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The laminar-turbulent boundary Σ is the set separating initial conditions which imme-
diately relaminarise from those which lead to turbulence. Phase space trajectories on this
hypersurface in cylindrical pipe flow are chaotic and show recurring evidence of coherent
structures. A general numerical technique is developed for recognising near-visits to these
structures and then for identifying the exact coherent solutions themselves. Numerical
evidence is presented which suggests that trajectories on Σ are organised around only a
few travelling waves and their heteroclinic connections. If the flow is suitably constrained
to a subspace with a discrete rotational symmetry, it is possible to find locally-attracting
travelling waves embedded within Σ. Using this technique, 5 new travelling wave branches
were found.

1. Introduction

Transition to turbulence in cylindrical pipe flow is governed by one single dimensionless
parameter, the Reynolds number Re := UD/ν where U is the mean flow speed along the
pipe, D the pipe diameter and ν the kinematic viscosity of the fluid (Reynolds 1883).
Despite the simplicity of the set-up, the reason for transition remains obscure due to the
sensitivity of the linearly-stable laminar Hagen-Poiseuille flow (Hagen 1839, Poiseuille
1840) to the shape and amplitude of disturbances. In most experiments, transition is
observed at Re ∼ 2000 (e.g. Wygnanski & Champagne 1973) but can be triggered as low
as Re = 1750 (Peixinho & Mullin 2006) or delayed to Re = 100, 000 in very carefully
controlled experiments (Pfenniger 1961). Until recently, the only firm theoretical result
was the energy stability bound of Re = 81.49 (Joseph & Carmi, 1969) below which all

disturbances are guaranteed to decay monotonically. This is, however, more than an or-
der of magnitude below the observed value for transition.

An important step forward in understanding the transition process was the discov-
ery of disconnected solutions of the Navier-Stokes equations in an axially-periodic pipe
(Faisst & Eckhardt 2003, Wedin & Kerswell 2004, Kerswell 2005). These exact solutions
are travelling waves (TWs) which appear through saddle-node bifurcations. All these
solutions are linearly unstable but have a very low-dimensional unstable manifold. There
is an interest in these solutions as very similar structures have been observed transiently
in experiments (Hof et al. 2004) and direct numerical simulations (Willis & Kerswell
2007). These states can generally be divided into “lower-branch” and “upper-branch”
TWs, based on whether they have high or low wall friction factor. Lower branch solu-
tions are believed to sit on a hypersurface that divides phase space into two regions:
one where initial conditions lead directly to the laminar state, the other where initial
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conditions lead to turbulent transients with larger kinetic energy (Kerswell & Tutty 2007
and in plane Couette flow, Kawahara 2005, Viswanath 2007b). The simple translational
behaviour of these travelling wave solutions is inherent to the method used to find them,
and undoubtedly masks an even larger variety of more complex exact solutions.

The boundary between laminar and turbulent trajectories - labelled Σ or called the
“edge” following Skufca et al. (2006) hereafter - is formally a separatrix if the turbu-
lent state is an attractor. At low Re, however, turbulence may ultimately decay after a
long transient in which case the laminar state is the unique global attractor. Then the
boundary Σ is generalised to the dividing set in phase space between trajectories which
immediately (and smoothly) relaminarise and those which undergo some form of turbu-
lent evolution. Σ is thought to be of codimension 1 in phase space but one can a priori

not exclude a more complex fractal structure, as suggested by the dependence of lifetime
on initial conditions in simulations of low-order models of pipe flow (Faisst & Eckhardt
2004). Trajectories which start in Σ, stay in Σ for later times by definition and hence the
long time dynamics are of obvious interest. The long time behaviour on Σ has already
been found to be a periodic orbit in plane Poiseuille flow in a pioneering study by Toh
& Itano (1999,2001,2003). Skufca et al. (2006) studied a 9-dimensional model of plane
Couette flow (PCF) to reveal an attracting periodic orbit at low Re and a chaotic state
at higher Re. However, recent fully-resolved simulations have shown that the asymptotic
behaviour is an attracting TW in PCF (Lagha et al. 2008) and a chaotic attractor in a
short cylindrical pipe of length L = 5D (Schneider et al. 2007). Interestingly, this chaotic
endstate looks to be centred around a known asymmetric TW (Pringle & Kerswell 2007,
Meseguer & Mellibovsky 2007).

