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Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical
laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting
several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed
out that the purported revolution was relying on the abstract theory of dynamical systems founded in
the late 19th century by Henri Poincaré who had already reached a similar conclusion. In this paper,
we flesh out the historiographical tensions arising from these confrontations: longue-durée history and
revolution; abstract mathematics and the use of mathematical techniques in various other domains. After
reviewing the historiography of dynamical systems theory from Poincaré to the 1960s, we highlight
the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on
to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
much as a sociodisciplinary convergence. C© 2002 Elsevier Science (USA)

Entre la fin des années 1960 et le début des années 1980, la reconnaissance du fait que des lois
dynamiques simples peuvent donner naissance à des comportements très compliqués a été souvent
ressentie comme une vraie révolution concernant plusieurs disciplines en train de former une nouvelle
science, la “science du chaos.” Rapidement, les mathématiciens ont réagi en soulignant l’ancienneté
de la théorie des systèmes dynamiques fondée à la fin du XIXème siècle par Henri Poincaré qui
avait déjà obtenu ce résultat précis. Dans cet article, nous mettons en évidence les tensions histori-
ographiques issues de diverses confrontations: l’histoire de longue durée versus la notion de révolution,
les mathématiques pures versus l’utilisation des techniques mathématiques dans d’autres domaines.

1 A first version of this paper was delivered at the workshop “Epistémologie des Systèmes dynamiques,” Paris,
November 25–26, 1999. We thank the organizers and our colleagues from the sciences (and especially Yves
Pomeau) for their useful comments. In the course of our research, interviews have been conducted and letters
exchanged with various people; we thank in particular Vladimir Arnol’d, Alain Chenciner, Pedrag Cvitanovic,
Monique Dubois, Marie Farge, Mitchell Feigenbaum, Micheal Hermann, Igor Gumowski, Edward Lorenz, Jacques
Laskar, Paul Manneville, Paul C. Martin, Christian Mira, Mauricio Peixoto, David Ruelle, René Thom, and Jean-
Christophe Yoccoz. For their comments on parts of this paper, we thank Umberto Bottazzini, Philip J. Holmes,
Dominique Pestre, and Otto Sibum.
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Après avoir passé en revue l’historiographie de la théorie des systèmes dynamiques de Poincaré
jusqu’aux années 1960, nous soulignons les travaux pionniers d’un petit nombre d’individus: Steve
Smale, Edward Lorenz et David Ruelle. Nous poursuivons en discutant la nature du phénomène du
chaos qui constitue, selon notre analyse, tant une reconfiguration conceptuelle qu’une convergence
sociale et disciplinaire. C© 2002 Elsevier Science (USA)
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INTRODUCTION

In this article we offer a sociohistorical analysis of a scientific domain which mathemati-
cians prefer to call “dynamical systems theory” while others, including most physicists, still
talk about “deterministic chaos theory” or simply “chaos.” To us, this terminological dis-
agreement, which, to be sure, is a reflection of disciplinary tensions, also suggests historio-
graphical challenges. In particular, we would like to argue that common binary oppositions
often useful in the task of historical interpretation (longue durée vs rupture, pure mathe-
matics vs so-called applications, epistemological reconfiguration vs social convergence at
disciplinary and institutional levels) here form a blockade against a proper understanding
of the emergence and development of this prominent scientific domain.

Following the great surge of interest in dynamical systems theory after 1975, scores
of scientists—soon joined by vocal science popularizers—were quick at proclaiming a
major scientific revolution: “I would like to argue,” Ruelle [1992, xiii] wrote, “that we
have witnessed (around the decade 1970–1980) a change of paradigms.” Chaos brought
“a new challenge to the reductionist view that a system can be understood by breaking it
down and studying each piece;” it provided “a mechanism that allows for free will within a
world governed by deterministic laws” [Crutchfield et al. 1986, 48–49]. This was the period
when the domain saw its popularity skyrocket and reached wide lay audiences. Faithfully
reporting some of the scientists’ most enthusiastic opinions, the journalist James Gleick
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[1987, 6] went as far as writing in a worldwide bestseller:

