a fair dice throw

slope 6 Bernoulli map

$$\phi_{t+1} = 6\phi_t - m_{t+1} , \ \phi_t \in \mathcal{M}_{m_t}$$

 $\begin{array}{l} \text{6-letter alphabet} \\ \textit{m}_t \in \mathcal{A} = \{0, 1, 2, \cdots, 5\} \end{array}$

6 subintervals $\{\mathcal{M}_0, \mathcal{M}_1, \cdots, \mathcal{M}_5\}$

what is (mod 1)?

map with integer-valued 'stretching' parameter s > 1 :

$$x_{t+1} = s x_t$$

(mod 1) : subtract the integer part $m_{t+1} = \lfloor sx_t \rfloor$ so fractional part ϕ_{t+1} stays in the unit interval [0, 1)

$$\phi_{t+1} = \mathbf{s}\phi_t - \mathbf{m}_{t+1}, \qquad \phi_t \in \mathcal{M}_{\mathbf{m}_t}$$

*m*_t takes values in the *s*-letter alphabet

$$m \in \mathcal{A} = \{0, 1, 2, \cdots, s-1\}$$

lattice Bernoulli

recast the time-evolution Bernoulli map

 $\phi_{t+1} = \mathbf{s}\phi_t - \mathbf{m}_{t+1}$

as 1-step difference equation on the temporal lattice

$$\phi_t - \boldsymbol{s}\phi_{t-1} = -\boldsymbol{m}_t, \qquad \phi_t \in [0, 1)$$

field ϕ_t , source m_t on each site t of a 1-dimensional lattice $t \in \mathbb{Z}$

write an *n*-sites lattice segment as the lattice state and the symbol block

$$X = (\phi_{t+1}, \cdots, \phi_{t+n}), M = (m_{t+1}, \cdots, m_{t+n})$$

'M' for 'marching orders' : come here, then go there, \cdots

think globally, act locally

Bernoulli condition at every lattice site t, local in time

$$\phi_t - s\phi_{t-1} = -m_t$$

is enforced by the global equation

$$\mathcal{J}X + M = 0\,,$$

where \mathcal{J} is $[n \times n]$ Hill matrix (orbit Jacobian matrix)

$$\mathcal{J}=\left(egin{array}{cccccc} 1 & 0 & & -s \ -s & 1 & 0 & & \ & -s & 1 & \ddots & \ & & -s & 1 & 0 \ 0 & & & -s & 1 \end{array}
ight)$$

think globally, act locally

solving the lattice Bernoulli system

 $\mathcal{J}X+M=0\,,$

is a search for zeros of the function

 $F[X] = \mathcal{J}X + M = 0$

the entire global lattice state X_M is now a single fixed point $(\phi_1, \phi_2, \cdots, \phi_n)$

in the *n*-dimensional unit hyper-cube

what does this global orbit Jacobian matrix do?

$[n \times n]$ orbit Jacobian matrix

$$\mathcal{J}_{ij} = \frac{\delta F[\mathsf{X}]_i}{\delta \phi_j}$$

global stability of lattice state X, perturbed everywhere

next : we derive Hill's formula

orbit Jacobian matrix

 $\mathcal{J}_{ij} = \frac{\delta F[X]_i}{\delta \phi_j}$ stability under global perturbation of the whole orbit for *n* large, a huge [*dn*×*dn*] matrix

temporal Jacobian matrix

J propagates initial perturbation n time steps

small $[d \times d]$ matrix

J and \mathcal{J} are related by¹

Hill's 1886 remarkable formula

 $|\text{Det } \mathcal{J}_{\mathsf{M}}| = |\det(\mathbf{1} - J_{\mathsf{M}})|$

 $\mathcal J$ is huge, even ∞ -dimensional matrix J is tiny, few degrees of freedom matrix

¹G. W. Hill, Acta Math. 8, 1–36 (1886).

temporal stability

any discrete time dynamical system : an *n*-periodic lattice state X_p satisfies the first-order difference equation

$$\phi_t - f(\phi_{t-1}) = 0, \quad t = 1, 2, \cdots, n.$$

A deviation ΔX from X_p satisfies the linear equation

$$\Delta \phi_t - \mathbb{J}_{t-1} \Delta \phi_{t-1} = 0, \qquad (\mathbb{J}_t)_{ij} = \left. \frac{\partial f(\phi)_i}{\partial \phi_j} \right|_{\phi_j = \phi_{t,j}},$$

where \mathbb{J}_t is the 1-time step $[d \times d]$ Jacobian matrix.

