a fair dice throw

slope 6 Bernoulli map

$$
\phi_{t+1}=6 \phi_{t}-m_{t+1}, \phi_{t} \in \mathcal{M}_{m_{t}}
$$

6-letter alphabet

$$
m_{t} \in \mathcal{A}=\{0,1,2, \cdots, 5\}
$$

6 subintervals $\left\{\mathcal{M}_{0}, \mathcal{M}_{1}, \cdots, \mathcal{M}_{5}\right\}$

what is $(\bmod 1) ?$

map with integer-valued 'stretching' parameter $s>1$:

$$
x_{t+1}=s x_{t}
$$

$(\bmod 1)$: subtract the integer part $m_{t+1}=\left\lfloor s x_{t}\right\rfloor$ so fractional part ϕ_{t+1} stays in the unit interval $[0,1)$

$$
\phi_{t+1}=\boldsymbol{s} \phi_{t}-m_{t+1}, \quad \phi_{t} \in \mathcal{M}_{m_{t}}
$$

m_{t} takes values in the s-letter alphabet

$$
m \in \mathcal{A}=\{0,1,2, \cdots, s-1\}
$$

lattice Bernoulli

recast the time-evolution Bernoulli map

$$
\phi_{t+1}=\boldsymbol{s} \phi_{t}-m_{t+1}
$$

as 1 -step difference equation on the temporal lattice

$$
\phi_{t}-\boldsymbol{s} \phi_{t-1}=-m_{t}, \quad \phi_{t} \in[0,1)
$$

field ϕ_{t}, source m_{t}
on each site t of a 1-dimensional lattice $t \in \mathbb{Z}$
write an n-sites lattice segment as the lattice state and the symbol block

$$
\mathrm{X}=\left(\phi_{t+1}, \cdots, \phi_{t+n}\right), \quad \mathrm{M}=\left(m_{t+1}, \cdots, m_{t+n}\right)
$$

' M ' for 'marching orders' : come here, then go there, ...

think globally, act locally

Bernoulli condition at every lattice site t, local in time

$$
\phi_{t}-\boldsymbol{s} \phi_{t-1}=-m_{t}
$$

is enforced by the global equation

$$
\mathcal{J} \mathrm{X}+\mathrm{M}=0
$$

where \mathcal{J} is $[n \times n]$ Hill matrix (orbit Jacobian matrix)

$$
\mathcal{J}=\left(\begin{array}{ccccc}
1 & 0 & & & -s \\
-s & 1 & 0 & & \\
& -s & 1 & \ddots & \\
& & -s & 1 & 0 \\
0 & & & -s & 1
\end{array}\right)
$$

think globally, act locally

solving the lattice Bernoulli system

$$
\mathcal{J} \mathrm{X}+\mathrm{M}=0
$$

is a search for zeros of the function

$$
F[\mathrm{X}]=\mathcal{J} \mathrm{X}+\mathrm{M}=0
$$

the entire global lattice state X_{M} is now a single fixed point $\left(\phi_{1}, \phi_{2}, \cdots, \phi_{n}\right)$
in the n-dimensional unit hyper-cube

what does this global orbit Jacobian matrix do?

[$n \times n$] orbit Jacobian matrix

$$
\mathcal{J}_{i j}=\frac{\delta F[\mathrm{X}]_{i}}{\delta \phi_{j}}
$$

- global stability of lattice state X, perturbed everywhere

next : we derive Hill's formula

orbit Jacobian matrix

$\mathcal{J}_{i j}=\frac{\delta F[X]_{i}}{\delta \phi_{j}}$ stability under global perturbation of the whole orbit for n large, a huge $[d n \times d n$] matrix
temporal Jacobian matrix
J propagates initial perturbation n time steps

$$
\text { small }[d \times d] \text { matrix }
$$

J and \mathcal{J} are related by ${ }^{1}$
Hill's 1886 remarkable formula

$$
\left|\operatorname{Det} \mathcal{J}_{\mathrm{M}}\right|=\left|\operatorname{det}\left(1-J_{\mathrm{M}}\right)\right|
$$