Twentieth-century science will be remembered for just three things: relativity, quantum mechanics,
and chaos. Chaos . . . has become the century’s third great revolution in the physical sciences. Like the
first two revolutions, chaos cut away the tenets of Newton’s physics. As one physicist put it: “Relativity
eliminated the Newtonian illusion of absolute space and time; quantum theory eliminated the Newtonian
dream of a controllable measurement process; and chaos eliminates the Laplacian fantasy of deterministic
predictability.”2

In parallel with these overblown assessments, a more sober reevaluation took place, which
was largely due to some mathematicians’ reaction against the break sketched above. This
time, continuity with the past was emphasized. Contrary to some claims, Poincaré’s legacy
had never been forgotten and suddenly rediscovered, not at any rate by mathematicians. But
the swing of the pendulum generated new excesses. Denying any specificity to the sciences
of chaos, some suggested that a better way of looking at the so-called revolution might be to
see it merely as the application of a mathematical theory, or as the adoption of a “dynamical
systems approach to differential equations.”3

For the historian, to adopt either of these terms—dynamical systems or chaos—therefore
is equivalent to espousing either of opposing conceptions of history according to which what
happened in the 1970s was done in rupture (chaos) or in continuity (dynamical systems)
with the past. The terminological choice moreover encapsulates epistemological models
about historical processes involved in the mathematization of science, mere adoption of
mathematical techniques by various scientific communities, or interactive reappropriation
in which both mathematical tools and theoretical concepts are reshaped. Oscillating between
continuity and rupture, mathematics and various other domains of science, epistemology
and the social and cultural history of science, the historiography of chaos has been rife with
tensions that have still to be carefully analyzed.

In the following we have deliberately adopted a definite point of view, which has both a
temporal and a methodological component. We take the emergence of “chaos” as a science
of nonlinear phenomena in the second half of the 1970s, not as the mere development and
wide application of a certain mathematical theory, but as a vast process of sociodisciplinary
convergence and conceptual reconfiguration. This position stems from both our experience
in dealing with and writing about the history of this domain and our conviction that it is
best suited for capturing its historical essence and significance. We adopt this point of view
because we think that it helps to cut the Gordian knot posed by other historiographical
apprehensions of the domain.

To take an example, it should be obvious to anyone at all familiar with the domain that
the roots of “nonlinear science” (whatever this might mean) extend far beyond mathemat-
ics alone. In order to come up with an exhaustive historical analysis of these origins one
needs to be able to deal at once with domains as varied as fluid mechanics, parts of en-
gineering, and population dynamics. Each of these moreover has variegated histories, in

2 The three-revolution picture is quite common; for a recent example, see Parrochia [1997]. For an extreme
view of chaos as a momentous revolution in the history of humanity as articulated by a pioneer of the domain, see
Abraham [1994].

3 This is the title of a useful survey article by Hirsch [1984]. A nice, if incomplete, illustration of the issues is
provided by the debate over Gleick’s book and fractals involving John Franks, James Gleick, Morris W. Hirsch,
Benoı̂t Mandelbrot and Steven G. Krantz which took place in the Mathematical Intelligencer 11 (1989), No. 1:
65–71; No. 3: 6–13; No. 4: 12–19.
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constant interactions with plenty of other domains and involving scientists from a variety of
backgrounds. Within hydrodynamics alone, the stability of laminar flows, the onset of turbu-
lence, and fully developed turbulence all form important chapters. In the 1940s, for example,
Russian mathematician Andrei N. Kolmogorov, German physicists Werner Heisenberg and
Carl Friedrich von Weizsäcker, and Swedish physicist and chemist Lars Onsager quasi-
simultaneously elaborated various statistical models of developed turbulence. (Let us note
here the underdevelopment of the history of fluid mechanics—in itself a telling manifes-
tation of the general neglect of these areas; see, however, Goldstein [1969], Tokaty [1971]
and, specifically on turbulence, Battimelli [1984, 1986]).

