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should you listen to the weatherman?

Brian Farrell
“Traditionally, a statistical quantity is obtained from an ensemble
average of sample realizations of the turbulence”

instead:

“statistical state dynamics (SSD) takes probability density
function (pdf) as a state variable. Its dynamics has one and
only one fixed point (· · · polar jet· · · ), and only SSD equations
reveal it” (huh?)

“the Fokker-Planck equation is intractable for representing complex system
dynamics” (that is what we’ll use in this talk :)

B F Farrell and P J Ioannou, Statistical State Dynamics: a new
perspective on turbulence in shear flows; arXiv.org:1412.8290

http://arxiv.org/abs/1412.8290


statistical state dynamics

Brian Farrell
take 2-layer baroclinic turbulence model
truncate SSD to the first two cumulants: mean flow,
perturbation state covariance C
closure (drop higher cumulants) by stochastic forcing Q
Lyapunov equation

dC
dt

= A C + C A† + εQ , A = linearized flow

makes entry into climate science (at a baby level, enfin!)
as the attractive fixed point of SSD



fixed point SSD

works on Jupiter
see the breakfast talk min 37:00 to 44:00

https://vimeo.com/125907095


beyond fixed points : quasi-bilinear oscillation

works on Earth
the same video, continued :

every 13.5 months equatorial winds reverese direction
SSD explanation: Hopf bifurcation to an attractive limit
cycle



noise rules the state space

Science originates from curiosity and bad eyesight.
— Bernard de Fontenelle,

Entretiens sur la Pluralité des Mondes Habités

in practice
every physical problem is coarse partitioned by noise



noise rules the state space

Science originates from curiosity and bad eyesight.
— Bernard de Fontenelle,

Entretiens sur la Pluralité des Mondes Habités

in practice
every physical problem is coarse partitioned by noise

any physical system experiences (some kind of) noise
any numerical computation is ‘noisy’
any prediction only needs a desired finite accuracy



dynamics + noise: unique coarse-grained partition

reasonable to assume that the noise
is uniform,
leading to a uniform grid partition of the state space



dynamics + noise: unique coarse-grained partition

reasonable to assume that the noise
is uniform,
leading to a uniform grid partition of the state space

in dynamics, this is wrong!
noise always has memory



dynamics + noise: unique coarse-grained partition

noise memory
accumulated noise along dynamical trajectories
always coarsens the partition nonuniformly



noise limited state space partitions

noise limited cell

a resolvable neighborhood is
no smaller than a ball whose
radius is the noise amplitude

noise limited partition grid

state space noise-partitioned
into neighborhoods indicated
by their centers



dynamical system

state space

a manifoldM∈ Rd : d numbers determine the state of the
system

representative point
x(t) ∈M
a state of physical system at instant in time



today’s experiments

example of a representative point
x(t) ∈M, d =∞
a state of turbulent pipe flow at instant in time

Stereoscopic Particle Image Velocimetry→ 3-d velocity field
over the entire pipe1

1Casimir W.H. van Doorne (PhD thesis, Delft 2004)



dynamics

map f t (x0) = representative point time t later

evolution in time
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deterministic partition into regions of similar states

1-step memory partition

M =M0 ∪M1 ∪M2
ternary alphabet
A = {1,2,3}.

2-step memory refinement

01

12

22

02

00

20

21

11
10

Mi =Mi0 ∪Mi1 ∪Mi2
labeled by nine ‘words’
{00,01,02, · · · ,21,22}.



deterministic partitions are no good

deterministic dynamics: partitioning can be arbitrarily fine
requires exponential # of exponentially small regions

|

|
|



deterministic partitions are no good

deterministic dynamics: partitioning can be arbitrarily fine
requires exponential # of exponentially small regions

yet

in practice
every physical problem must be coarse partitioned



deterministic vs. noisy partitions

01

12

22

02

00

20

21

11
10

deterministic partition

can be refined
ad infinitum

01

12

21

22

20

02

00

10

11

noise blurs the boundaries

when overlapping, no further
refinement of partition



periodic points instead of boundaries

mhm, do not know how to compute boundaries...



periodic points instead of boundaries

mhm, do not know how to compute boundaries...
however, each partition contains a short periodic point



periodic orbit partition

deterministic partition

01

12

21

22

20

02

00
10

11 1

some short periodic points:
fixed point 1 = {x1}
two-cycle 01 = {x01, x10}

noisy partition

10
1

01

periodic points blurred by noise
into cigar-shaped densities



periodic points and their cigars

each partition contains a short periodic point smeared into
a ‘cigar’ by noise



periodic points and their cigars

each partition contains a short periodic point smeared into
a ‘cigar’ by noise
compute the size of a noisy periodic point neighborhood!