\mathcal{J} is huge, even ∞-dimensional matrix J is tiny, few degrees of freedom matrix

[^0]
temporal stability

any discrete time dynamical system : an n-periodic lattice state X_{p} satisfies the first-order difference equation

$$
\phi_{t}-f\left(\phi_{t-1}\right)=0, \quad t=1,2, \cdots, n .
$$

A deviation ΔX from X_{p} satisfies the linear equation

$$
\Delta \phi_{t}-\mathbb{J}_{t-1} \Delta \phi_{t-1}=0, \quad\left(\mathbb{J}_{t}\right)_{i j}=\left.\frac{\partial f(\phi)_{i}}{\partial \phi_{j}}\right|_{\phi_{j}=\phi_{t, j}}
$$

where \mathbb{J}_{t} is the 1-time step $[d \times d]$ Jacobian matrix.

temporal period $n=3$ example

in terms of the $[3 d \times 3 d]$ shift matrix σ, the orbit Jacobian matrix takes block matrix form
$\mathcal{J}_{p}=\mathbb{1}-\sigma^{-1} \mathbb{J}, \quad \sigma^{-1}=\left[\begin{array}{ccc}0 & 0 & \mathbb{1}_{d} \\ \mathbb{1}_{d} & 0 & 0 \\ 0 & \mathbb{1}_{d} & 0\end{array}\right], \quad \mathbb{J}=\left[\begin{array}{ccc}\mathbb{J}_{1} & 0 & 0 \\ 0 & \mathbb{J}_{2} & 0 \\ 0 & 0 & \mathbb{J}_{3}\end{array}\right]$,
where $\mathbb{1}_{d}$ is the d-dimensional identity matrix the third repeat of $\sigma^{-1} \mathbb{J}$ is block-diagonal

$$
\begin{aligned}
\left(\sigma^{-1} \mathbb{J}\right)^{2} & =\sigma^{-2}\left[\begin{array}{ccc}
\mathbb{J}_{2} \mathbb{J}_{1} & 0 & 0 \\
0 & \mathbb{J}_{3} \mathbb{J}_{2} & 0 \\
0 & 0 & \mathbb{J}_{1} \mathbb{J}_{3}
\end{array}\right] \\
\left(\sigma^{-1} \mathbb{J}\right)^{3} & =\left[\begin{array}{ccc}
\mathbb{J}_{2} \mathbb{J}_{1} \mathbb{J}_{3} & 0 & 0 \\
0 & \mathbb{J}_{3} \mathbb{J}_{2} \mathbb{J}_{1} & 0 \\
0 & 0 & \mathbb{J}_{1} \mathbb{J}_{3} \mathbb{J}_{2}
\end{array}\right] \quad \text { as } \sigma^{3}=\mathbb{1}
\end{aligned}
$$

period n temporal stability

as $\sigma^{n}=\mathbb{1}$, the trace of the $[n d \times n d]$ matrix for a period n lattice state

$$
\operatorname{tr}\left(\sigma^{-1} \mathbb{J}\right)^{k}=\delta_{k, r n} n \operatorname{tr} \mathbb{J}_{p}^{r}, \quad \mathbb{J}_{p}=\mathbb{J}_{n} \mathbb{J}_{n-1} \cdots \mathbb{J}_{2} \mathbb{J}_{1}
$$

non-vanishing only if k is a multiple of n, where \mathbb{J}_{p} is the forward-in-time $[d \times d]$ Jacobian (or Floquet) matrix of the periodic orbit p.

orbit stability vs. temporal stability

evaluate the Hill determinant $\operatorname{Det}\left(\mathcal{J}_{p}\right)$ by expanding

$$
\begin{aligned}
\ln \operatorname{Det}\left(\mathcal{J}_{p}\right) & =\operatorname{tr} \ln \left(\mathbb{1}-\sigma^{-1} \mathbb{J}\right)=-\sum_{k=1}^{\infty} \frac{1}{k} \operatorname{tr}\left(\sigma^{-1} \mathbb{J}\right)^{k} \\
& =-\operatorname{tr} \sum_{r=1}^{\infty} \frac{1}{r} \mathbb{J}_{p}^{r}=\ln \operatorname{det}\left(\mathbb{1}_{d}-\mathbb{J}_{p}\right)
\end{aligned}
$$