Another crucial domain where nonlinear phenomena abound is automatic control and
regulation. Of concern to scientists as diverse as the Russian mathematician Aleksandr
Andronov, the Dutch electrical engineer Balthasar van der Pol, the French physicist Yves
Rocard, and the American mathematician Norbert Wiener, the study of stabilization of
oscillatory phenomena, resonance, and feedback loops has played a determining role, in
particular for cybernetics. (On the history of automatic regulation and control theory, one
may turn to Bennett [1993]; on Wiener and cybernetics, see Heims [1980, 1991] and Masani
[1990]). In population dynamics, the study of the logistic equation, for instance, in the work
of a mathematician like Vito Volterra, a zoologist like Umberto D’Ancona, and a statistician
like Alfred J. Lotka is the starting point of a disciplinary lineage that can lead to population
biologist Robert May, who figured prominently in the formation of a community of “chaol-
ogists” in the mid-1970s (see Israel [1996], Milan-Gasca [1996], as well as May [1973,
1974, and 1976]). And the above listing has by no means any pretense of being exhaustive.

Clearly, the ample and bushy genealogy that we will simply be content of suggesting here
for the period before 1960 crucially hinges on our own analysis of the more recent past which
is expounded in this article. When viewed as sociodisciplinary convergence and conceptual
reconfiguration, “chaos” in the sense of the science of nonlinear phenomena has a prehistory
whose accurate analysis must include the narratives sketched above. Total history looms
as a tempting, but obviously unachievable, goal. In the rest of this paper, therefore, our
focus will strictly remain that domain which was constituted in the 1970s on the basis of
a triple confrontation: (1) the mathematical theory of dynamical systems; (2) the study of
nonlinear, disordered, turbulent phenomena in the natural and/or technological world; and
(3) a technology, that is, the computer. A priori our main goal will be to give conditions for
making intelligible this very moment and configuration. As a result our essay suffers from
imbalance: in the first section, dealing with the history to 1960, the main emphasis will be put
on mathematics while for the later period we also insist on the role of scientists, problems,
and works emerging from outside the mathematicians’ discipline or professional community
(most notably mathematical physicist David Ruelle and meteorologist Edward Lorenz).

In our task we are faced with three main methodological difficulties. First, by the nu-
merous historical references they regularly mobilized, the actors themselves compel us to
embrace duration of more than a century. The longue-durée history to which they appeal,
however, cannot be subsumed under large-scale overviews unfolding uniformly in time,
and this for two main reasons: (1) not surprisingly, the history mobilized by actors often
is upon closer examination much more textured than they make it appear; and (2) more
interestingly, their frequent appeal to the past has an active role to play in the development
of the field, and history loops back in a fascinating way. We must therefore insist on these
few intense short periods when the configuration of large domains, together with their
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relationship to the past, shifts radically. The second methodological difficulty that we face
is the necessity of grasping the history of, not a theory within pure mathematics, but a
mathematical theory in constant interaction with a large number of disciplines belonging
to the physical sciences (physics, fluid mechanics), to the engineering sciences (automatic
regulation), and even to the life sciences (population dynamics, epidemiology). Finally, a
third difficulty lies in the consideration of the distinct sociocultural configurations shaping
the manners in which interactions take place and thus sometimes strongly imprinting the
unfolding history. Without taking these into account, the numerous instances of neglect
of fundamental concepts, delays in adopting fruitful methods, sudden rediscoveries, and
reconfigurations of the domain cannot be fully understood. A last, but not least, difficulty
consists in handling these constraints together.