The purpose of this paper is to explore the dividing hypersurface Σ in pipe flow with
the following objectives:

(a) to establish that the dynamics restricted to this laminar-turbulent boundary ex-
plores many different saddle points embedded in it;

(b) to find evidence for heteroclinic or “relative” homoclinic connections between these
saddle points;

(c) to explore Σ restricted by a discrete rotational symmetry in order to ascertain
whether the limiting behaviour remains chaotic or can be a simple attractor;

(d) to develop a practical and general way to find TWs and periodic orbits without
detailed knowledge of their spatial structure.

This paper is organised as follows. Section 2 discusses the formulation and numerical
methods used to simulate the flow in a pipe and to extract exact recurrent flow solu-
tions. Section 3 presents the results obtained using these in 6 subsections. Subsection
3.1 recalls the method used to follow trajectories on Σ and confirms that the limiting
behaviour is chaotic (Schneider et al. 2007). §3.2 and §3.3 discuss how near-recurrent
states are identified, and using a Newton-Krylov algorithm, demonstrate that a number
of unstable travelling waves are embedded in Σ. §3.4 shows the existence of a “relative”
homoclinic connection between a travelling wave and the same wave rotated. Recurrent
flow structures are sought embedded within Σ restricted by a discrete rotational symme-
try in §3.5 and new exact travelling wave solutions subsequently identified. §3.6 shows
that within this subspace the limiting state of Σ is a simple attractor before the paper
ends with a discussion in section 4.
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2. Numerical Procedure

2.1. Governing Equations

We consider the incompressible flow of Newtonian fluid in a cylindrical pipe and adopt
the usual set of cylindrical coordinates (s, θ, z) and velocity components u = uŝ+vθ̂+wẑ.
The domain considered here is (s, θ, z) ∈ [0 : 1] × [0 : 2π] × [0 :L], where L = 2π/α is the
length of the pipe and lengths are in units of radii (D/2). The flow is described by the
incompressible three-dimensional Navier-Stokes equations

∂u

∂t
+ (u · ∇)u = −∇p +

1

Re
∇2

u, (2.1)

∇ · u = 0, (2.2)

and the flow is driven by a constant mass-flux condition, as in recent experiments (e.g.
Peixinho & Mullin 2006). The boundary conditions are periodicity across the pipe length
u(s, θ, z) = u(s, θ, z + L) and no-slip on the walls u(1, θ, z) = 0.

2.2. Time-stepping code

The basic tool for the numerical determination of exact recurrent states is the accurate
time-stepping code described by Willis & Kerswell (2007). The velocity field is derived
from two scalar potentials Ψ and Φ

u = ∇ × (Ψẑ) + ∇ × ∇ × (Φẑ) (2.3)

and the incompressible Navier-Stokes equations are rewritten using the formulation in-
troduced by Marqués (1990). The two scalar potentials are discretised using high-order
finite differences in the radial direction s and spectral Fourier expansions in the azimuthal
direction θ and axial direction z. For example, the decomposition of the scalar potential
Φ at a radial location sj , (j = 1, ..., N), reads

Φ(sj , θ, z, t; α, m0) =

K∑

k=−K

M∑

m=−M

Φjkm(t)ei(m0mθ+αkz). (2.4)

The positive integer m0 refers to the discrete rotational symmetry

Rm0
: (u, v, w, p)(s, θ, z) → (u, v, w, p)(s, θ +

2π

m0
, z) (2.5)

of the flow (m0 = 1 means no rotational symmetry is imposed). The resolution of a
given calculation is described by a vector (N, M, K). It is adjusted until the energy
spectrum drops by at least 4 decades from lowest to highest-order modes. The corre-
sponding number of (real) degrees of freedom, which defines the dimension of phase-
space, is O(8MNK). The set of all complex coefficients X = {Φjkm, Ψjkm} defines

our phase-space with its usual Euclidean norm |X| =
√

X · X. Note that neither the
shift-and-reflect symmetry

S : (u, v, w, p)(s, θ, z) → (u,−v, w, p)(s,−θ, z +
π

α
) (2.6)

nor the mirror symmetry (e.g. Pringle & Kerswell 2007)

Z : (u, v, w, p)(s, θ, z) → (u,−v, w, p)(s,−θ, z) (2.7)

are imposed in the code. The time stepping is 2nd order accurate with ∆t updated using
an adaptive method based on a CFL condition.
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2.3. The Newton-Krylov method

The spectral expansion defined above converts the Navier-Stokes equations into an au-
tonomous dynamical system of the form

dX

dt
= F (X). (2.8)

Travelling wave solutions are steady solutions of the Navier-Stokes in an appropriate
Galilean frame (Wedin & Kerswell, 2004). As such they are a special case of a periodic
orbit which itself is a particular type of a “relative periodic orbit” (RPO) (Viswanath
2007a,2007b). To maintain generality, we developed an algorithm to look for RPOs de-
fined as zeros of the functional

g = |X(T )−∆z,−∆θ − X(0)|2. (2.9)

Here, X(T ) is the point at time T on the trajectory starting at time t = 0 from the point
X(0). X

−∆z,−∆θ is the point in phase space corresponding to the state X shifted back
in space by the distance ∆z in the axial direction and by the angle ∆θ in the azimuthal
direction. A shift back by (∆z, ∆θ) corresponds in phase-space to the transformation:

(Ψjkm, Φjkm) → (Ψjkm, Φjkm)e−i(mm0∆θ+αk∆z). (2.10)

A zero of g corresponds to a flow repeating itself exactly after a time T, but at a different
location defined by ∆z and ∆θ. A travelling wave solution (or “relative equilibrium”)
is a special case of a RPO where there is a degeneracy between the shifts ∆z and ∆θ,
and the period T . For example, in the case of a TW propagating axially with speed c,
∆z = cT , where T is the apparent period. To remove this degeneracy, we impose ∆z = L.
For most of the time, unless specified, ∆θ = 0 is assumed as the majority of the TWs
found do not rotate. Starting from a good initial guess for X(0) and an estimate of
the period T (to be discussed in Section 3.2), we minimise the residual g by a Newton-
Krylov algorithm, based on a GMRES algorithm (Saad & Schultz, 1986). The size of the
dynamical system (typically 105 degrees of freedom) necessitates the use of a matrix-free
formulation. The use of an inexact Krylov solver also allowed for an important gain in
computation time (Eisenstat & Walker, 1995). Moreover, we embed the Newton solver
into a more globally convergent strategy in order to improve likeliness of convergence,
by using a double dogleg step technique (Dennis & Schnabel, 1995, Viswanath 2007a).
In the special case of TWs with a short period, we assume full convergence when the
normalised residual

√
g/|X(0)| is less than O(10−10).

2.4. Stability of Travelling Waves

Once a travelling wave solution is known, along with its axial propagation speed c, it
can be expressed as a steady solution in the frame moving at speed c. In this Galilean
frame, the stability of the solutions can be studied numerically using an eigenvalue solver
based on an Arnoldi algorithm. This yields the leading eigenvalues whose real part, when
positive, indicates the growth rate of infinitesimal perturbations to the exact solution in
the moving frame.

3. Results

We present 4 ‘edge’ calculations, each motivated by a different question. In the first
(see §3.1, §3.2 and §3.3), the edge in a pipe of length ≈ 5 D (α = 0.625) is calculated
starting from a general turbulent initial condition in order to investigate whether there
are coherent structures buried in the edge. In the process, we are able to confirm the
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presence of a chaotic attractor as found recently by Schneider et. al. (2007). In the second
(§3.4), we look for numerical evidence of heteroclinic connections between saddle points
by using a perturbed TW as an initial condition. In the third (§3.5), we impose the
discrete rotational symmetry R2 on the flow to exploit the saddle structure of the subset
of Σ to reveal new TWs which possess R2-symmetry. In the fourth (§3.6), we look for
evidence of multiple attracting TWs to demonstrate that under a rotational symmetry
constraint the large-time dynamics need not be chaotic.

3.1. Calculating Edge Trajectories

In this subsection we choose a pipe with α = 0.625 and Re = 2875, set m0 = 1 so that
there is no restriction on the rotational symmetry, and take a numerical resolution of
(30, 15, 15). In order to constrain a numerical trajectory to stay on the edge surface Σ,
we use a shooting method analogous to that used first in plane Poiseuille flow by Toh &
Itano (1999,2001). We first produce a long turbulent trajectory and pick any state u

∗ of
relatively low energy. We then define the state

uβ := 〈u
∗〉 + β(u∗ − 〈u∗ 〉) (3.1)

where β is a real positive number and 〈 〉 is either the azimuthal average 〈 〉θ =
1
2π

∫ 2π

0 (..)dθ or the axial average 〈 〉z = α
2π

∫ 2π

α

0 (..)dz. For either averaging, any trajec-
tory starting from uβ=0 leads to quick relaminarisation, since turbulence can only be
triggered by three-dimensional disturbances. If uβ leads to high energy levels typical of
turbulent transients, the value of β is reduced, whereas it is increased if relaminarisation
occurs. Using a bisection method, β is refined up to 14 significant digits in double precision
arithmetic, forcing the energy of the trajectory to stay at an intermediate level corre-
sponding to the laminar-turbulent boundary or edge for typical times of O(200 D/U).
The success of this approach rests on being able to qualitatively distinquish between
laminar, intermediate and turbulent energy levels. Once the trajectory starts to leave
the edge after a time O(200 D/U), the process is simply restarted from a state near the
end of the previous trajectory on the boundary. The resulting trajectory, of duration
O(500 D/U), does not show any sign of convergence towards any simple state but rather
displays chaotic dynamics as found by Schneider et al (2007). We deliberately avoid the
word ‘turbulent’ as this refers to more energetic dynamics. Figure 1 shows the chaotic
time evolution of the energy contained in the axially-dependent modes (k 6= 0).