The orbit Jacobian matrix \mathcal{J}_{p} evaluated on a lattice state X_{p} satisfying the temporal lattice first-order difference equation
and the dynamical, forward in time Jacobian matrix \mathbb{J}_{p} are thus related by Hill's formula

$$
\operatorname{Det} \mathcal{J}_{p}=\operatorname{det}\left(\mathbb{1}_{d}-\mathbb{J}_{p}\right)
$$

which relates the global orbit stability to the Floquet, forward in time evolution stability
for any dynamical system, dissipative as well as Hamiltonian

linear force : a cat map evolving in time

force $F(x)=K x$ linear in the displacement $x, K \in \mathbb{Z}$

$$
\begin{array}{ll}
x_{t+1}=x_{t}+p_{t+1} & \bmod 1 \\
p_{t+1}=p_{t}+K x_{t} & \bmod 1
\end{array}
$$

Continuous Automorphism of the Torus, or

Hamiltonian cat map

temporal stability of the nth iterate given bythe area preserving map

$$
J^{n}=\left[\begin{array}{cc}
0 & 1 \\
-1 & s
\end{array}\right]^{n}
$$

for 'stretching' $s=\operatorname{tr} J>2$ the map is hyperbolic

nonlinear force : a Hamiltonian Hénon map evolving in time

force $F(x)$ nonlinear in the displacement x,

$$
\begin{aligned}
x_{t+1} & =a-x_{t}^{2}-p_{t} \\
p_{t+1} & =x_{t}
\end{aligned}
$$

Hamiltonian Hénon map

temporal stability of the nth iterate given by a nonlinear, area preserving map

$$
J^{n}\left(x_{0}, x_{1}\right)=\prod_{m=0}^{n-1}\left[\begin{array}{cc}
-2 x_{m} & -1 \\
1 & 0
\end{array}\right]
$$

for 'stretching' $a>5.69931 \ldots$ the map is hyperbolic

cat map in Lagrangian form

replace momentum by velocity

$$
p_{t+1}=\left(\phi_{t+1}-\phi_{t}\right) / \Delta t
$$

result 2 : discrete time lattice field ϕ equations

2-step difference equation

$$
\phi_{t+1}-s \phi_{t}+\phi_{t-1}=-m_{t}
$$

integer m_{t} ensures that
ϕ_{t} lands in the unit interval
$m_{t} \in \mathcal{A}, \quad \mathcal{A}=\{$ finite alphabet $\}$

Hamiltonian Hénon map in Lagrangian form

replace momentum by velocity

$$
p_{t+1}=\left(\phi_{t+1}-\phi_{t}\right) / \Delta t
$$

nonlinear 2-step difference equation

$$
\phi_{t+1}+2 \phi_{t}^{2}+\phi_{t-1}=-a
$$

spatiotemporally infinite 'spatiotemporal cat'

spatiotemporal cat

consider a 1 spatial dimension lattice, with field $\phi_{n t}$ (the angle of a kicked rotor "particle" at instant t, at site n)

require

- each site couples to its nearest neighbors $\phi_{n \pm 1, t}$
- invariance under spatial translations
- invariance under spatial reflections
- invariance under the space-time exchange

Gutkin \& Osipov ${ }^{3}$:
2-dimensional coupled cat map lattice

$$
\phi_{n, t+1}+\phi_{n, t-1}-2 s \phi_{n t}+\phi_{n+1, t}+\phi_{n-1, t}=-m_{n t}
$$

