphism of the Torus, or

Hamiltonian cat map
a linear, area preserving map of a 2-torus onto itself(

φt
φt+1

)
= J

(
φt−1
φt

)
−
(

0
mt

)
, J =

(
0 1
−1 s

)
for integer “stretching” s = tr J > 2 the map is
beloved by ergodicists :
hyperbolic→ perfect chaotic Hamiltonian dynamical system



a cat is literally Hooke’s wild, ‘anti-harmonic’ sister

for s < 2 Hooke rules
local restoring oscillations
around the sleepy z-z-z-zzz resting state

for s > 2 cats rule
exponential runaway
wrapped global around a phase space torus

cat is to chaos what harmonic oscillator is to order

there is no more fundamental example of chaos in mechanics



(2) a modern cat

Lagrangian formulation



cat map in Lagrangian form

replace momentum by velocity

pt+1 = (φt+1 − φt )/∆t

formulation on (φt , φt−1) temporal lattice is particularly pretty8

2-step difference equation

φt+1 − s φt + φt−1 = −mt

integer mt ensures that
φt lands in the unit interval

mt ∈ A , A = {finite alphabet}

8I. Percival and F. Vivaldi, Physica D 27, 373–386 (1987).

https://doi.org/10.1016/0167-2789(87)90037-6


think globally, act locally

temporal cat at every instant t , local in time

φt+1 − s φt + φt−1 = −mt

is enforced by the global equation

J Φ = −M ,

where



orbit Jacobian matrix

J Φ + M = 0

where

Φ = (φt+1, · · · , φt+n) , M = (mt+1, · · · ,mt+n)

are a lattice state, and a symbol block

and [n×n] orbit Jacobian matrix J is

σ − s1 + σ−1 =


−s 1 1
1 −s 1

1
. . .
−s 1

1 −s





think globally, act locally

solving the temporal cat equation

JΦ = −M ,

with the [n×n] matrix J = σ − s1 + σ−1

can be viewed as a search for zeros of the function

F [Φ] = JΦ + M = 0

where the entire global lattice state ΦM is

a single fixed point ΦM = (φ1, φ2, · · · , φn)
in the n-dimensional unit hyper-cube Φ ∈ [0,1)n



fundamental fact in action

temporal cat fundamental parallelepiped for period 2
square [0BCD]⇒ J = fundamental parallelepiped [0B′C′D′]

N2 = |DetJ | = 5

fundamental parallelepiped
= 5 unit area quadrilaterals

a periodic point per each unit volume



temporal cat zeta function

is the generating function that counts orbits

substituting the Hill determinant count of periodic lattice states

Nn = |DetJ |

into the topological zeta function

1/ζtop(z) = exp

(
−
∑
n=1

zn

n
Nn

)

leads to the elegant explicit formula9

1/ζtop(z) =
1− sz + z2

(1− z)2

solved!
9S. Isola, Europhys. Lett. 11, 517–522 (1990).

https://doi.org/10.1209/0295-5075/11/6/006


what continuum theory is temporal cat discretization of?

have

2-step difference equation

φt+1 − s φt + φt−1 = −mt

discrete lattice

Laplacian in 1 dimension

φt+1 − 2φt + φt−1 = �φt

so temporal cat is an (anti)oscillator chain, known as

d = 1 damped Poisson (or Yukawa) equation (!)

(�− s + 2)φt = −mt

did you know that a cat map can be so cool?



a reminder slide, to skip : Helmholtz equation in continuum

inhomogeneous Helmoltz equation
is an elliptical equation of form

(� + k2)φ(x) = −m(x) , x ∈ Rd

where φ(x) is a C2 function, and m(x) is a function with
compact support

for the λ2 = −k2 > 0 (imaginary k ), the equation is known as
the screened Poisson equation10, or the Yukawa equation

10A. L. Fetter and J. D. Walecka, Theoretical Mechanics of Particles and Continua, (Dover, New York, 2003).



that’s it! for spacetime of 1 dimension

lattice damped Poisson equation

(�− s + 2)φz = −mz
solved completely and analytically!



think globally, act locally - summary

the problem of determining all global solutions stripped to its
bare essentials :

1 each solution a zero of the global fixed point condition

F [Φ] = 0

2 compute the orbit Jacobian matrix

Jij =
δF [Φ]i
δφj

3 fundamental fact Nn = |DetJ | = period-n states

4 ⇒ zeta function 1/ζtop(z)



Du mußt es dreimal sagen!
— Mephistopheles

1 coin toss
2 kicked rotor
3 spatiotemporal cat
4 bye bye, dynamics



spatiotemporally infinite ‘spatiotemporal cat’



herding cats in d spacetime dimensions

start with

a cat at each lattice site

talk to neighbors

spacetime d-dimensional spatiotemporal cat

Hamiltonian formulation is awkward, fuggedaboutit!

