ChaosBook.org chapter counting

23 July 2014, version 14.5.6

our hymn to counting is a symphony in two movements:

counting

• counting equates multiplets of equivalent orbits.

Counting

(a) The region labels in the nodes of transition graph can be omitted, as the links alone keep track of the symbolic dynamics.

(b)-(j) The fundamental cycles for the transition graph (a), i.e., the set of its non-self-intersecting loops. Each loop represents a local trace t_p .

loop expansion of a transition graph

Consider a state space covered by 7 neighborhoods, with the topological time evolution given by the above transition graph. The determinant det (1 - zT) of the transition graph read off the graph as a polynomial in *z*; coefficients are products of non-intersecting loops (traces of powers of *T*) of the transition graph.

$$det (1 - zT) = 1 - (t_0 + t_1)z - (t_{01} - t_0t_1)z^2 - (t_{001} + t_{011} - t_{01}t_0 - t_{01}t_1)z^3 - (t_{0011} + t_{0111} - t_{001}t_1 - t_{011}t_0 - t_{011}t_1 + t_{01}t_0t_1)z^4 - (t_{001011} - t_{0111}t_0 - t_{0011}t_1 + t_{011}t_0t_1)z^5 - (t_{0010111} + t_{001101} - t_{001011}t_0 - t_{001101}t_1)z^6 - (t_{0010111} + t_{0011101} - t_{001011}t_1 - t_{001101}t_1 - t_{001101}t_1 - t_{001101}t_1)z^7.$$

Twelve cycles up to period 7 are fundamental cycles: $\overline{0, 1, 01, 001, 011}, \overline{0011, 0111}, \overline{00111}, \overline{00111}, \overline{001011}, \overline{0010111}, \overline{001011}, \overline{001011}, \overline{001011}, \overline{001011}, \overline{001011}, \overline{001011}, \overline{0010111}, \overline{0010111}, \overline{0010111}, \overline{0010111}, \overline{0010111}, \overline{0010111}, \overline{001011}, \overline{00101}, \overline{0010101}, \overline{0010101}, \overline{0010101}, \overline{001001}, \overline{001001}, \overline{001001}, \overline{00000}, \overline{0000}, \overline{00$ The topological polynomial $t_p \rightarrow z^{n_p}$

$$1/\zeta_{top}(z) = 1 - 2z - z^7$$

is interesting; the shadowing fails first at the cycle length n = 7, so the topological entropy is only a bit smaller than the binary $h = \ln 2$.

the main result of this chapter can be stated as follows: