

U of Michigan

Turbulence?
 a stroll through 61,506 dimensions

Predrag Cvitanovic' John F Gibson

School of Physics
Georgia Tech, Atlanta GA, USA

Turbulence: A walk through

a repertoire of unstable recurrent patterns?
As a turbulent flow evolves, every so often we catch a glimpse of a familiar pattern:

$$
\Rightarrow \text { other swirls } \quad \Rightarrow
$$

For any finite spatial resolution, the system follows approximately for a finite time a pattern belonging to a finite alphabet of admissible patterns. The long term dynamics $=$ a walk through the space of such unstable patterns.

New experiments: Unstable Coherent Structures

Stereoscopic Particle Image Velocimetry $\rightarrow 3$-d velocity field over the entire pipe ${ }^{1}$

Observed structures resemble numerically computed traveling waves
What lies beyond?

[^0]
Wall-bounded turbulence in channel flow

Pressure driven turbulent channel flow, $\mathrm{Re}=3700$. Walls top/bottom, periodic BCs front/back and sides. Red/blue is fast/slow into screen. ${ }^{2}$

* Near-wall rolls generate turbulence.
* Mix high and low speed fluids near wall, generating drag.

[^1]
Plane Couette flow

Navier-Stokes for fluid velocity $\mathbf{u}(\mathrm{x}, \mathrm{t})$ and pressure $p(\mathrm{x}, \mathrm{t})$

$$
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}=-\nabla p+\nu \nabla^{2} \mathbf{u}, \quad \nabla \cdot \mathbf{u}=0
$$

periodic, wall-bounded domain $\Omega=\left[0, \mathcal{L}_{x}\right] \times[-1,1] \times\left[0, \mathcal{L}_{z}\right]$ with $B C s$

$$
\begin{aligned}
\mathbf{u}(x, \pm 1, z, t) & = \pm 1 \\
\mathbf{u}\left(x+\mathcal{L}_{x}, y, z\right) & =\mathbf{u}(x, y, z, t), \quad \mathbf{u}\left(x, y, z+\mathcal{L}_{z}\right)=\mathbf{u}(x, y, z, t) .
\end{aligned}
$$

Turbulent plane Couette Flow

simplest possible turbulent flow:

$$
\operatorname{Re}=400
$$

3,4

[^2]THE POINT OF THIS TALK

!!! THE POINT OF THIS TALK !!!

UNLEARN: 3-d VISUALIZATION

THINK: $\infty-$ PHASE SPACE

instant in turbulent evolution:
a 3-d video frame, each pixel a 3-d velocity field
instant in turbulent evolution:
a unique point
theory of turbulence $=$ geometry of the state space
[E. Hopf 1948]

THINK IN STATE SPACE!

Q: How do you treat Navier-Stokes as a dynamical system?

A: dual ODE/CDF representations

ODE in $\mathbb{R}^{d} \quad$ CFD algorithm

$$
\begin{array}{ccc}
a(t) & \stackrel{\mathbf{u}(\mathbf{x}, \mathrm{t})=a_{n}(t) \Phi_{n}(x)}{ } & \mathbf{u}(\mathbf{x}, \mathrm{t}) \\
\dot{a}=F(a) \downarrow \\
& & \downarrow \text { CFD } \\
a(t+T) & \underset{a_{n}=\left(\mathbf{u}, \Phi_{n}\right)_{\Omega}}{\stackrel{u}{2}} & \mathbf{u}(\mathbf{x}, \mathrm{t}+\mathrm{T})
\end{array}
$$

State space portraits $=$ projections on well-chosen states $\hat{\mathbf{u}}_{n}$:

$$
\hat{a}_{n}(t)=\left(\mathbf{u}(t), \hat{\mathbf{u}}_{n}\right)_{\Omega} \quad \text { (integral over the box) }
$$

ODE vs. CFD reps. of Navier-Stokes

ODE formulation

- Closed-form, unconstrained, real-valued dynamical system
- Orthonormal $\Phi_{\mathrm{n}}:\|a\|^{2}=\|u\|_{\Omega}^{2}$
- Impossible to integrate: F quadratic in $\mathbb{R}^{d}, d \approx 10^{5}$

CFD algorithm

- Efficient time integration of Navier-Stokes
- Constraints: pressure, BCs, complex symmetries
- No 1-order ODE formulation, no clear set of independent variables

ODE: Orthonormal, divergence-free basis
inner product:

$$
(\mathbf{f}, \mathbf{g})_{\Omega}=\frac{1}{V} \int_{0}^{\mathcal{L}_{x}} \int_{-1}^{1} \int_{0}^{\mathcal{L}_{z}} \mathbf{f} \cdot \mathbf{g} d x d y d z
$$

construct basis $\left\{\Phi_{n}(x) \mid n=1, \ldots, \infty\right\}$ with properties
real, vector-valued:

$$
\Phi_{n}=\Phi_{n}^{u} \mathbf{e}_{x}+\Phi_{n}^{\vee} \mathbf{e}_{y}+\Phi_{n}^{w} \mathbf{e}_{w}
$$

orthonormal: $\quad\left(\Phi_{n}, \Phi_{m}\right)_{\Omega}=\delta_{m n}$
divergence-free:

$$
\nabla \cdot \Phi_{n}=0
$$

Dirichlet at walls: $\quad \Phi_{n}(x, \pm 1, z)=0$
periodic in $x, z: \quad \Phi_{n}(x, y, z)=\Phi_{n}\left(x+\mathcal{L}_{x}, y, z\right)=\Phi_{n}\left(x, y, z+\mathcal{L}_{z}\right)$

ODE: Galerkin projection of Navier-Stokes

expand \mathbf{u} (deviation of velocity from laminar)

$$
\mathbf{u}(\mathbf{x}, t)=a_{n}(t) \Phi_{n}(\mathbf{x}), \quad n,=1, \ldots, d
$$

Galerkin projection of NS onto Φ_{m} produces ODE in \mathbb{R}^{d}

$$
\dot{a}_{m}=F(a)_{m}=L_{m n} a_{n}+N_{m n p} a_{n} a_{p}, \quad m, n, p=1, \ldots, d
$$

where

- $L_{m n}=\left(\nu \nabla^{2} \Phi_{n}-\partial \Phi_{n} / \partial x,-\Phi_{n}^{V} \cdot \mathbf{e}_{x}, \Phi_{m}\right)_{\Omega}$ and $N_{m n p}=-\left(\Phi_{n} \cdot \nabla \Phi_{p}, \Phi_{m}\right)_{\Omega}$
- Indices range from 1 to $d \approx 10^{5}\left(2 \times 32^{3}\right.$ to $\left.2 \times 48^{3}\right)$
- ODE system too big to integrate

CFD/ODE: State space portraits

Visualize state space by projecting ODE $a(t)$ or CFD $\mathbf{u}(\mathrm{t})$ onto a few well-chosen $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ representative velocity fields
(e.g., a few equilibria and their unstable eigenvectors).

Construct $\left\{\hat{\mathbf{u}}_{1}, \hat{\mathbf{u}}_{2}, \hat{\mathbf{u}}_{3}\right\}$ by Gram-Schmidt orthogonalization and inner product

$$
\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)_{\Omega}=\frac{1}{V} \int_{0}^{\mathcal{L}_{x}} \int_{-1}^{1} \int_{0}^{\mathcal{L}_{z}} \mathbf{u}_{1} \cdot \mathbf{u}_{2} d x d y d z
$$

State space portraits $=$ projections

$$
\hat{a}_{n}(t)=\left(\mathbf{u}(t), \hat{u}_{n}\right)_{\Omega}
$$

The devil is in the details

Turbulent flows cannot be modeled by a few modes

Attractor is "low dimensional," but has to be tracked in the full 10^{3} to 10^{5} dimensions

www.channelflow.org CFD software

John F. Gibson:

- High-level representation of CFD objects: fields, DNS algorithms, differential operators, etc
- Compact, readable programs
- C++ library of spectral CFD building blocks
- Automated test suite, verification against known solutions

CFD: Geometry and spectral convergence

$\operatorname{Re} \quad \mathcal{L}_{x} \mathcal{L}_{y}$	\mathcal{L}_{z}		
"Minimal" PCF ~ 400	$\sim 2 \pi$	2	$\sim \pi$