Lagrangian formulation is elegant



spatiotemporal cat

consider a 1 spatial dimension lattice, with field φnt
(the angle of a kicked rotor “particle” at instant t , at site n)

require
each site couples to its nearest neighbors φn±1,t

invariance under spatial translations
invariance under spatial reflections
invariance under the space-time exchange

Gutkin & Osipov11 obtain

2-dimensional coupled cat map lattice

φn,t+1 + φn,t−1 − 2s φnt + φn+1,t + φn−1,t = −mnt

11B. Gutkin and V. Osipov, Nonlinearity 29, 325–356 (2016).

https://doi.org/10.1088/0951-7715/29/2/325


spatiotemporal cat : a strong coupling field theory

symmetries : translational and time-reversal, spatial reflections

the key assumption
invariance under the space-time exchange

eliminates traditional, spatially weakly coupled map lattice
models12

spatiotemporal cat is a Euclidean field theory

12L. A. Bunimovich and Y. G. Sinai, Nonlinearity 1, 491 (1988).

https://doi.org/10.1088/0951-7715/1/4/001


herding cats : a discrete Euclidean space-time field theory

write the spatial-temporal differences as discrete derivatives

Laplacian in d = 2 dimensions
�φnt = φn,t+1 + φn,t−1 − 4φnt + φn+1,t + φn−1,t

subtract 2-dimensional coupled cat map lattice equation

−mnt = φn,t+1 + φn,t−1 − 2s φnt + φn+1,t + φn−1,t

cat herd is thus governed by the law of

d-dimensional spatiotemporal cat

(�− d(s − 2))φz = −mz

where φz ∈ [0,1) , mz ∈ A and z ∈ Zd = integer lattice



discretized linear PDE

d-dimensional spatiotemporal cat

(�− d(s − 2))φz = −mz

is linear and known as
Helmholtz equation if stretching is weak, s < 2
[oscillatory sine, cosine solutions]
damped Poisson equation if stretching is strong, s > 2
[hyperbolic sinches, coshes, ‘mass’ m2 = d(s − 2)]

nonlinearity is hidden in the “sources”

mz ∈ A at lattice site z ∈ Zd



spring mattress vs field of rotors

traditional field theory

Helmholtz

chaotic field theory

damped Poisson



the simplest of all ‘turbulent’ field theories !

spatiotemporal cat

(�− d(s − 2))φz = −mz

can be solved completely (?) and analytically (!)

assign to each site z a letter mz from the alphabet A.

a particular fixed set of letters mz (a lattice state)

M = {mz} = {mn1n2···nd} ,

is a complete specification of the corresponding
lattice state Φ

from now on work in d = 2 dimensions, ‘stretching parameter’ s = 5/2



think globally, act locally

solving the spatiotemporal cat equation

JΦ = −M ,

with the [n×n] matrix J =
∑2

j=1

(
σj − s1 + σ−1

j

)
can be viewed as a search for zeros of the function

F [Φ] = JΦ + M = 0

where the entire global lattice state ΦM is

a single fixed point ΦM = {φz}
in the LT-dimensional unit hyper-cube Φ ∈ [0,1)LT

L is the ‘spatial’, T the ‘temporal’ lattice period



think globally, act locally

for each symbol array M, a periodic lattice state ΦM



next, enumerate all periodic spacetime tilings of the integer lattice

each tile : 2-dimensional (sub)lattice, an infinite array of points

Λ = {n1a1 + n2a2 |ni ∈ Z}

with the defining tile spanned by a pair of basis vectors a1,a2

example : four tiles of area 10

The two blue tiles appear ‘prime’, i.e., not tiled by smaller tiles.
False! all four big tiles can tilled by smaller ones.

tricky!