Let us be more precise about these difficulties which we feel are not often directly
addressed by the historiography of mathematics. The historical analysis of a proper mathe-
matical theory from Poincaré to the present raises the general problems of long-term history.
The history of mathematics provides an abundant corpus of such studies: history of the re-
solvability of algebraic equations and Galois theory, history of the concept of function,
history of calculus, history of groups, and so forth (see, e.g., Kiernan [1971], Youchkevich
[1976], Bottazzini [1986], and Wussing [1969]). In these examples, the viewpoint always is
that of a conceptual history, in which the Leitfaden is the evolution of concepts, tools, and
methods usually relatively independently from the wants of science or socio-disciplinary
constraints. In our case, concepts and results of dynamical systems theory have repeatedly
stemmed from specific problems arising in various domains: the three-body problem in
celestial mechanics; equilibrium configuration of rotating fluids; resonance in electronic
circuits; predator–prey equilibrium; not to mention questions emerging from the encounter
of mathematics with statistical mechanics such as ergodic theory [Lo Bello 1983]. We must
therefore write the history of a mathematical theory (or loose set of theories) that is used
in—and not “applied” to—other domains. We must also follow how these other domains
receive the theory and how the theory itself responds to outside requests. Finally we must
take into serious consideration the sociodisciplinary configurations in which these interac-
tions take place. These are more than absolutely necessary demands; this exercise leads us
to a totally different epistemological picture of the mathematized sciences and the way in
which they are constituted.

If the model of a pure science that progresses autonomously, and—only downstream and
subsequently—generates applications has been largely abandoned by historians of science,
few alternative models are available for our purpose. One that offers itself, often labeled by
the catchall “science studies,” has shown its fruitfulness in many exemplary studies dealing
with short temporalities. This line of research is renowned for its study of controversies, espe-
cially in the case of the laboratory sciences.4 In general, it has exhibited the co-construction
of the epistemological and social aspects of science—the parallel, simultaneous reconfig-
uration of knowledge and socio-disciplinary groups. (For example, Kay [2000] has shown
how in the 1950s the general context of World War II and the Cold War shaped genetic
research programs and led to their formulation in terms of codes and information theory,
which was not a priori obvious.) But this historiography has not convincingly shown that

4 From a huge literature, let us note Shapin and Schaffer [1985]; Collins [1985]; Pickering [1984]. But one may
also mention the beautiful study of Martin Rudwick [1985] whose subject matter is a historical science: geology.
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it can take up the challenges of long-term histories. In particular, the difficulty remains
of describing how such “co-constructed” results are stabilized and integrated in scientific
edifices that withstand the ravages of time (theories, practices, etc.).5 Adapting the methods
and questionings of general history, a few attempts have been made to integrate the history
of mathematical knowledge with that of mathematical practices, whether within or outside
the academic milieu.6 For the topic at hand, the work done on statistics and probability
theory, which is inspired by this tradition, gives to us to ponder. (About probability the-
ory, see Coumet [1970], Hacking [1990], and Daston [1988]; on statistics, see MacKenzie
[1981], Porter [1986, and 1995], Desrosières [1993], Brian [1994], and Armatte [2001]).
In particular, it shows that since statistics—whose very name derives from the “State”—is
not merely a pure mathematics theory, its history is incomprehensible without an analysis
of public and medical statistics, and even eugenics and demographic statistics, too. (On
demography, see Le Bras [2000], which details how this field was tied to statistics as early
as 1662 and how this encounter changed the nature of science and its relation to politics.) To
us, these works are suggestive of the way in which some sociodisciplinary interactions and
institutional contexts have molded certain aspects of its theoretical development. Similarly,
the attention paid recently to the notion and history of mathematical modeling appears
promising of new directions. (After a long period of neglect, the historical literature on
modeling and computer simulations seems promised to rapid expansion: see, e.g., Morgan
& Morrisson [1999], Sismondo and Gissis [1999]).

In this paper, we have taken up the challenge of combining the longue-durée history
of dynamical systems theory, which itself is in constant transformation and unfolding on
distinct geographic and cultural terrains, with that of the multiple interactions and reconfig-
urations among mathematics and the physical, life, and engineering sciences, which in the
1970s accelerated in a speedier, denser chronology, and led to the emergence of “chaos.”
Our argument is divided in four roughly chronological parts. The first part discusses the
historiography of dynamical systems theory over the relatively long period up to the 1960s.
The second part focuses on three pioneering figures (Steve Smale, Edward Lorenz, and
David Ruelle) who in their own field introduced elements of reconfiguration. In the last
two parts, the rupture which gave rise to chaos is discussed first (in part 3) by assessing the
role played by dynamical systems theory, in relation to other factors, in the social conver-
gence and conceptual reconfiguration, and second (in part 4) by emphasizing new elements
coming from physics especially. In conclusion, the question of the cultural impact of chaos
is raised. Since we cannot be exhaustive, we have chosen to ease the clarity and synthetic
nature of our text by introducing each of the next section with a thesis that summarizes in
a schematic way the main characters of each period.