temporal period n = 3 example

in terms of the $[3d \times 3d]$ shift matrix σ , the orbit Jacobian matrix takes block matrix form

$$\mathcal{J}_{\rho} = 1 - \sigma^{-1} \mathbb{J}, \quad \sigma^{-1} = \begin{bmatrix} 0 & 0 & 1_{d} \\ 1_{d} & 0 & 0 \\ 0 & 1_{d} & 0 \end{bmatrix}, \quad \mathbb{J} = \begin{bmatrix} \mathbb{J}_{1} & 0 & 0 \\ 0 & \mathbb{J}_{2} & 0 \\ 0 & 0 & \mathbb{J}_{3} \end{bmatrix},$$

where $\mathbb{1}_d$ is the *d*-dimensional identity matrix the third repeat of $\sigma^{-1}\mathbb{J}$ is block-diagonal

$$(\sigma^{-1}\mathbb{J})^2 = \sigma^{-2} \begin{bmatrix} \mathbb{J}_2\mathbb{J}_1 & 0 & 0 \\ 0 & \mathbb{J}_3\mathbb{J}_2 & 0 \\ 0 & 0 & \mathbb{J}_1\mathbb{J}_3 \end{bmatrix}$$
$$(\sigma^{-1}\mathbb{J})^3 = \begin{bmatrix} \mathbb{J}_2\mathbb{J}_1\mathbb{J}_3 & 0 & 0 \\ 0 & \mathbb{J}_3\mathbb{J}_2\mathbb{J}_1 & 0 \\ 0 & 0 & \mathbb{J}_1\mathbb{J}_3\mathbb{J}_2 \end{bmatrix} \text{ as } \sigma^3 = 1$$

period *n* temporal stability

as $\sigma^n = 1$, the trace of the $[nd \times nd]$ matrix for a period *n* lattice state

$$\operatorname{tr} (\sigma^{-1} \mathbb{J})^{k} = \delta_{k, rn} \, n \operatorname{tr} \mathbb{J}_{p}^{r}, \quad \mathbb{J}_{p} = \mathbb{J}_{n} \mathbb{J}_{n-1} \cdots \mathbb{J}_{2} \mathbb{J}_{1}$$

non-vanishing only if k is a multiple of n, where \mathbb{J}_p is the forward-in-time $[d \times d]$ Jacobian (or Floquet) matrix of the periodic orbit p.

orbit stability vs. temporal stability

evaluate the Hill determinant $Det(\mathcal{J}_p)$ by expanding

$$\ln \operatorname{Det} (\mathcal{J}_{p}) = \operatorname{tr} \ln(\mathbb{1} - \sigma^{-1}\mathbb{J}) = -\sum_{k=1}^{\infty} \frac{1}{k} \operatorname{tr} (\sigma^{-1}\mathbb{J})^{k}$$
$$= -\operatorname{tr} \sum_{r=1}^{\infty} \frac{1}{r} \mathbb{J}_{p}^{r} = \ln \operatorname{det} (\mathbb{1}_{d} - \mathbb{J}_{p}).$$

The orbit Jacobian matrix \mathcal{J}_p evaluated on a lattice state X_p satisfying the temporal lattice first-order difference equation

and the dynamical, forward in time Jacobian matrix $\mathbb{J}_{\textit{p}}$ are thus related by Hill's formula

Det
$$\mathcal{J}_{\rho} = \det \left(\mathbb{1}_{d} - \mathbb{J}_{\rho} \right),$$

which relates the global orbit stability to the Floquet, forward in time evolution stability

for any dynamical system, dissipative as well as Hamiltonian

linear force : a cat map evolving in time

force F(x) = Kx linear in the displacement x, $K \in \mathbb{Z}$

 $x_{t+1} = x_t + p_{t+1} \mod 1$ $p_{t+1} = p_t + Kx_t \mod 1$

Continuous Automorphism of the Torus, or

Hamiltonian cat map

temporal stability of the *n*th iterate given bythe area preserving map

$$J^n = \left[\begin{array}{cc} 0 & 1 \\ -1 & s \end{array} \right]^n$$

for 'stretching' s = tr J > 2 the map is hyperbolic

nonlinear force : a Hamiltonian Hénon map evolving in time

force F(x) nonlinear in the displacement x,

$$x_{t+1} = a - x_t^2 - p_t$$
$$p_{t+1} = x_t$$

Hamiltonian Hénon map

temporal stability of the *n*th iterate given by a nonlinear, area preserving map

$$J^{n}(x_{0}, x_{1}) = \prod_{m=0}^{n-1} \begin{bmatrix} -2x_{m} & -1 \\ 1 & 0 \end{bmatrix}$$

for 'stretching' a > 5.69931... the map is hyperbolic

cat map in Lagrangian form

replace momentum by velocity

$$p_{t+1} = (\phi_{t+1} - \phi_t)/\Delta t$$

result² : discrete time lattice field ϕ equations

2-step difference equation

$$\phi_{t+1} - \mathbf{s}\,\phi_t + \phi_{t-1} = -\mathbf{m}_t$$

integer m_t ensures that

 ϕ_t lands in the unit interval

$$m_t \in \mathcal{A}, \quad \mathcal{A} = \{\text{finite alphabet}\}$$

²I. Percival and F. Vivaldi, Physica D 27, 373–386 (1987).