2-dimensional lattice tilings

2-dimensional lattice is defined by a [2× 2] fundamental
parallelepiped matrix whose columns are basis vectors

A = [a1a2] =

[
L S
0 T

]
,

L, T : spatial, temporal lattice periods
‘tilt’ 0 ≤ S < L imposes the relative-periodic
(‘helical’, ‘toroidal’, ‘twisted’, ‘screw’, · · · ) bc’s

example : [3×2]1 tile

basis vectors

a1 =

(
3
0

)
, a2 =

(
1
2

)



exponentially many periodic lattice states in Felinestan

[3×1]0 [1×3]0 [3×1]1

[2×1]1 [3×2]0 [3×2]1

tile color = value of symbol mz



note : spatiotemporal cat dances over a parquet floor

(so far) latticization of spacetime continuum :
field φ(x , t) over spacetime coordinates (x , t)
for any field theory

⇒
set of lattice site values φz = φ(n∆L, t∆T ).
Subscript z = (n, t) ∈ Zd is a discrete d-dimensional
spacetime coordinate over which the field φ lives

distinct spacetime tiles have tilted shapes [L×T]S

(next) spatiotemporal cat field φz is confined to [0,1)
That imparts a Z1 lattice structure on fundamental
parallelepiped J basis vectors ; fundamental fact then
counts all periodic lattice states ΦM for
a given spacetime tile [L×T]S



fundamental fact works over a spacetime lattice (!)

recall Bernoulli fundamental fact example ?

unit hyper-cube Φ ∈ [0,1)2

⇒ J ⇒
fundamental parallelepiped

spacetime fundamental parallelepiped basis vectors Φ(j)

= columns of the orbit Jacobian matrix

J = (Φ(1)|Φ(2)| · · · |Φ(LT))



example : spacetime periodic [3×2]0 lattice state

F [Φ] = JΦ + M = 0

6 field values, on 6 lattice sites z = (n, t), [3×2]0 tile :

Φ[3×2]0 =

[
φ01 φ11 φ21
φ00 φ10 φ20

]
, 6 M[3×2]0 =

where the region of symbol plane shown is tiled by 6 repeats of
the M[3×2]0 block, and tile color = value of symbol mz

‘stack up’ vectors and matrices, vectors as 1-dimensional
arrays,

Φ[3×2]0 =



φ01
φ00
φ11
φ10
φ21
φ20

 , M[3×2]0 =



m01
m00
m11
m10
m21
m20





with the [6×6] orbit Jacobian matrix in block-matrix form

J[3×2]0 =



−2s 2 1 0 1 0
2 −2s 0 1 0 1
1 0 −2s 2 1 0
0 1 2 −2s 0 1
1 0 1 0 −2s 2
0 1 0 1 2 −2s





fundamental parallelepiped basis vectors Φ(j) are the columns
of the orbit Jacobian matrix

J[3×2]0 =



−2s 2 1 0 1 0
2 −2s 0 1 0 1
1 0 −2s 2 1 0
0 1 2 −2s 0 1
1 0 1 0 −2s 2
0 1 0 1 2 −2s


the ‘fundamental fact’ now yields the number of solutions for
any half-integer s as Hill determinant

N[3×2]0 = |DetJ[3×2]0 | = 4(s − 2)s(2s − 1)2(2s + 3)2



can count spatiotemporal cat states for any Λ = [L×T]S

Λ NΛ(s) MΛ(s) R
[1×1]0 2(s − 2) 2(s − 2) 1
[2×1]0 2(s − 2)2s 2(s − 2) 1

2 (2s − 1) 2
[2×1]1 2(s − 2)2(s + 2) 2(s − 2) 1

2 (2s + 3)

[3×1]0 2(s − 2)(2s − 1)2 2(s − 2) 4
3 (s − 1)s

[3×1]1 2(s − 2)4(s + 1)2 2(s − 2) 1
3 (2s + 1)(2s + 3)

[4×1]0 2(s − 2)8(s − 1)2s 2(s − 2) 1
2 (2s − 3)(2s − 1)s

[4×1]1 2(s − 2)8s2(s + 2) 2(s − 2) 1
2 (s + 2)(2s − 1)(2s + 1)

[4×1]2 2(s − 2)8(s + 1)2s 2(s − 2) 1
2 (2s + 3)(2s + 1)s

[4×1]3 2(s − 2)8s2(s + 2) 2(s − 2) 1
2 (s + 2)(2s − 1)(2s + 1)

[5×1]0 2(s − 2)
(
4s2 − 6s + 1

)2 2(s − 2) 4
5 (s − 1)(2s − 3)(2s − 1)s

[5×1]1 2(s − 2)16
(
s2 + s − 1

)2 2(s − 2) 1
5 (2s − 1)(2s + 3)(4s2 + 4s − 5)

[2×2]0 2(s − 2)8s2(s + 2) 2(s − 2) 1
2 (2s − 1)(2s2 + 5s + 1) 1

[2×2]1 2(s − 2)8s(s + 1)2 2(s − 2) 1
2 (2s + 1)(2s + 3)s

[3×2]0 2(s − 2)2s(2s − 1)2(2s + 3)2 2(s − 2) 2
3 (2s − 1)(4s3 + 10s2 + 3s − 5)s

[3×2]1 2(s − 2)32s3(s + 1)2 2(s − 2) 1
6 (2s − 1)(2s + 1)(8s3 + 16s2 + 10s + 3)

[3×3]0 2(s − 2)16(s + 1)4(2s − 1)4



we can count !