THESIS 1: THE LONGUE-DURÉE HISTORY OF DYNAMICAL SYSTEMS THEORY

From Poincaré to the 1960s, the mathematical study of dynamical systems developed
in the course of a longue-durée history that cannot be unfolded in a cumulative, linear

5 See MacKenzie [1981]. This question is discussed by Hacking [1999]. Concerning the longue-durée history
of 20th-century particle physics, we have, however, the example of Galison [1997], an ambitious study dealing
with cognitive, practical, contextual, and cultural aspects simultaneously.

6 In Bottazzini & Dahan [2001], for instance, the notion of image or representation of mathematics provides a
key for articulating the proper disciplinary level, socioinstitutional levels, and finally, a more diffuse cultural level.
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fashion. In particular, this history is not reducible to that of a mathematical theory (which
might be called “dynamical systems theory” or the “qualitative theory of differential equa-
tions”) made by academic mathematicians who would have all contributed a stone to the
final edifice. In fact, this history unfolds along various geographic, social, professional,
and epistemological axes. It is punctuated by abrupt temporal ruptures and by transfers
of methods and conceptual tools. It involves scores of interactions among mathematics,
engineering science, and physics along networks of actors with their specific research
agendas and contexts. Finally, it is characterized by countless instances of looping back
to the past, to Poincaré’s work in particular, which are so many occasions for new starts,
crucial reconfigurations, and reappreciation of history.

1.1. An Undeniable Point of Origin: Poincaré

Due to the novelty, the variety of tools, concepts, and methods deployed by Henri
Poincaré, there can be no doubt whatsoever that his œuvre is the point of origin of the
domain under consideration here—dynamical systems and chaos—and the cornerstone on
which it was built. Whatever conflicts have arisen between historiographical viewpoints,
the recognition of Poincaré as the true founder and major theoretician of the domain has
been unanimous. In his scientific lifework, he indeed articulated four especially important
themes for our concern: (1) the qualitative theory of differential equations; (2) the study
of global stability of sets of trajectories (instead of focusing on single solutions); (3) the
notion of bifurcation together with the study of families of dynamical systems depending
on a parameter; (4) the introduction of probabilistic concepts into dynamics, with respect to
ergodic theory and the exclusion of exceptional cases. In the course of the following century,
each of these four broad themes was mobilized either jointly or separately. Associated with
fundamental concepts and methods, they would set the outline of the domain.7

In his series of memoirs “Sur les courbes définies par une équation différentielle” pub-
lished between 1881 and 1886, Poincaré forged the elements of a qualitative, geometric
analysis making it possible, when differential equations are not solvable, to know the gen-
eral look of the solutions, i.e., to know their phase portraits and state global results. (The
phase space is the space of the bodies’ position and momentum (velocity). It has thus 6n
dimensions when n is the number of bodies under consideration. This dimensionality can,
however, be reduced by symmetry considerations. The phase portrait is the set of solution
curves traced in phase space.) As a first step, he established a general classification of so-
lutions in two dimensions in terms of singular points (centers, saddle points, nodes, and
foci). Using the topographical analogy, he developed the notion of the index of a curve
providing a first local qualitative result. Discussing in phase space, he introduced the notion
of transverse arc, allowing the reduction of a curve to a series of points on the real line.
His fundamental result was the following: among all the curves not ending in a singular
point, some are periodic (they are limit cycles), and all the others wrap themselves asymp-
totically around limit cycles. Starting from behavior in the neighborhood of singular points,
limit cycles and transverse arcs therefore provide a rather precise knowledge of trajectories.