how big is the neighborhood blurred by the accumulated noise?

the (well known) key formula that we now derive:

Qn+1 = MnQnMT
n + ∆n

density covariance matrix at time n: Qn
noise covariance matrix: ∆n
Jacobian matrix of linearized flow: Mn

Lyapunov equation, doctoral dissertation 1892
Ornstein-Uhlenbeck 1930

Kalman filter ‘prediction’ 1960



Langevin, Fokker-Planck ...

continuous time stochastic dynamical system (M, v , σ)

dx = v(x) dt + σ(x) d ξ̂(t)

x a point in state spaceM
v(x) the deterministic velocity field or ‘drift’
d ξ̂(t) the standard Brownian noise, uncorrelated in time

〈d ξ̂i(t ′) d ξ̂>j (t)〉 = δij δ(t − t ′)dt

the noise
anisotropic, state dependent and multiplicative
strength given by
diffusion matrix σ(x), or
noise covariance matrix is ∆(x) = σ σ>



strategy

assume the noise is weak
(i.e., deterministic dynamics dominates for short times)

focus on behavior in the vicinity of an equilibrium point
(the argument is valid for any orbit of the system)

1 consider the action of the deterministic dynamics in a
neighborhood of a periodic orbit

2 consider the action of the noise
as if the dynamics were absent

3 the noise and deterministic dynamics combined describe
the noisy flow



linearized deterministic flow

xn

xn+1

Mn vnvn+1

xn+1 + zn+1 = f (xn) + Mn zn , Mij = ∂fi/∂xj

in one time step a linearized neighborhood of xn is
(1) advected by the flow
(2) transported by the Jacobian matrix Mn into a neighborhood

given by the M eigenvalues and eigenvectors



covariance advection

let the initial density of deviations z from the deterministic
center be a Gaussian whose covariance matrix is

Qjk = 〈zjzT
k 〉

a step later the Gaussian is advected to

〈zjzT
k 〉 → 〈(M z)j (M z)T

k 〉

Q → M Q MT

next: add noise



roll your own cigar

in one time step

Qn

MnQnMT
n + ∆n

f (xn)

a Gaussian density distribution with covariance matrix Qn is

(1) advected by the flow
(2) smeared with additive noise

into a Gaussian ‘cigar’ whose widths and orientation are given
by the singular values and vectors of Qn+1



covariance evolution

Qn+1 = MnQnMT
n + ∆n

(1) advect deterministically
local density covariance matrix Q → MQMT

(2) add noise covariance matrix ∆

covariances add up as sums of squares



cumulative noise along a trajectory

iterate Qn+1 = MnQnMT
n + ∆n along a trajectory

if M is contracting, |Λj | < 1,

the memory of the covariance Q0 of the starting density is lost,
with iteration leading to the limit distribution

Qn = ∆n + Mn−1∆n−1MT
n−1 + M2

n−2∆n−2(M2
n−2)T + · · · .



example : noise and a single attractive fixed point

if all eigenvalues of M are strictly contracting, all |Λj | < 1

any initial compact measure converges to the unique invariant
Gaussian measure ρ0(z) whose covariance matrix satisfies

Lyapunov equation: time-invariant measure condition

Q = MQMT + ∆

[A. M. Lyapunov doctoral dissertation 1892]



example : Ornstein-Uhlenbeck process

width of the natural measure concentrated at the attractive
deterministic fixed point z = 0

ρ0(z) =
1√

2πQ
exp

(
− z2

2 Q

)
, Q =

∆

1− |Λ|2
,

is balance between contraction by Λ and noisy smearing
by ∆ at each time step
for strongly contracting Λ, the width is due to the noise only
As |Λ| → 1 the width diverges: the trajectories are no
longer confined, but diffuse by Brownian motion



example : statistical state dynamics

Brian Farrell
assume SSD has a single attractive equilibrium
truncate SSD to the first two cumulants: mean flow,
perturbation state covariance C
closure (drop higher cumulants) by Lyapunov equation

dC
dt

= A C + C A† + εQ , A = linearized flow

works for Jupiter



example : 2D Brusselator limit cycle



remembrance of things past

noisy dynamics of a nonlinear system is fundamentally different
from Brownian motion, as the flow ALWAYS induces a local,
history dependent effective noise



things fall apart, centre cannot hold

but what if M has expanding eigenvalues?