3.2. Near-Recurrences on an Edge Trajectory

Despite the lack of regularity of the energy signals, inspection of all velocity components
at several arbitrary locations in the pipe indicate clearly that the flow on Σ is sometimes
nearly periodic in time on short intervals. In the case (α, Re, m0) = (0.625, 2875, 1), we
can identify by eye several temporal windows where all velocity components oscillate
approximately with a given frequency (see Figure 2). A large number of snapshots were
taken at times ti, i = 1, 2, 3... across the whole trajectory. To investigate the possibility
of recurrence in the flow, each snapshot state X(ti) was used as an initial condition for
time-stepping. The normalised distance in phase space between this initial point and its
evolution in time was then examined for local minima. Specifically, we define the scalar
residual function

ri(t > ti) :=
|X−∆z,−∆θ(t) − X(ti)|

|X(ti)|
(3.2)

where ∆z is a distance by which the state X(t) is shifted back in z for comparison.
We chose ∆z = L so that a value of ri(t) = 0 for some t > ti means that the flow
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in the pipe is exactly the flow at time ti. In this case, X(ti) lies on a periodic orbit of
the system with the time interval t − ti being a multiple of the period (for ∆z 6= 0, a
vanishing residual would indicate a relative periodic orbit). For the ease of calculation
we chose to neglect the possibility of recurrence occurring after a shift in the azimuthal
direction θ, so ∆θ = 0 was imposed. Typical plots of ri(t) starting from different values
of ti are displayed in Figure 3. Every function ri attains a smallest local minimum which
is defined as

rmin(ti) := min
t>ti

{ ri(t) |
∂ri

∂t
= 0 }. (3.3)

The scalar function rmin, which can be determined for any given initial condition X(ti),
turns out to be the central quantity in this paper.

Figure 4 shows how rmin varies with the starting point. Our interpretation of Figure
4 is the following: phases for which rmin is low (below 0.1) correspond to approaches
to periodic orbits of the system by the edge trajectory. Here, the alternating pattern of
maxima and minima in rmin is the signature of a repellor - a set of states which attract
trajectories to ultimately repel them away. For hyperbolic dynamical systems, trajectories
are attracted towards one of these states along their stable manifold and ejected away
along their unstable manifold (see the sketch in Figure 5). For the parameters here, 6 dips
in the rmin-profile suggest 6 approaches, denoted respectively by A1, B1, C1, D1, E1, F1,
to 6 different exact recurrent states. Parts of the trajectory linking one state to the next
(e.g. A1 → B1 or D1 → E1) are located in the vicinity of heteroclinic connections
between the two states, or homoclinic connections if two successive states are found to
be similar. The notion of “vicinity” depends, of course, on the choice of the norm in phase
space. Here, a pragmatic approach is adopted: we use the expression “X is close to a
periodic orbit Y ” to mean that the Newton-Krylov algorithm converges to the periodic
orbit Y starting with the initial guess X.

3.3. Exact Coherent Structures in Σ

We now analyse the neighbourhood of the points X(ti) yielding a low value of rmin

looking for exact recurrent states, for which rmin exactly vanishes. Starting from such
initial guesses, we use the Newton-Krylov algorithm defined in §2.3 to minimise rmin.
For the choice of the Euclidean norm in phase-space, convergence properties of Newton-
like schemes ensure that the states to be found are generally in a neighbourhood of the
starting point, i.e. that the edge trajectory from which the algorithm started actually
approaches the states towards which it converged. We used the six different phases A to F
of the previous subsection as starting guesses. Excellent convergence has been obtained in
the cases A1, B1, D1, F1, where rmin was reduced to O(10−11). The converged states are
labelled respectively A1 0.625, B1 0.625, D1 0.625 and F1 0.625 in order to distinguish
them from the starting points A1, ..., F1, and to indicate the parameter α. The cases C1
and E1 displayed only partial convergence to respectively O(10−3) and O(10−2) and it
is not possible to say if there really are zeros of rmin in this neighbourhood. The initial
guess might not have been good enough or there might only be a local positive minimum
of the system corresponding to a nearly-recurrent state.

The converged states A1 0.625, B1 0.625, D1 0.625 and F1 0.625 all correspond to
travelling wave solutions. Close inspection of their spatial structure and dynamics shows
that they are all the same travelling wave solution modulo a shift in the azimuthal di-
rection: see Figure 6. This “unique” state corresponds exactly to the “asymmetric” TW
identified in Pringle & Kerswell (2007). Its z-averaged velocity field is also strongly rem-
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iniscent of the chaotic state shown by Schneider et al. (2007). This resemblance has also
been noted by Mellibovsky & Meseguer (2007) who used a different approach to infer the
significance of this same asymmetric TW. Interestingly, the present study failed to find
evidence that other states were approached for the chosen parameters in spite of the fact
that other TWs are embedded in the edge. Using the same length of pipe, Kerswell &
Tutty (2007) found that all four lower branch TWs they examined lie in Σ: a turbulent
transient was initiated when the TW was perturbed along its most unstable eigendirec-
tion in one sense, whereas swift relaminarisation occurred for the other. The most likely
explanation is that these other TWs, all of which fitted at least two full wavelengths in
the pipe, are much more unstable and hence far less frequently visited.

The search for recurrent states described above was initially undertaken with ∆θ = 0
disallowing azimuthal propagation of the recurrent patterns. In the case A1, we experi-
mented with allowing ∆θ to be updated by the Newton-Raphson scheme. This involved
solving an additional equation ∂g/∂∆θ = 0 (Viswanath 2007a). Using Newton-Raphson
with the same starting guess A1 but allowing the shift ∆θ to be updated, produced con-
vergence to another state A′ 0.625 distinct from A1 0.625. This state, despite a velocity
profile very analogous to that of A1 0.625, rotates by an angle ∆θ = −0.32 degrees after
travelling one pipe length. This situation is very reminiscent of the bifurcation diagram
obtained by Pringle & Kerswell (2007) for the asymmetric TW (though here Re is much
higher): for a given Reynolds number, a branch of solutions with helicity is connected to
the mirror-symmetric branch, and intersects the non-helical subspace twice. The solutions
at the crossing points are non-helical but nevertheless possess a rotational propagation
speed cθ 6= 0, like our solution A′ 0.625. The fact that such a solution has been found
here could be explained by the fact that the numerical code used does not allow helicity,
hence the Newton-Raphson algorithm has no choice but to look for the intersection of
the helical branch with a non-helical subspace. However, other attempts to find exact
recurrent patterns with rotation invariably converged back to a non-rotating ∆θ = 0
TW.

3.4. Search for Heteroclinic Connections

The results so far indicate the possible existence of heteroclinic trajectories linking the
exact states found. When the two successively visited states are the same modulo a
shift in the azimuthal direction, “relative” homoclinic connection is a more appropriate
term. Though such connections, if they exist, need an infinite time to occur, we try
to locate them by carefully chosing a trajectory starting in the vicinity of a TW. The
asymmetric travelling wave of Pringle & Kerswell (2007) was chosen (i.e. A1 0.625) with
the parameters (α, Re, m0) = (0.625, 2875, 1) and orientated so that it was symmetric
around the θ = 0 plane. In the corresponding S-symmetric subspace, the solution has
exactly two unstable eigendirections, denoted by e1 and e2, e1 being the most unstable
one (there are no unstable directions in the dual space). These two vectors are normalised
so that their energy norm is unity. We now define a starting point by

X(0) = XTW + ǫ (cosφe1 + sinφe2) . (3.4)

In this expression, ǫ is a small positive parameter which ensures that the dynamics
near X(0) is closed to the tangent unstable eigenspaces of the exact solution, i.e. the
dynamics is linear (ǫ = 10−2 suffices). The angle φ defines a plane spanned by e1 and
e2 and vanishes in the direction of e1. For some values of the angle φ, the trajectory
starting from X(0) returns quickly to the laminar state, whereas for some other angles,
it becomes turbulent. This demonstrates that XTW itself also sits on the edge Σ. In
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both cases the trajectory starts in the S-symmetric subspace, but after a finite time this
symmetry is broken. A bisection method is used to determine (to machine precision) an
angle φ for which the trajectory neither evolves to the laminar or turbulent state (see
Figure 7 for a sketch of the method). The energy contained in the axially-dependent
modes is displayed in Figure 8 and the residual function rmin(t) in Figure 9. These show
that rmin increases exponentially and the energy stays constant until t ∼ 150D/U . After
this linear regime, rmin increases, before dropping to a value of 0.09 at t ∼ 250D/U and
then increasing again. The flow at this local minimum of rmin does not resemble any
of the known states. However, when used as a starting point for the Newton-Raphson
algorithm, rmin smoothly decreases to O(10−11). The exact solution happens to be the
asymmetric travelling wave again, but shifted by an angle of 51.56 degrees. This suggests
the existence of a relative homoclinic connection.