7 The literature on Poincaré’s contribution to dynamical systems theory is immense; surveys can be found in
Chabert and Dahan Dalmedico [1992] and Bottazzini [2000]. Among the studies devoted to the qualitative theory
of differential equation, let us mention Hadamard [1912a], Gilain [1991], Gray [1992], Mawhin [1996], and Parker
[1998]; concerning celestial mechanics, see Hadamard [1912b], Anderson [1994] and Barrow-Green [1994; 1997].
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Unfortunately this theorem, which constrains the possible behavior of a system, has no
equivalent in higher dimensions; and its generalization would for decades to come pose a
major mathematical problem. Let us moreover emphasize that, mobilizing his geometric
intuition, the qualitative theory would be progressively transformed by Poincaré himself
into a whole new branch of mathematics particularly useful for the passage from local to
global knowledge. In a series of memoirs on Analysis situs, he thereby established the basis
of modern topology [Poincaré 1895].

From the start, Poincaré conceived the qualitative theory of differential equations with
an eye set on celestial mechanics and in particular the stability problem for the solar system
(conceived as the global stability of planetary trajectories). He tackled the questions in his
famous essay “Sur le problème des trois corps et les équations de la dynamique” [Poincaré
1890] and his monumental treatise [Poincaré 1892–1899]. In these works, he developed
methods analogous to those elaborated in the plane: to look at what happens in the neighbor-
hood of periodic planar solutions, he used the transverse section method and the first-return
map, or Poincaré map. In order to study the behavior of trajectories in the neighborhood
of a periodic trajectory C going through a point M0, Poincaré considered their intersection
with a plane normal to C at point M0. Let P0 be a point of this plane (called Poincaré cut)
very close to M0; then the trajectory going through P0 after having made a full orbit in the
neighborhood of the curve C will intersect the normal plane at a point P1 a priori distinct
from, but close to, P0. The next orbit similarly defines a point P2 as it intersects the plane,
etc. The (first-return) Poincaré map is the map from Pi to Pi+1. It makes it possible to reduce
the study of a set of trajectories to that of a point sequence in the normal plane. The first
discrete recurrence to appear in dynamical systems (where time, no longer continuously
varying, is symbolized by integers), the Poincaré map would turn out to be a crucial tool to
reduce the problem to lower-dimensional space.

The theme of stability thus acquired a new significance. For Lagrange stability indeed
meant the strict periodicity of trajectories. Poisson had enlarged it to the case where tra-
jectories circled back, not precisely to their starting points, but an infinite number of times
in their vicinitses. Considering the deviation of a trajectory from those initially close of
it, Poincaré defined stability in terms of sets of trajectories. “Stable” solutions were there-
fore distinguished from “unstable” ones, according to their characteristic exponents. These
results could also be extracted from the study of the Poincaré map, on whose transverse
sections phenomena of contraction and dilatation could be observed. This global notion of
stability was the one that would be taken and developed further by Lyapunov [1892] and
the Gorki school (see Section 1.4 below).

In the study of stability Poincaré introduced the notions of asymptotic and doubly asymp-
totic solutions (in the past and in the future) wrapping themselves around periodic solutions.
Distinguishing two types of trajectories (since G. D. Birkhoff, called elliptic and hyperbolic),
he explored the local situation around an elliptic trajectory. His analysis implied that fam-
ilies of periodic trajectories existed with larger and larger periods. Each of these gave rise
to islets and nodes and revealed a highly intricate structure of regular and very perturbed
areas, which repeated themselves into smaller scales. In [Poincaré 1892–1899, Vol. 3] he
exhibited a type of trajectories, called homoclinic, too complex for him to draw. The rich
but dense body of results would occupy generations of mathematicians. Ten years after,
he again took up the search for periodic solutions but under broader and more difficult
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conditions. Poincaré [1912a] reduced the problem to a famous “theorem of geometry:” a
continuous map of an annulus onto itself, which rotates the circles at the border in opposite
directions and leaves areas invariant, has exactly two fixed points. Stated shortly before
his death, Poincaré’s “last theorem” would soon be proved by his scientific heir Birkhoff
[1913]. (See also [Birkhoff 1927, 163–170]).

