
got symmetry?
here is how you slice it

Predrag Cvitanović
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dynamical description of turbulent flows

state space

a manifoldM∈ Rd : d numbers determine the state of the
system

representative point
x(t) ∈M
a state of physical system at instant in time



today’s experiments

example of a representative point
x(t) ∈M, d =∞
a state of turbulent pipe flow at instant in time

Stereoscopic Particle Image Velocimetry→ 3-d velocity field
over the entire pipe1

1Casimir W.H. van Doorne (PhD thesis, Delft 2004)



deterministic dynamics

map f t (x0) = representative point time t later

evolution
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f t maps a regionMi of the state space into the region f t (Mi).



have : chart over 61,506 dimensional state space of turbulent flow

0 0.2 0.4 −0.2

0

0.2

−0.1

0

0.1

a
2

a
1

a 3

equilibria of turbulent plane Couette flow, their unstable
manifolds, and a turbulent video mapped out as one happy
family

for movies, please click through ChaosBook.org/tutorials

http://ChaosBook.org/tutorials


today’s talk’s focus:

nature loves symmetry



symmetry of a dynamical system

a group G is a symmetry of the dynamics if
for every solution f (x) ∈M and g ∈ G, gf (x) is also a solution



example: SO(2)z ×O(2)θ symmetry of pipe flow

(a)
z

θ

(b)
z

θ

(c)
z

θ

(d)
z

θ

a solution, shifted by a stream-wise translation, azimuthal
rotation gp is also a solution

b) stream-wise
c) stream-wise, azimuthal
d) azimuthal flip



Das Problem

mathematicians like symmetry more than Nature

Rich Kerswell



turbulence in pipe flows

pipe flows : amazing data! amazing numerics!

36
Nature, she don’t care : turbulence breaks all symmetries



Die Faulheit

drifting is energetically cheap
flows are lazy, rather than doing work, solutions drift along
non-shape-changing symmetry directions



Das Problem

complex Lorenz equations


ẋ1
ẋ2
ẏ1
ẏ2
ż

 =


−σx1 + σy1
−σx2 + σy2

(ρ1 − z)x1 − ρ2x2 − y1 − ey2
ρ2x1 + (ρ1 − z)x2 + ey1 − y2

−bz + x1y1 + x2y2


ρ1 = 28, ρ2 = 0, b = 8/3, σ = 10, e = 1/10

A typical {x1, x2, z} trajectory
superimposed: a trajectory
whose initial point is close to the
relative equilibrium Q1

attractor



continuous symmetry induces drifts

x1 x2

z

E0

Q1

01

x1 x2

z

E0

W�0�
u

W�1�
u

Q1

01

generic chaotic trajectory (blue)
E0 equilibrium
E0 unstable manifold - a cone of such (green)
Q1 relative equilibrium (red)
Q1 unstable manifold, one for each point on Q1 (brown)
relative periodic orbit 01 (purple)



Das Durcheinander

what to do?
it’s a mess

the goal
reduce this messy strange attractor to
something simple

attractor



Die Lösung

what to do?
it’s a mess

the goal
reduce this messy strange attractor to
something simple

symmetry reduced
state space

amazing!



Das Gebot

what I teach you now you must do



symmetries of dynamics

time vs. shifts

v(x) : tangent along the time flow

t(1)(x), t(2)(x) : two group tangents
along infinitesimal symmetry shifts

a flow ẋ = v(x) is G-equivariant if

v(x) = g−1 v(g x) , for all g ∈ G .

equations of motion of the same form in all frames



example: SO(2) invariance

complex Lorenz equations
ẋ1
ẋ2
ẏ1
ẏ2
ż

 =


−σx1 + σy1
−σx2 + σy2

(ρ1 − z)x1 − ρ2x2 − y1 − ey2
ρ2x1 + (ρ1 − z)x2 + ey1 − y2

−bz + x1y1 + x2y2



invariant under a SO(2) rotation by finite angle φ:

g(φ) =


cosφ sinφ 0 0 0
− sinφ cosφ 0 0 0

0 0 cosφ sinφ 0
0 0 − sinφ cosφ 0
0 0 0 0 1





trajectories, orbits

trajectory x(t) group orbit g x(0) wurst g x(t)



stratification by group orbits

group orbits
M

x(τ)