Hamilton, Kim, Waleffe (HWK) 400 7 $\pi / 426 \pi / 5$ sustained turbulence

Adequate resolution: $32 \times 33 \times 32$ to $48 \times 49 \times 48$ grids

A "turbulent Plane Couette" trajectory $\mathrm{Re}=400$

a long transient to the laminar state
60K modes 3D Navier-Stokes DNS, a projection from
Fourier \times Fourier \times Chebyshev \rightarrow well-chosen statespace 3d frame

Equilibria / Traveling waves

Role of Rössler flow equilibria

right of the "+" trajectories escape
left of the "+" fall into chaotic attractor circling the "-" equilibrium point

Turbulence vs. upper-branch equilibrium

z

Upper-branch equilibrium ${ }^{5}$

Typical turbulent field

[^3]
UB unstable manifold, symmetric subspace

Shift-reflect, shift-rotate unstable manifold of upper branch.

Dissipation versus energy input

Symmetries of plane Couette

$$
\begin{array}{rlr}
\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)(x, y, z) & \rightarrow\left(\begin{array}{c}
u \\
v \\
-w
\end{array}\right)\left(\frac{\mathcal{L}_{x}}{2}+x, y,-z\right) & \text { shift-reflect } \\
& \rightarrow\left(\begin{array}{c}
-u \\
-v \\
w
\end{array}\right)\left(\frac{\mathcal{L}_{x}}{2}-x,-y, \frac{\mathcal{L}_{z}}{2}+z\right) & \text { shift-rotate } \\
& \rightarrow\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)\left(x+\tau_{x}-y, z+\tau_{z}\right) & \text { translate }
\end{array}
$$

Unstable symmetric $L B, U B, N B$ eigenvalues

UB, LB and NB symmetric state-space portrait

Coordinates of phase portrait are orthogonalized $L B, N B, U B$.

A stroll in 61,506 dimensions

Unstable manifolds of \mathbf{u}_{8} and its half-cell translations, and a $2 d$ portion of the \mathbf{u}_{10} unstable manifold, projected from 61,506 dimensions to 3 in the state space global basis

A transiently turbulent trajectory in the \mathbf{u}_{18} unstable manifold, in isolation.

A transiently turbulent trajectory in the \mathbf{u}_{w} unstable manifold, within the cage formed by $\mathbf{u}_{18}, \mathbf{u}_{v 3}, \mathbf{u}_{v 8}$, their half-cell translations, and their unstable manifolds. The final decay to laminar of several other trajectories in the unstable manifolds of $\mathbf{u}_{v 8}$ and $\mathbf{u}_{v 8}$ are also shown.

Three periodic orbits: (green) $T=74.348$. (red) $T=102.286$ (may be a close recurrence). (blue) $T=\mathbf{8 8 . 9 0 5}$.

Conclusions: geometry of Navier Stokes

dual ODE / CFD representations of Navier-Stokes
State space portraits
Computed eigenvalues, eigenfunctions of equilibrium states, w,w/o symmetry
Heteroclinic connections between equilibria
Turbulent dynamics around upper branch
www.channelflow.org public domain software

Future looks bright

Kuramoto-Sivashinsky: Hopf's vision

A long time series: jumps between

\rightarrow

\rightarrow

\rightarrow etc.

Moral of the story

If you raise a group of plumbers, you shouldn't be ${ }^{6}$ upset if they can't do theoretical physics.
A retired Army two-star general [who requested anonymity]

[^4]
[^0]: ${ }^{1}$ Casimir W.H. van Doorne (PhD thesis, Delft 2004); Hof et al., Science (Sep 10, 2004)

[^1]: ${ }^{2}$ J.F. Gibson: www.channelflow.org

[^2]: ${ }^{3}$ Numerical study: Hamilton, Kim, Waleffe, JFM 287 (1995)
 ${ }^{4}$ Self-sustaining process: Waleffe, Phys. Fluids 9 (1997)

[^3]: ${ }^{5}$ Waleffe, Phys. Fluids 15 (2003)

[^4]: ${ }^{6}$ Fred Kaplan, "Challenging the Generals", New York Times Sunday Magazine (August 26, 2007).