3.5. Σ under R2-Symmetry

The technique developed above to identify recurrent states in the edge can equally be
applied to the dynamics within a symmetry subspace. Restricting the flow to be Rm-
symmetric, for example, improves the possibility of an edge trajectory coming close to
some of the Rm-symmetric lower branch TWs found in Wedin & Kerswell (2004) and
thereby confirming their presence in the edge. There is also, of course, the possibility
of discovering unknown branches of TWs. Attention was restricted to the R2-symmetric
subspace by setting m0 = 2 in the flow representation (2.4). At Re = 2875, α = 0.625
and resolution (15, 30, 15), a chaotic edge trajectory was followed for O(500 D/U) during
which 5 different phases of relative recurrence - labelled A2, B2, C2, D2 and E2 - were
detected. Interestingly, this edge trajectory, although chaotic, is much smoother than the
corresponding (same Re and α) edge trajectory for m0 = 1: compare Figures 1 and 10.
Of the 5 initial conditions for a Newton-Raphson search, rmin converged to O(10−11) for
only D2 and E2 (rmin for A2, B2 and C2 stagnated at O(10−3)). The exact recurrence
states found, labelled D2 0.625 and E2 0.625 (see Figure 11), correspond to two new
travelling wave branches distinct from those reported in Faisst & Eckhardt (2003) and
Wedin & Kerswell (2004).

3.6. Local Attractors within the R2-Symmetric Subspace

In this subsection, the flow is again restricted to be R2-symmetric but the pipe is halved
in length α = 1.25 and Re reduced to 2400 (resolution is (50, 16, 20)). At these settings,
Kerswell & Tutty (2007) found a lower branch TW, called 2b 1.25, which is on the edge
and only has one unstable direction normal to the edge. This TW is therefore a local
attractor for trajectories confined to the edge. The question is whether it is also a global
attractor.

A starting point was randomly chosen along a turbulent trajectory, and an edge tra-
jectory generated for 500 D/U using the method described above. The energy signal is
displayed in Figure 12 and the corresponding recurrence signal rmin(t) is displayed in
Figure 13. Two successive dips in rmin can be seen at times 50 D/U and 90 D/U later
corresponding to inexact recurrences labelled respectively A3 and B3. When used to
initialise a Newton-Raphson search, both lead to a value of O(10−11) for rmin. The two
converged exact states correspond to one unique travelling wave solution, differing only
by a small shift (in the azimuthal direction) of less than 4 degrees. As a result, we la-
bel only the first A3 1.25: see Figure 11. The trajectory evidently visits A3, leaves its
neighbourhood and later approaches B3. The TW A3 1.25 has an interesting structure
made of 4 low-speed streaks near the walls separated by 4 high-speed streaks. Four other
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high-speed streaks of lesser amplitude and smaller size, and with a much more steady
structure, can be found closer to the pipe axis. This new TW thus has a richer structure
than the m0 = 2 branch of solution found in Faisst & Eckhardt (2003) and Wedin &
Kerswell (2004).

After a time 200 D/U , the energy of the edge trajectory reaches a constant plateau and
the value of rmin decreases exponentially to O(10−4) by 300 D/U . This indicates that
the trajectory is converging to an end state. Newton-Raphson can be used to accelerated
the convergence of the trajectory by taking the state at 300 D/U and reducing rmin to
O(10−11). The spatial structure of the initial flow at 300 D/U and the final converged
state, however, is indistinguishable. The final state is yet another new travelling wave
solution, labelled C3 1.25 (see Figure 11), distinct from TW 2b 1.25 of Kerswell & Tutty
(2007). Stability analysis of C3 1.25 reveals only one unstable direction which has to be
normal to the edge. Hence C3 1.25 is an attractor in the edge, and both C3 1.25 and
2b 1.25 can only be local attractors.

4. Discussion

We first start by summarising the findings of this investigation.