both deterministic dynamics and noise tend to smear densities
away from the fixed point: no peaked Gaussian in your future



things fall apart, centre cannot hold

but what if M has expanding eigenvalues?

look into the past, for initial peaked distribution that spreads to
the present state



for unstable directions, look back

if M has only expanding eigenvalues,

balance between the two is attained by iteration from the past,
and the evolution of the covariance matrix Q̃ is now given by

Q̃n+1 + ∆n = MnQ̃nMT
n ,

[aside to control theorists: reachability and observability Gramians]



solving the Lyapunov equation

iterate Qn+1 = MnQnMT
n + ∆n

attractive fixed point, Q = Q∞, M = Mn, Q = Qn:

Q = ∆ + M∆M> + M2∆(M>)2 + · · · =
∞∑

m,n=0

δmnMn∆(M>)m

bring to resolvent form, δmn =
∫ 2π

0
dθ
2πeiθ(m−n)

for M contracting, expanding, or hyperbolic (!)

Q =

∫ 2π

0

dθ
2π

1
1− e−iθM

∆
1

1− eiθM>



Cauchy magic

a similarity transformation S separates the expanding and
contracting subspaces

Λ ≡ S−1MS =

[
Λe 0
0 Λc

]
transformed noise covariance matrix

∆̂ ≡ S−1∆(S−1)> =

[
∆ee ∆ec
∆ce ∆cc

]



Cauchy magic

contour integral representation

Q =

∮
Γ

ds
2π

(1− s−1M)−1∆(1− sM)−1

separates Q into expanding and contracting covariances:

Q̃e ≡ S
[

Qe 0
0 0

]
S> , Qc ≡ S

[
0 0
0 Qc

]
S>

two stationary ‘cigars’, one in the expanding manifold and the
other in the contracting manifold (not orthogonal to each other!)



local problem solved: can compute every cigar
a periodic point of period n is a fixed point of nth iterate of
dynamics

global problem solved: can compute all cigars
more algebra: can compute the noisy neighborhoods of all
periodic points



noisy dynamics partitions: strategy

use periodic orbits to partition state space
compute local covariances at periodic points to determine
their neighborhoods
done once neighborhoods overlap



optimal partition hypothesis

10
1

01

optimal partition:

the maximal set of resolvable
periodic point neighborhoods



building the partition for the Lozi attractor

initial partition

periodic points of periods ≤ 5

final, optimal partition

no neighbors overlap > 50%

payback
optimal partition: 10’s to 100’s of regions
uniform mesh: ≈ 106 bins



application : long time averages of observables

if dynamics is chaotic
can predict accurately for long times only

expectation values of observable a(x)

〈a〉 =

∫
dx ρ(x) a(x) ,

stationary distribution (natural measure) ρ(x)

=

probability of finding the system in state x



optimal partition Gaussian basis

stationary distribution is Fokker-Planck eigenfunction

LFP ρ(x) = ρ(x) .

stationary distribution, optimal partition basis approximation

ρ(x) =
N∑

a=1

ha φa(x) , φa = e−x>
a Qaxa

Gaussian basis functions, with “Lyapunov” covariances Qa

coefficients {ha} determined by minimizing

∫ ( N∑
a=1

ha(LFP − 1)φa(x)

)2

dx



stationary probability distribution function

direct numerical calculation

uniform mesh of ≈ 106 bins

optimal partition

Gaussian basis approximation

payback
L2 distance between approximation and exact< 5%
better accuracy on expectation values of observables



take home message

computation of unstable periodic orbits in high-dimensional
state spaces, such as Navier-Stokes,

is at the border of what is feasible numerically, and criteria to
identify finite sets of the most important solutions are very
much needed

we are to stop calculating these solutions when we attain



take home message

optimal partition



take home message

optimal partition

the best of all possible state space partitions
optimal for the given dynamical system, the given noise
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Neighborhoods of periodic orbits and the stationary
distribution of a noisy chaotic system;
arXiv.org:1507.00462

http://arxiv.org/abs/0902.4269
http://arxiv.org/abs/1206.5506
http://arxiv.org/abs/1507.00462


what next? take the course!

student raves :
...106 times harder than any other online course...

http://chaosbook.org/course1/about.html
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