Hamiltonian Hénon map in Lagrangian form

replace momentum by velocity

$$p_{t+1} = (\phi_{t+1} - \phi_t)/\Delta t$$

nonlinear 2-step difference equation

$$\phi_{t+1} + 2\,\phi_t^2 + \phi_{t-1} = -a$$

spatiotemporally infinite 'spatiotemporal cat'

spatiotemporal cat

consider a 1 spatial dimension lattice, with field ϕ_{nt} (the angle of a kicked rotor "particle" at instant *t*, at site *n*)

require

- each site couples to its nearest neighbors $\phi_{n\pm 1,t}$
- invariance under spatial translations
- invariance under spatial reflections
- invariance under the space-time exchange

Gutkin & Osipov³ :

2-dimensional coupled cat map lattice

$$\phi_{n,t+1} + \phi_{n,t-1} - 2s\phi_{nt} + \phi_{n+1,t} + \phi_{n-1,t} = -m_{nt}$$

³B. Gutkin and V. Osipov, Nonlinearity **29**, 325–356 (2016).

temporal cat orbit Jacobian matrix

$$\mathcal{J} X + M = 0$$

with

$$\mathsf{X} = (\phi_{t+1}, \cdots, \phi_{t+n}), \quad \mathsf{M} = (m_{t+1}, \cdots, m_{t+n})$$

are a lattice state, and a symbol block

and $[n \times n]$ orbit Jacobian matrix \mathcal{J} is

$$\sigma - s \mathbf{1} + \sigma^{-1} = \begin{pmatrix} -s & 1 & 1 \\ 1 & -s & 1 & \\ & 1 & \ddots & \\ & & -s & 1 \\ 1 & & -s \end{pmatrix}$$

temporal Hénon orbit Jacobian matrix

 $[n \times n]$ orbit Jacobian matrix is

$$\mathcal{J}=\left(egin{array}{cccccccc} 2\phi_1 & 1 & & 1\ 1 & 2\phi_2 & 1 & & \ 1 & & \ddots & & \ & 1 & & \ddots & \ & & 2\phi_{n-1} & 1\ 1 & & 1 & 2\phi_n \end{array}
ight)$$

spatiotemporal cat periodic $[3 \times 2]_0$ lattice state

 $F[X] = \mathcal{J}X + M = 0$

6 field values, on 6 lattice sites z = (n, t), $[3 \times 2]_0$ tile :

$$\mathsf{X}_{[3\times 2]_0} = \begin{bmatrix} \phi_{01} & \phi_{11} & \phi_{21} \\ \phi_{00} & \phi_{10} & \phi_{20} \end{bmatrix}, \qquad \mathsf{6}\,\mathsf{M}_{[3\times 2]_0} =$$

where the region of symbol plane shown is tiled by 6 repeats of the $M_{[3\times2]_0}$ block, and tile color = value of symbol m_z 'stack up' vectors and matrices, vectors as 1-dimensional arrays,

$$X_{[3\times2]_0} = \begin{pmatrix} \phi_{01} \\ \phi_{00} \\ \phi_{11} \\ \phi_{10} \\ \phi_{21} \\ \phi_{20} \end{pmatrix}, \qquad M_{[3\times2]_0} = \begin{pmatrix} m_{01} \\ m_{00} \\ m_{11} \\ m_{10} \\ m_{21} \\ m_{20} \end{pmatrix}$$

with the $[6 \times 6]$ orbit Jacobian matrix in block-matrix form

$$\mathcal{J}_{[3\times2]_0} = egin{pmatrix} -2s & 2 & 1 & 0 & 1 & 0 \ 2 & -2s & 0 & 1 & 0 & 1 \ \hline 1 & 0 & -2s & 2 & 1 & 0 \ 0 & 1 & 2 & -2s & 0 & 1 \ \hline 1 & 0 & 1 & 0 & -2s & 2 \ 0 & 1 & 0 & 1 & 2 & -2s \end{pmatrix}$$

summary : orbit stability vs. temporal stability

orbit Jacobian matrix

 $\mathcal{J}_{ij} = \frac{\delta F[X]_i}{\delta \phi_j}$ stability under global perturbation of the whole orbit for *n* large, a huge [*dn*×*dn*] matrix

temporal Jacobian matrix

J propagates initial perturbation *n* time steps

small $[d \times d]$ matrix

orbit stability vs. temporal stability

J and $\mathcal J$ are always related by⁴

Hill's formula

$$|\text{Det }\mathcal{J}_{\mathsf{M}}| = |\det(\mathbf{1} - J_{\mathsf{M}})|$$

 ${\cal J}$ is huge, even ∞ -dimensional matrix J is tiny, few degrees of freedom matrix

⁴G. W. Hill, Acta Math. 8, 1–36 (1886).