• The laminar-turbulent boundary Σ in a short pipe has a chaotic attractor as found
by Schneider et al. (2007).
• Although Σ is believed to have many unstable lower branch TWs embedded in it

(Kerswell & Tutty 2007), only evidence for the asymmetric TW (Pringle & Kerswell
2007) and derivatives of it were found.
• A new asymmetric TW which has a small but finite azimuthal phase speed has been

discovered.
• Evidence for a “relative” homoclinic connection was found between the asymmetric

TW and the same wave with a different orientation.
• Calculations within a R2-symmetric subspace have revealed new branches of R2-

symmetric TW solutions.
• The laminar-turbulent boundary restricted to R2-symmetry has at least two simple

local attractors in the form of TWs at Re = 2400.

Our numerical experiments have shed some light on the dynamical structure of Σ
in pipe flow. When no symmetry is imposed, and the pipe is approximately 5 D long
(α = 0.625), trajectories which neither relaminarise nor become turbulent are all chaotic
and visit some exact recurrent states in a transient manner. In all cases studied, these
exact solutions appear to be the asymmetric TWs found by Pringle & Kerswell (2007)
even though many other lower branch TWs are embedded in Σ (Kerswell & Tutty 2007).
No RPOs were found even though the numerical method was originally designed to find
them. Whether this is because the RPOs are rarely visited or just more difficult to isolate
is unclear. It is tempting to conclude that the edge of chaos of pipe flow is structured
around a set of unstable saddle points (the TWs) linked together by heteroclinic or some-
times relative heteroclinic connections. An approximation to such a connection has been
shown in §3.4. The resulting dynamical structure is likely to be a heteroclinic (or homo-
clinic) tangle, an efficient mechanism to produce chaotic trajectories in phase-space with
the set of TWs acting as a skeleton of the tangle. Seen from this point of view, transition
to turbulence from a given initial condition depends on the position of the initial state,
in phase space, relative to the stable manifold of each exact state embedded in Σ. When
a trajectory approaches a travelling wave solution belonging to Σ, its relative position to
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TW m0 Re C cθ status

A1 0.625 1 2875 1.55494 0 known
A′ 0.625 1 2875 1.51956 −1.704.10−3 new

D2 0.625 2 2875 1.53382 0 new
E2 0.625 2 2875 1.57350 0 new
A3 1.25 2 2400 1.23818 0 new
C3 1.25 2 2400 1.55064 0 new

Table 1. Parameters, axial propagation speed C (in units of U) and azimuthal propagation
speed cθ in radU/D and status of all travelling wave solutions found in this paper.

the boundary determines on which side of the edge the trajectory escapes, resulting in
either relaminarisation or a turbulent transient (see sketch in Figure 5).

When the flow is artificially restricted to be R2-symmetric at Re = 2875, the trajec-
tory remains chaotic but it visits various distinct TW states (D2 0.625 and E2 0.625)
By halving the pipe length to ≈ 2.5D and reducing Re to 2400, multiple local attractors
appear in Σ. A randomly started trajectory, after a chaotic transient and a visit to the
states A3 1.25 and B3 1.25, is attracted towards the TW solution C3 1.25. The funda-
mental difference between C3 1.25 and all the other states approached so far lies in the
number of unstable eigenvalues. When a TW has got two or more unstable eigenvalues
in a given subspace, the dimension of the intersection between its unstable manifold and
the hypersurface Σ is reduced by one but remains at least one. Hence such a state re-
mains a saddle point on Σ: edge trajectories enter its vicinity along its stable manifold
and escape along the unstable manifold. In contrast, when a state has only one unstable
direction, this is necessarily normal to Σ, so that the state becomes an attractor for
dynamics restricted to the edge. We have shown that C3 1.25 is one such TW, but there
is at least another labelled 2b 1.25 (Kerswell & Tutty 2007). Therefore we expect both
these two states to be only local attractors on Σ rather than global ones. In the cases
of plane Poiseuille and Couette flow, a lower-branch solution exists which has only one
unstable direction and is therefore a local attractor on the edge (Toh & Itano 1999, 2001,
Lagha et al., 2008). The case of pipe flow is different since TWs all seem to have at
least two unstable directions when there is no imposed discrete rotational symmetry. For
example, the 2b 1.25 TW has 1 harmonic (R2-symmetric) unstable eigenfunction and
one subharmonic (only R1-symmetric) unstable eigenfunction.

Although artificial, discrete rotational symmetry constraints have been a useful device
for discovering new exact recurrent solutions. The transient nature of the repellor found
on Σ demonstrates the fact that by choosing appropriate initial conditions, a large number
of potentially new states is visited in a finite time (see Table 1). The method developed
here based on edge tracking, recurrence analysis and use of a Newton-Krylov algorithm,
is a very general approach to discover new exact recurrent solutions in any flow situation
possessing subcritical behaviour. Importantly, the present method naturally selects the
states that are most likely to be visited and does not presuppose anything about their
spatial structure (modulo the symmetries imposed on the flow). The use of the scalar
function rmin, coupled with a Newton-Krylov solver, can also be used to search for more
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complex solutions like relative periodic orbits, whether located on the laminar-turbulent
boundary or embedded in fully developed turbulence. This is currently underway.