M
x(0)

x(0)

x(τ)

M

group orbitMx of x is the set
of all group actions

Mx = {g x | g ∈ G}



stratification by group orbits

group orbits
M

x(τ)

M
x(0)

x(0)

x(τ)

M

any point on the manifold
Mx(t) is equivalent to any other



stratification by group orbits

group orbits
M

x(τ)

M
x(0)

x(0)

x(τ)

M

action of a symmetry group
stratifies the state space into a
union of group orbits

each group orbit an
equivalence class



the goal
replace each group orbit by a unique point in a
lower-dimensional

symmetry reduced state spaceM/G



symmetry reduction

full state space

M
x(τ)

M
x(0)

x(0)

x(τ)

reduced state space

M̂ x̂(0)

x̂(τ)



moving frame

x(0)

x(t) x̂(t)
g(t)

Cartan : can move wherever

free to redefine the flow to any time-dependent frame moving
along symmetry directions



how relativists do it : connections or ‘gauge fixing’

2-continuous parameter symmetry :
each state space point x owns 3 tangent vectors

local tangent space

v(x) along the time flow

t(1)(x), t(2)(x) along infinitesimal
symmetry shifts

Kim Jong Il gauge

follow flow v̂(x) normal to group tangent directions



method of “connections”

never stray along the group directions, always move
orthogonally to the group orbit

North Korean gauge :
slacking along non-shape-changing directions is forbidden



sophisticates do it : Faddeev-Popov gauge fixing

the equivalence principle
integrate over classes of gauge equivalent fields
instead of all fields Aa

µ

the representative in the class of equivalent fields is fixed by a
gauge condition,

∂µAa
µ = 0 ,

a plane intersected by the gauge orbits

Aµ = Aa
µta → AΩ

µ = ΩAµΩ−1 + ∂µΩΩ−1

abelian orbits intersect the plane at the same angle
non-abelian intersection angle depends on the field



Zutiefst Nutzlos

elegant, deep and useless : no symmetry reduction



relativity for cyclists

method of slices

cut group orbits by a hypersurface (not a Poincaré section),
each group orbit of symmetry-equivalent points represented by
the single point

cut how?



inspiration: pattern recognition

you are observing turbulence in a pipe flow, or your defibrillator
has a mesh of sensors measuring electrical currents that cross
your heart, and

you have a precomputed pattern, and are sifting through the
data set of observed patterns for something like it

here you see a pattern, and there you see a pattern that seems
much like the first one

how ‘much like the first one?’



moving frame

x(0)

x(t) x̂(t)
g(t)

move until distance minimized



take the first pattern

‘template’ or ‘reference state’

a point x̂ ′ in the state spaceM

and use the symmetries of the flow to

slide and rotate the ‘template’

act with elements of the symmetry group G on x̂ ′ → g(φ) x̂ ′

until it overlies the second pattern (a point x in the state space)

distance between the two patterns

|x − g(φ) x̂ ′| = |x̂ − x̂ ′|

is minimized



idea: the closest match

template: Sophus Lie

(1) rotate bearded guy x
traces out the group orbit
Mx

(2) replace the group
orbit by the closest
match x̂ to the template
pattern x̂ ′

the closest matches x̂ lie
in the (d−N) symmetry
reduced state space M̂



distance

assume that G is a subgroup of the group of orthogonal
transformations O(d), and measure distance |x |2 = 〈x |x〉 in
terms of the Euclidean inner product

numerical fluids: PDE discretization independent L2 distance is

energy norm

‖u− v‖2 = 〈u− v|u− v〉 =
1
V

∫
Ω

dx (u− v) · (u− v)

experimental fluid:

image discretization independent distance
is Hamming distance, or ???



idea: the closest match

extremal condition for nearest distance



minimal distance
is a solution to the extremum conditions

∂

∂φa
|x − g(φ) x̂ ′|2

but what is
∂

∂φa
g(φ) ?