[^1]
temporal cat orbit Jacobian matrix

$$
\mathcal{J} \mathrm{X}+\mathrm{M}=0
$$

with

$$
\mathrm{X}=\left(\phi_{t+1}, \cdots, \phi_{t+n}\right), \quad \mathrm{M}=\left(m_{t+1}, \cdots, m_{t+n}\right)
$$

are a lattice state, and a symbol block
and $[n \times n]$ orbit Jacobian matrix \mathcal{J} is

$$
\sigma-s \mathbb{1}+\sigma^{-1}=\left(\begin{array}{ccccc}
-s & 1 & & & 1 \\
1 & -s & 1 & & \\
& 1 & & \ddots & \\
& & & -s & 1 \\
1 & & & & -s
\end{array}\right)
$$

temporal Hénon orbit Jacobian matrix

[$n \times n$] orbit Jacobian matrix is

$$
\mathcal{J}=\left(\begin{array}{ccccc}
2 \phi_{1} & 1 & & & 1 \\
1 & 2 \phi_{2} & 1 & & \\
& 1 & & \ddots & \\
& & & 2 \phi_{n-1} & 1 \\
1 & & & 1 & 2 \phi_{n}
\end{array}\right)
$$

spatiotemporal cat periodic $[3 \times 2]_{0}$ lattice state

$$
F[\mathrm{X}]=\mathcal{J} \mathrm{X}+\mathrm{M}=0
$$

6 field values, on 6 lattice sites $z=(n, t),[3 \times 2]_{0}$ tile :

$$
\mathrm{X}_{[3 \times 2]_{0}}=\left[\begin{array}{lll}
\phi_{01} & \phi_{11} & \phi_{21} \\
\phi_{00} & \phi_{10} & \phi_{20}
\end{array}\right], \quad 6 \mathrm{M}_{[3 \times 2]_{0}}=
$$

where the region of symbol plane shown is tiled by 6 repeats of the $\mathrm{M}_{[3 \times 2]_{0}}$ block, and tile color = value of symbol m_{z}
'stack up’ vectors and matrices, vectors as 1-dimensional arrays,

$$
\mathrm{X}_{[3 \times 2]_{0}}=\left(\begin{array}{c}
\phi_{01} \\
\phi_{00} \\
\hline \phi_{11} \\
\phi_{10} \\
\hline \phi_{21} \\
\phi_{20}
\end{array}\right), \quad \mathrm{M}_{[3 \times 2]_{0}}=\left(\begin{array}{c}
m_{01} \\
m_{00} \\
\hline m_{11} \\
m_{10} \\
\hline m_{21} \\
m_{20}
\end{array}\right)
$$

with the $[6 \times 6]$ orbit Jacobian matrix in block-matrix form

$$
\mathcal{J}_{[3 \times 2]_{0}}=\left(\begin{array}{cc|cc|cc}
-2 s & 2 & 1 & 0 & 1 & 0 \\
2 & -2 s & 0 & 1 & 0 & 1 \\
\hline 1 & 0 & -2 s & 2 & 1 & 0 \\
0 & 1 & 2 & -2 s & 0 & 1 \\
\hline 1 & 0 & 1 & 0 & -2 s & 2 \\
0 & 1 & 0 & 1 & 2 & -2 s
\end{array}\right)
$$

summary : orbit stability vs. temporal stability

orbit Jacobian matrix

$\mathcal{J}_{i j}=\frac{\delta F[X]_{i}}{\delta \phi_{j}}$ stability under global perturbation of the whole orbit for n large, a huge [$d n \times d n$] matrix
temporal Jacobian matrix
J propagates initial perturbation n time steps
small $[d \times d]$ matrix

orbit stability vs. temporal stability

J and \mathcal{J} are always related by ${ }^{4}$
Hill's formula

$$
\left|\operatorname{Det} \mathcal{J}_{\mathrm{M}}\right|=\left|\operatorname{det}\left(1-J_{\mathrm{M}}\right)\right|
$$

\mathcal{J} is huge, even ∞-dimensional matrix J is tiny, few degrees of freedom matrix

[^0]: ${ }^{1}$ G. W. Hill, Acta Math. 8, 1-36 (1886).

[^1]: ${ }^{3}$ B. Gutkin and V. Osipov, Nonlinearity 29, 325-356 (2016).