Many open questions remain regarding Σ in pipe flow. Firstly, is Σ really a hypersur-
face or can it have a more fractal structure? Why does the flow keep reapproaching the
asymmetric TW or rotations of it, and not any of the other lower branch TWs known
to exist within the same parameters range? Finally, what does Σ look like in longer
pipes where localised turbulent structures called “puffs” exist? Preliminary work in a
reduced model has already revealed an interesting localised structure as the attracting
state (Willis & Kerswell 2008).
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Figure 1. Energy contained in the axially-dependent modes for (α, Re, m0) = (0.625, 2875, 1).
The thick line indicates the edge trajectory and the thinner lines nearby trajectories which either
relaminarise (energy decreases) or becomes turbulent (energy increases to a higher level). Time
is in units of D/U .
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Figure 2. Axial perturbation velocity signal at three different locations in the pipe. The
signal is taken from the edge trajectory of §3.1.
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Figure 3. Typical profiles of the residual function r(t) starting from snapshots of the edge
trajectory of Section 3.1. The subscript i has been suppressed (time in units of D/U).
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Figure 4. Recurrence signal for the edge trajectory of Section 3.1 (for definition of rmin see
text) against time in D/U . (α, Re,m0) = (0.625, 2875, 1).
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Figure 5. Schematic view of phase-space. The surface Σ separates initial conditions which
relaminarise from those which become turbulent. An edge trajectory visiting three states A, B
and C is shown schematically. The dynamics on the manifolds transverse to Σ are shown by
trajectory diverging towards either the laminar state or the turbulent state.
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Figure 6. Starting guesses for the Newton-Krylov algorithm (top left A1, top right B1) and
converged states (bottom left A10.625, bottom right B10.625) on the edge trajectory described
in §3.2. Each subfigure represents a snapshot across the pipe. Contours indicate the axial velocity
difference from the underlying laminar flow (light/dark indicating faster/slower moving fluid)
and the arrows represent the cross-stream velocity (length proportional to speed magnitude).
Maximum norm of the (u, v) cross-velocity is 0.0128U and the axial velocity differential w is
in the range ±0.17U . The TWs A1 0.625 and B1 0.625 are exactly the same state modulo an
azimuthal shift.
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Figure 7. A sketch of the heteroclinic connnection joining two saddle points A and B. e1 and
e2 are the two unstable eigendirections of A, used for shooting by varying the shooting angle,
in order to optimise the approach to B.



18 Y. Duguet, A.P. Willis and R.R. Kerswell

 1e-04

 0.001

 0.01

 0.1

 1

 0  50  100  150  200  250  300

E
3d

time

Figure 8. Energy contained in the axially dependent modes for Re = 2875, m0 = 1, α = 0.625.
The thick line indicates the edge trajectory and the thinner lines nearby trajectories which either
relaminarise (energy decreases) or becomes turbulent (energy increases to a higher level). Time
is in units of D/U
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Figure 9. Recurrence signal for the heteroclinic connection of §3.4 versus time (in D/U).
(α, Re, m0) = (0.625, 2875, 1).
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Figure 10. Energy contained in the axially-dependent modes on the edge for
(α, Re,m0) = (0.625, 2875, 2). The thick line indicates the edge trajectory and the thinner lines
nearby trajectories which either relaminarise (energy decreases) or becomes turbulent (energy
increases to a higher level). Time is in units of D/U
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Figure 11. Converged states D2 0.625 (top, left), E2 0.625 (top, right), A3 1.25 (bottom, left)
and C3 1.25 (bottom,right). Contours indicate the axial velocity difference from the underlying
laminar flow (light/dark indicating faster/slower moving fluid) and the arrows represent the
cross-stream velocity (length proportional to speed). Across the four snapshots, the maximum
speed of cross-velocity is 0.0143U , axial velocity w is in the range ±0.17U .
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Figure 12. Energy contained in the axially-dependent modes for (α, Re,m0) = (1.25, 2400, 2).
The thick line indicates the edge trajectory and the thinner lines nearby trajectories which either
relaminarise (energy decreases) or becomes turbulent (energy increases to a higher level). Time
is in units of D/U
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Figure 13. Recurrence signal for the attracting state of Section 3.5 versus time expressed in
D/U units. (α, Re, m0) = (1.25, 2400, 2).
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