what is 'chaos'? a field theorist stroll through Bernoullistan

Predrag Cvitanović

Georgia Tech
ChaosBook.org/overheads/spatiotemporal
\rightarrow Chaotic field theory slides

December 6, 2021

Mephistopheles knocks at Faust's door and says, "Du mußt es dreimal sagen!"
"You have to say it three times"

- Johann Wolfgang von Goethe Faust I - Studierzimmer 2. Teil
(what this is about
(2) coin toss
(3) temporal cat
(C) spatiotemporal cat
(3) bye bye, dynamics
(1) coin toss, if you are stuck in XVIII century
time-evolution formulation

fair coin toss

Bernoulli map

$$
\phi_{t+1}=\left\{\begin{array}{l}
2 \phi_{t} \\
2 \phi_{t}(\bmod 1)
\end{array}\right.
$$

$\Rightarrow \quad$ fixed point $\overline{0}, 2$-cycle $\overline{01}, \ldots$
a coin toss
the essence of deterministic chaos

what is $(\bmod 1) ?$

map with integer-valued 'stretching' parameter $s \geq 2$:

$$
x_{t+1}=s x_{t}
$$

$(\bmod 1):$ subtract the integer part $m_{t}=\left\lfloor s x_{t}\right\rfloor$ so fractional part ϕ_{t+1} stays in the unit interval $[0,1)$

$$
\phi_{t+1}=\boldsymbol{s} \phi_{t}-m_{t}, \quad \phi_{t} \in \mathcal{M}_{m_{t}}
$$

m_{t} takes values in the s-letter alphabet

$$
m \in \mathcal{A}=\{0,1,2, \cdots, s-1\}
$$

a fair dice throw

slope 6 Bernoulli map

$\phi_{t+1}=6 \phi_{t}-m_{t}, \quad \phi_{t} \in \mathcal{M}_{m_{t}}$
6-letter alphabet
$m_{t} \in \mathcal{A}=\{0,1,2, \cdots, 5\}$

6 subintervals $\left\{\mathcal{M}_{0}, \mathcal{M}_{1}, \cdots, \mathcal{M}_{5}\right\}$

what is chaos?

a fair dice throw

6 subintervals $\left\{\mathcal{M}_{m_{t}}\right\}, 6^{2}$ subintervals $\left\{\mathcal{M}_{m_{1} m_{2}}\right\}, \cdots$

each subinterval contains a periodic point, labeled by $\mathrm{M}=m_{1} m_{2} \cdots m_{n}$
$N_{n}=6^{n}-1$ unstable orbits

definition : chaos is

positive Lyapunov $(\ln s)$ - positive entropy $\left(\frac{1}{n} \ln N_{n}\right)$

definition : chaos is
 positive Lyapunov ($\ln s)$ - positive entropy $\left(\frac{1}{n} \ln N_{n}\right)$

- Lyapunov : how fast is local escape?
- entropy : how many ways of getting back?
\Rightarrow ergodicity
the precise sense in which dice throw is an example of deterministic chaos
(2) field theorist's chaos

lattice formulation

lattice Bernoulli

recast the time-evolution Bernoulli map

$$
\phi_{t+1}=\boldsymbol{s} \phi_{t}-m_{t}
$$

as 1 -step difference equation on the temporal lattice

$$
\phi_{t+1}-\boldsymbol{s} \phi_{t}=-m_{t}, \quad \phi_{t} \in[0,1)
$$

field ϕ_{t}, source m_{t}
on each site t of a 1-dimensional lattice $t \in \mathbb{Z}$
write an n-sites lattice segment as the field configuration and the symbol block

$$
\Phi=\left(\phi_{t+1}, \cdots, \phi_{t+n}\right), \quad \mathrm{M}=\left(m_{t+1}, \cdots, m_{t+n}\right)
$$

' M ' for 'marching orders' : come here, then go there, ...

scalar field theory on 1-dimensional lattice

write a periodic field over n-sites Bravais cell as the field configuration and the symbol block (sources)

$$
\Phi=\left(\phi_{t+1}, \cdots, \phi_{t+n}\right), \quad \mathrm{M}=\left(m_{t+1}, \cdots, m_{t+n}\right)
$$

' M ' for 'marching orders' : come here, then go there, ...