1 can construct all spacetime tilings, from small tiles to as
large as you wish

2 for each spacetime tile [L×T]S , can evaluate # of
doubly-periodic lattice states for a tile

N[L×T]S

3 # of prime orbits for a tile

M[L×T]S



zeta function for a field theory ???

‘periodic orbits’ are now invariant 2-tori (tiles)
each a spacetime lattice tile p of area Ap = LpTp
that cover the phase space with ‘natural weight’

∑
p

e−Aps

|DetJp|

at this time :
d = 1 cat map zeta function works like charm
d = 2 spatiotemporal cat works
d ≥ 2 Navier-Stokes zeta is still but a dream



spatiotemporal cat topological zeta function

know how to evaluate the number of doubly-periodic lattice
states

N[L×T]S ,

for a given [L×T]S finite spacetime tile

now substitute these numbers of lattice states into the
topological zeta function

1/ζtop(z1, z2) = 1− 2 (s − 2)

z1 + z2 − 4 + z−1
1 + z−1

2

??
but that’s just a guess - we currently have no generating
function that presents all solutions in a compact form

funky... not solved :(



Zetastan : lost in translation

CHAPTER 2. SPATIOTEMPORAL CAT

2.15 Integer lattices literature

There are many reasons why one needs to compute an “orbit Jacobian matrix”
Hill determinant |DetJ |, in fields ranging from number theory to engineering,
and many methods to accomplish that:

discretizations of Helmholtz [58] and screened Poisson [59, 80, 96, 97] (also
known as Klein–Gordon or Yukawa) equations

Green’s functions on integer lattices [5, 8, 24, 33, 37, 40, 63, 67, 78, 92, 93,
115–117, 135, 140, 143, 149, 150, 159, 180, 196]

Gaussian model [71, 111, 139, 172]
linearized Hartree-Fock equation on finite lattices [121]
quasilattices [29, 69]
circulant tensor systems [33, 37, 146, 164, 166, 200]
Ising model [19, 88, 89, 98, 100, 103–105, 128, 136, 141, 153, 161, 199], transfer

matrices [154, 199]
lattice field theory [108, 144, 148, 151, 168, 175, 176, 192]
modular transformations [34, 205]
lattice string theory [77, 157]
random walks, resistor networks [9, 25, 49, 50, 60, 81, 86, 99, 122, 163, 183,

188, 198]
spatiotemporal stability in coupled map lattices [4, 75, 203]
Van Vleck determinant, Laplace operator spectrum, semiclassical Gaussian

path integrals [47, 125, 126, 187]
Hill determinant [26, 47, 137]; discrete Hill’s formula and the Hill discrimi-

nant [186]
Lindstedt-Poincaré technique [189–191]
heat kernel [38, 61, 64, 110, 114, 143, 159, 201]
lattice points enumeration [15, 16, 20, 56]
primitive parallelogram [10, 30, 152, 193]
difference equations [55, 68, 181]
digital signal processing [62, 130, 197]
generating functions, Z-transforms [64, 194]
integer-point transform [20]
graph Laplacians [41, 79, 134, 162]
graph zeta functions [7, 13, 18, 27, 42–44, 57, 61, 83, 87, 94, 101, 123, 124, 162,

165, 169, 171, 179, 184, 185, 204]
zeta functions for multi-dimensional shifts [12, 132, 133, 147]
zeta functions on discrete tori [38, 39, 201]



Zetastan : lost, but not alone

CHAPTER 2. SPATIOTEMPORAL CAT

2.15 Integer lattices literature

There are many reasons why one needs to compute an “orbit Jacobian matrix”
Hill determinant |DetJ |, in fields ranging from number theory to engineering,
and many methods to accomplish that:

discretizations of Helmholtz [58] and screened Poisson [59, 80, 96, 97] (also
known as Klein–Gordon or Yukawa) equations

Green’s functions on integer lattices [5, 8, 24, 33, 37, 40, 63, 67, 78, 92, 93,
115–117, 135, 140, 143, 149, 150, 159, 180, 196]