infinitesimal transformations

g ' 1 + φ · T , |δφ| � 1

Ta are generators of infinitesimal transformations
here Ta are [d×d ] antisymmetric matrices



example: SO(2) invariance of complex Lorenz equations

complex Lorenz equations equations are invariant under
SO(2) rotation by finite angle φ:

g(φ) =


cosφ sinφ 0 0 0
− sinφ cosφ 0 0 0

0 0 cosφ sinφ 0
0 0 − sinφ cosφ 0
0 0 0 0 1


SO(2) has one generator of infinitesimal rotations

T =


0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0





now have the ‘slice condition’

group tangent fields
flow field at the state space point x induced by the action of the
group is given by the set of N tangent fields

ta(x)i = (Ta)ijxj

slice condition
∂

∂φa
|x − g(φ) x̂ ′|2 = 2 〈x̂ − x̂ ′|t ′a〉 = 0 , t ′a = Tax̂ ′



flow within the slice

slice fixed by x̂ ′

reduced state space M̂ flow v̂(x̂)

v̂(x̂) = v(x̂) − φ̇(x̂) · t(x̂) , x̂ ∈ M̂
φ̇a(x̂) = (v(x̂)T t ′a)/(t(x̂)T · t ′) .

v : velocity, full space
v̂ : velocity component in slice
φ̇ · t : velocity component normal to slice
φ̇ : reconstruction equation for the group phases



make Phil Morrison happy

call this

Cartan derivative

g−1ġ x = e−φ·T
d
d τ

eφ·Tx = φ̇ · t(x)



flow within the slice

full-space trajectory x(τ)
rotated into the reduced state space x̂(τ) = g(φ)−1x(τ)
by appropriate moving frame angles {φ(τ)}



relative periodic orbit

a relative periodic orbit p is an orbit in state spaceM which
exactly recurs

xp(t) = gpxp(t + Tp) , xp(t) ∈Mp

for a fixed relative period Tp and a fixed group action gp ∈ G
that “rotates" the endpoint xp(Tp) back into the initial point
xp(0).



relative periodic orbits : SO(2)z ×O(2)θ symmetry of pipe flow

(a)
z

θ

(b)
z

θ

(c)
z

θ

(d)
z

θ

relative periodic orbit : recurs at time Tp, shifted by a
streamwise translation, azimuthal rotation gp

b) stream-wise recurrent
c) stream-wise, azimuthal recurrent
d) azimuthal flip recurrent



relative periodic orbit→ periodic orbit

M̂

x(0)
x̂(τ)g(τ)

x(τ)

x(T) x̂(0)

full state space relative periodic orbit x(τ)
is rotated into the reduced state space periodic orbit



relativity for pedestrians

in full state space

(a)

v1v2

v3

a relative periodic orbit of the Kuramoto-Sivashinsky flow, 128d
state space traced for four periods Tp, projected on

full state space coordinate frame {v1, v2, v3}; a mess



relativity for pedestrians

in slice

(b)

v�1
v�2

v�3

a relative periodic orbit of the Kuramoto-Sivashinsky flow
projected on

a slice {ṽ1, ṽ2, ṽ3} frame



symmetry reduction achieved!

all points equivalent by symmetries are represented by
a single point

families of solutions are mapped to a single solution
relative equilibria become equilibria
relative periodic orbits become periodic orbits



die Lösung : complex Lorenz flow reduced

full state space reduced state space

x2

y2

z

W
�
�0�
u

01

Q1

ergodic trajectory was a mess, now the topology is reveled
relative periodic orbit 01 now a periodic orbit



take-home message

rotation into a slice is not an average
over 3D pipe azimuthal angle

it is the full snapshot of the flow embedded in the

∞-dimensional state space

NO information is lost by symmetry reduction
not modeling by a few degrees of freedom
no dimensional reduction



slice trouble 1

portrait of complex Lorenz flow in reduced state space

(a)

x2

y2

z

W
�
�0�
u

01

Q1

(b)