think globally, act locally

Bernoulli condition at every lattice site t, local in time

$$
-\phi_{t+1}+\boldsymbol{s} \phi_{t}=m_{t}
$$

is enforced by the global equation

$$
(-r+s 1) \Phi=\mathrm{M}
$$

[$n \times n$] shift matrix

$$
r_{j k}=\delta_{j+1, k}, \quad r=\left(\begin{array}{ccccc}
0 & 1 & & & \\
& 0 & 1 & & \\
& & & \ddots & \\
& & & 0 & 1 \\
1 & & & & 0
\end{array}\right)
$$

compares the neighbors

think globally, act locally

solving the lattice Bernoulli system

$$
\mathcal{J} \Phi=\mathrm{M}
$$

$[n \times n]$ Hill matrix $\mathcal{J}=-r+s 1$,
is a search for zeros of the function

$$
F[\Phi]=\mathcal{J} \Phi-\mathrm{M}=0
$$

the entire global lattice state Φ_{M} is now a single fixed point $\left(\phi_{1}, \phi_{2}, \cdots, \phi_{n}\right)$

orbit stability

Hill matrix

solving a nonlinear

$$
F[\Phi]=0 \quad \text { fixed point condition }
$$

with Newton method requires evaluation of the $[n \times n]$
Hill matrix

$$
\mathcal{J}_{i j}=\frac{\delta F[\Phi]_{i}}{\delta \phi_{j}}
$$

what does this global Hill matrix do?
(1) fundamental fact!
(2) global stability of lattice state Φ, perturbed everywhere
fundamental fact

(1) fundamental fact

to satisfy the fixed point condition

$$
\mathcal{J} \Phi-\mathrm{M}=0
$$

the Hill matrix \mathcal{J}
(1) stretches the unit hyper-cube $\Phi \in[0,1)^{n}$ into the n-dimensional fundamental parallelepiped
(2) maps each periodic point $\Phi_{M} \Rightarrow$ integer lattice \mathbb{Z}^{n} point
(3) then translate by integers $\mathrm{M} \Rightarrow$ into the origin
hence $N_{n}=$ total \sharp solutions $=\sharp$ integer lattice points within the fundamental parallelepiped
the fundamental fact ${ }^{1}$: Hill determinant counts solutions

$$
N_{n}=\operatorname{Det} \mathcal{J}
$$

$\#$ integer points in fundamental parallelepiped $=$ its volume

[^0]
example : fundamental parallelepiped for $n=2$

Hill matrix for $s=2$; unit square basis vectors ; their images :

$$
\mathcal{J}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) ; \quad \Phi_{B}=\binom{1}{0} \rightarrow \Phi_{B^{\prime}}=\mathcal{J} \Phi_{B}=\binom{2}{-1} \cdots,
$$

Bernoulli periodic points of period 2

$N_{2}=3$
fixed point Φ_{00}
2-cycle $\quad \Phi_{01}, \Phi_{10}$
square $[0 B C D] \Rightarrow \mathcal{J} \Rightarrow$ fundamental parallelepiped $\left[O B^{\prime} C^{\prime} D^{\prime}\right]$

fundamental fact for any n

an $n=3$ example

\mathcal{J} [unit hyper-cube] = [fundamental parallelepiped]

unit hyper-cube $\Phi \in[0,1)^{3}$
$n>3$ cannot visualize
a periodic point \Rightarrow integer lattice point $: \bullet$ on a face, \bullet in the interior

orbit stability

Hill matrix

$\mathcal{J}_{i j}=\frac{\delta F[\phi]_{i}}{\delta \phi_{j}}$ stability under global perturbation of the whole orbit for n large, a huge $[d n \times d n]$ matrix

temporal Jacobian matrix

J propagates initial perturbation n time steps

$$
\text { small }[d \times d] \text { matrix }
$$

J and \mathcal{J} are related by ${ }^{2}$
Hill's 1886 remarkable formula

$$
\left|\operatorname{Det} \mathcal{J}_{\mathrm{M}}\right|=\left|\operatorname{det}\left(\mathbf{1}-J_{\mathrm{M}}\right)\right|
$$

\mathcal{J} is huge, even ∞-dimensional matrix J is tiny, few degrees of freedom matrix

[^1]
field theorist's chaos

definition : chaos is

expanding	Hill determinants	$\operatorname{Det} \mathcal{J}$
exponential \sharp	field configurations	N_{n}

the precise sense in which
a (discretized) field theory is deterministically chaotic
note : there is no 'time' in this definition

periodic orbit theory

volume of a periodic orbit

Ozorio de Almeida and Hannay ${ }^{3} 1984$:
\sharp of periodic points is related to a Jacobian matrix by
principle of uniformity
"periodic points of an ergodic system, counted with their natural weighting, are uniformly dense in phase space"
where
'natural weight' of periodic orbit M

$$
\frac{1}{\left|\operatorname{det}\left(1-J_{M}\right)\right|}
$$

[^2]
periodic orbits partition lattice states into neighborhoods

how come Hill determinant Det \mathcal{J} counts periodic points ?
'principle of uniformity' is in ${ }^{4}$

periodic orbit theory

known as the flow conservation sum rule :

$$
\sum_{M} \frac{1}{\left|\operatorname{det}\left(1-J_{M}\right)\right|}=\sum_{M} \frac{1}{\left|\operatorname{Det} \mathcal{J}_{M}\right|}=1
$$

sum over periodic points Φ_{M} of period n
state space is divided into
neighborhoods of periodic points of period n