Gaussian model [71, 111, 139, 172]
linearized Hartree-Fock equation on finite lattices [121]
quasilattices [29, 69]
circulant tensor systems [33, 37, 146, 164, 166, 200]
Ising model [19, 88, 89, 98, 100, 103–105, 128, 136, 141, 153, 161, 199], transfer

matrices [154, 199]
lattice field theory [108, 144, 148, 151, 168, 175, 176, 192]
modular transformations [34, 205]
lattice string theory [77, 157]
random walks, resistor networks [9, 25, 49, 50, 60, 81, 86, 99, 122, 163, 183,

188, 198]
spatiotemporal stability in coupled map lattices [4, 75, 203]
Van Vleck determinant, Laplace operator spectrum, semiclassical Gaussian

path integrals [47, 125, 126, 187]
Hill determinant [26, 47, 137]; discrete Hill’s formula and the Hill discrimi-

nant [186]
Lindstedt-Poincaré technique [189–191]
heat kernel [38, 61, 64, 110, 114, 143, 159, 201]
lattice points enumeration [15, 16, 20, 56]
primitive parallelogram [10, 30, 152, 193]
difference equations [55, 68, 181]
digital signal processing [62, 130, 197]
generating functions, Z-transforms [64, 194]
integer-point transform [20]
graph Laplacians [41, 79, 134, 162]
graph zeta functions [7, 13, 18, 27, 42–44, 57, 61, 83, 87, 94, 101, 123, 124, 162,

165, 169, 171, 179, 184, 185, 204]
zeta functions for multi-dimensional shifts [12, 132, 133, 147]
zeta functions on discrete tori [38, 39, 201]



but, is this

chaos?

yes, short tiles are exponentially good ‘shadows’ of the larger
ones, so can attain any desired accuracy



is spatiotemporal cat ‘chaotic’?

in time-evolving deterministic chaos any chaotic trajectory is
shadowed by shorter periodic orbits

in spatiotemporal chaos, any unstable lattice state is shadowed
by smaller invariant 2-tori (Gutkin et al.13,14)

next figure : code the M symbol block φnt at the lattice site nt
with (color) alphabet

mt` ∈ A = {1,0,1,2, · · · } = {red ,green,blue, yellow , · · · }

13B. Gutkin and V. Osipov, Nonlinearity 29, 325–356 (2016).
14B. Gutkin et al., Linear encoding of the spatiotemporal cat map, 2019.

https://doi.org/10.1088/0951-7715/29/2/325


shadowing, symbolic dynamics space

2d symbolic representation Mj of two lattice states Φj
shadowing each other within the shared block MR

border R (thick black)
symbols outside R differ

s = 7/2 Adrien Saremi 2017



shadowing

the logarithm of the average of the absolute value of site-wise
distance

ln |φ2,z − φ1,z |
averaged over 250 solution pairs

note the exponential falloff of the distance away from the center
of the shared block R
⇒ within the interior of the shared block,

shadowing is exponentially close



1 coin toss
2 kicked rotor
3 spatiotemporal cat
4 bye bye, dynamics



summary

spatiotemporal cat



insight 1 : how is turbulence described?

not by the evolution of an initial state
exponentially unstable system have finite (Lyapunov) time and
space prediction horizons

but

by enumeration of admissible field configurations
and their natural weights



insight 2 : symbolic dynamics for turbulent flows

applies to all PDEs with d translational symmetries

a d-dimensional spatiotemporal field configuration

{φz} = {φz , z ∈ Zd}

is labelled by a d-dimensional spatiotemporal block of symbols

{mz} = {mz , z ∈ Zd} ,

rather than a single temporal symbol sequence

(as is done when describing a small coupled few-“body”
system, or a small computational domain).



insight 3 : description of turbulence by invariant 2-tori

1 time, 0 space dimensions
a phase space point is periodic if its orbit returns to itself after a
finite time T; such orbit tiles the time axis by infinitely many
repeats

1 time, d-1 space dimensions
a phase space point is spatiotemporally periodic if it belongs to
an invariant d-torus R,
i.e., a block MR that tiles the lattice state M,
with period `j in j th lattice direction



insight 4 : can compute ‘all’ solutions
Bernoulliland - rough initial guesses converge

no exponential instabilities



bye bye, dynamics

1 goal : describe states of turbulence in infinite
spatiatemporal domains

2 theory : classify, enuremate all spatiotemporal tilings
3 example : spatiotemporal cat, the simplest model of

“turbulence”

there is no more time

there is only enumeration of admissible spacetime field
configurations



crime of the century : the end of time

time is dead !



in future there will be no future

goodbye

to long time and/or space integrators

they never worked and could never work



miaw

the stage is set for the quantum field theory of spatiotemporal
cat, the details of which we leave to our always trustworthy
friends Jon Keating and Marcos Saraceno
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