x2

y2

z W
�
�0�
u

01
Q1

E0

any choices of the slice x̂ ′ exhibit flow discontinuities



slice trouble 1

glitches!
group tangent of a generic trajectory orthogonal to the slice
tangent at a sequence of instants τk

t(τk )T · t ′ = 0



Nature couples many Fourier modes

group orbits of highly nonlinear states are highly contorted:
many extrema, multiple sections by a slice



sliced wurst

a slice hyperplane cuts every group orbit at least twice

slice
an SO(2) relative periodic orbit is
topologically a torus : the cuts are
periodic orbit images of the same
relative periodic orbit, the good close
one, and the rest bad ones



trouble: slices cannot be global

representing a
group orbit by the
closest match to a
good template x̂ ′

(Phil Morrison)



trouble: slices cannot be global

the ‘closest match’
to a bad template
x̂ ′ (young Phil
Morrison) can be a
mismatch

single template
cannot be a good
match globally



trouble: slices cannot be global

representing a
group orbit by the
closest match to a
better template x̂ ′

(Sonya
Kovalewskaya)

to coverM/G
globally, need:
a set of templates:

2 rolls
4 rolls
...



slice is good up to the chart border

M̂

gx̂ ′
x̂ ′

t ′

M̂

x̂ ′

t ′

gx̂ ′

SO(2) : two hyperplanes to a given template x̂ ′; the slice M̂,
and chart border x̂∗ ∈ S. Beyond :
group orbits pierce in the wrong direction
(a) a circle group orbit crosses the slice hyperplane twice.
(b) a group orbit for a combination of m = 1 and m = 2 Fourier
modes resembles a baseball seam, and can be sliced 4 times,
out of which only the point closest to the template is in the slice



charting the state space

for turbulent/chaotic systems a set of Poincaré sections is
needed to capture the dynamics. The choice of sections should
reflect the dynamically dominant patterns seen in the solutions
of nonlinear PDEs

we propose to construct a global atlas of the dimensionally
reduced state space M̂ by deploying linear Poincaré sections
P(j) across neighborhoods of the qualitatively most important
patterns x̂ ′(j)



2-chart atlas

x̂ ′(1)

t ′(1)

x ′(2) t ′(1)

x̂ ′(1)

x̂ ′(2)

t ′(2)

x ′(2)

M̂(1)

templates x̂ ′(1), x ′(2), with group orbits. Start with the template
x̂ ′(1). All group orbits traverse its (d−1)-dimensional slice
hyperplane, including the group orbit of the second template
x ′(2). Replace the second template by its closest group-orbit
point x̂ ′(2), i.e., the point in slice M̂(1).



2-chart atlas

x̂ ′(1)
x̂ ′(2)

x̂(0)

x̂(t)

M̂(1) M̂(2)

x̂(0) x̂(t)x̂ ′(2)

x̂ ′(1)

atlas of (d−1)-dimensional
charts M̂(1),M̂(2), · · ·

two templates are the closest points viewed from either group
orbit, they lie in both slices.
tangent vectors have different orientations, hence two distinct
slice hyperplanes M̂(1) and M̂(2) which intersect in the ridge, a
hyperplane of dimension (d−2) (here drawn as a ‘line’) shared
by the template pair.
the chart for the neighborhood of each template (a page of the
atlas on the right side of the figure) extends only as far as this
ridge. If the templates are sufficiently close, the chart border of
each slice (red region) is beyond this ridge



this is the periodic-orbit implementation of the idea of state
space tessellation



summary

conclusion
’gauge fixing’ - no insight into geometry of flows
symmetry reduction by method of slices:
efficient, allows exploration of high-dimensional flows
hitherto unthinkable

to be done
construct Poincaré sections
use the information quantitatively (periodic orbit theory)



take-home message

if you have a symmetry

use it!

without symmetry reduction, no understanding of fluid flows,
nonlinear field theories possible



amazing theory! amazing numerics! hope...



triumph : all pipe flow solution in one happy family

first ’turbulent’ relative periodic orbits for pipe flows!
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