[^3]Copenhagen, 2020).

periodic orbit counting

how come a Det \mathcal{J} counts periodic points ?
flow conservation sum rule :

$$
\sum_{\Phi_{\mathrm{M}} \in \mathrm{Fix}^{\eta}{ }^{\eta}} \frac{1}{\left|\operatorname{Det} \mathcal{J}_{\mathrm{M}}\right|}=1
$$

Bernoulli system 'natural weighting' is simple :
the determinant $\operatorname{Det} \mathcal{J}_{M}=\operatorname{Det} \mathcal{J}$ the same for all periodic points, whose number thus verifies the fundamental fact

$$
N_{n}=|\operatorname{Det} \mathcal{J}|
$$

the number of Bernoulli periodic lattice states
$N_{n}=|\operatorname{Det} \mathcal{J}|=s^{n}-1 \quad$ for any n

remember the fundamental fact?

period 2 example

fixed point Φ_{00}
2-cycle $\quad \Phi_{01}, \Phi_{10}$
\mathcal{J} [unit hyper-cube] = [fundamental parallelepiped]
look at preimages of the fundamental parallelepiped:

example : lattice states of period 2

unit hypercube, partitioned

fixed point Φ_{00}
2-cycle $\quad \Phi_{01}, \Phi_{10}$
flow conservation sum rule

$$
\frac{1}{\left|\operatorname{Det} \mathcal{J}_{00}\right|}+\frac{1}{\left|\operatorname{Det} \mathcal{J}_{01}\right|}+\frac{1}{\left|\operatorname{Det} \mathcal{J}_{10}\right|}=1
$$

sum over periodic points Φ_{M} of period $n=2$
state space is divided into
neighborhoods of periodic points of period n

Amazing! I did not understand a single word. —Fritz Haake 1988

zeta function

periodic orbit theory, version (1) : counting lattice states

topological zeta function

$$
1 / \zeta_{\text {top }}(z)=\exp \left(-\sum_{n=1}^{\infty} \frac{z^{n}}{n} N_{n}\right)
$$

(1) weight $1 / n$ as by (cyclic) translation invariance, n lattice states are equivalent
(2) zeta function counts orbits, one per each set of equivalent lattice states

Bernoulli topological zeta function

counts orbits, one per each set of lattice states $N_{n}=s^{n}-1$

$$
1 / \zeta_{\text {top }}(z)=\exp \left(-\sum_{n=1}^{\infty} \frac{z^{n}}{n} N_{n}\right)=\frac{1-s z}{1-z}
$$

numerator ($1-s z$) says that Bernoulli orbits are built from s fundamental primitive lattice states, the fixed points $\left\{\phi_{0}, \phi_{1}, \cdots, \phi_{s-1}\right\}$
every other lattice state is built from their concatenations and repeats.

solved!

this is 'periodic orbit theory'
And if you don't know, now you know

think globally, act locally - summary

the problem of enumerating and determining all lattice states stripped to its essentials :
(1) each solution is a zero of the global fixed point condition

$$
F[\Phi]=0
$$

(2) global stability : the Hill matrix

$$
\mathcal{J}_{i j}=\frac{\delta F[\Phi]_{i}}{\delta \phi_{j}}
$$

(3) fundamental fact : the number of period- n orbits

$$
N_{n}=|\operatorname{Det} \mathcal{J}|
$$

(9) zeta function $1 / \zeta_{\text {top }}(z)$: all predictions of the theory

next : a kicked rotor

Du mußt es dreimal sagen!
 - Mephistopheles

() what this is about
(2) coin toss
(3) kicked rotor
(a) spatiotemporal cat
(3) bye bye, dynamics

[^0]: ${ }^{1}$ M. Baake et al., J. Phys. A 30, 3029-3056 (1997).

[^1]: ${ }^{2}$ G. W. Hill, Acta Math. 8, 1-36 (1886).

[^2]: ${ }^{3}$ A. M. Ozorio de Almeida and J. H. Hannay, J. Phys. A 17, 3429 (1984).

[^3]: ${ }^{4}$ P. Cvitanović, "Why cycle?", in Chaos: Classical and Quantum, edited by P. Cvitanović et al. (Niels Bohr Inst.,