Poincaré also considered another type of global stability in the context of his study of
rotating fluid masses and planetary figures of equilibrium [Poincaré 1885, 1902]. Among
those shapes, Jacobi’s ellipsoid of revolution with three different axes and annular shapes
were already known. Raising the question of their stability, Poincaré established that there
existed series of figures depending on a parameter; when a figure belonged to two such
series, it was called a figure of bifurcation. In a family of dynamical systems depending on
a parameter, the bifurcation corresponded to a branching point on the manifold formed by
periodic solutions with an added dimension corresponding to the variation of the parameter.
To each figure, an infinite sequence of stability coefficients was associated, and the condition
for equilibrium was that they were all strictly positive. When one was zero, the corresponding
figure was a bifurcation. In this case, Poincaré explored the relationship between stability
and bifurcation, most notably in the case where series of equilibrium figures exchanged
their stability by passing through a bifurcation (from a spheroid to an ellipsoid, from an
ellipsoid to a pear-shaped figure, etc.).

Let us finally mention the probabilistic concepts repeatedly mobilized by Poincaré, which
from our point of new ought to be included among his basic innovations in the theory of
dynamical systems, since they have become essential for the understanding of chaotic
phenomena. In the course of his study of the stability of trajectories, he showed that there
were an infinite number of particular solutions, which were unstable in the sense of Poisson,
but exceptional in the sense of probability theory (i.e., of measure zero). This was Poincaré’s
famous “recurrence theorem,” stating that an isolated mechanical system would necessarily
come back arbitrarily close to its initial state, except for a set of cases with probability zero
of occurring. Probabilistic concepts also came up in the incompressible fluid model used
to illustrate the notion of integral invariant (for which he invoked the density of molecular
trajectories in phase space). Probability theory was also central to his discussing the kinetic
theory of gases and the Maxwell–Boltzmann postulate at the foundation of ergodic theory:
“whatever the initial situation of the system, it will always pass an infinite number of
times, I do not say through all the situations compatible with the existence of the integrals
but as close to any of these situations as one would wish” [Poincaré 1894, 252]. Finally,
probabilistic concepts with respect to liquid mixing were still present in [Poincaré 1912b].
His reflections underscored the necessity of deepening the understanding of probabilistic
concepts as well as the difference between conservative Hamiltonian systems from the
many-particle systems of statistical mechanics. Nevertheless, ergodic theory would have to
wait until the 1930s for crucial advances [Birkhoff 1931, von Neumann 1932].

Foreshadowing a great deal of their concerns and introducing some of their key concepts
and methods, the above four themes in Poincaré’s œuvre truly were the starting point of
dynamical systems theory and neighboring fields up to the latest craze for chaos. Why is it
then that the assessment of his contribution has posed such a historiographical conundrum?
For some, the matter is captured in a simple statement: “Chaos was discovered by Poincaré”
[Diacu & Holmes 1996, 78]. Indeed, in 1908, the French mathematician and physicist had
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famously claimed: “it may happen that small differences in the initial conditions produce
very great ones in the final phenomena. . . . Prediction becomes impossible.” [Poincaré
1908, 68–69]. This is one of the passages of Poincaré’s most quoted by contemporary
“chaologists” (see, e.g., Crutchfield et al. [1986, 48]). However, this claim leaves intact
the problem of having to explain why the great burst of activity could only take place
several decades after Poincaré’s death. If the essential features of chaos, chiefly sensitive
dependence on initial conditions, had been known for so long, how are we to account for the
“chaos revolution?” Thus has a theme focusing on the “nontreatment” of chaos emerged in
the literature. Present in scientists’ account, this theme was best articulated by Kellert [1993,
119–128]. In order to explain it, Kellert listed several reasons but none very convincing:
the physicists’ interest in other theories than classical mechanics (relativity and quantum
theories); social emphasis on stability in the scientists’ training and research practices; and
predilection for theories enhancing control over understanding, for reasons having to do
with technological, philosophical, or even specifically masculine a priori dogmas about the
nature of science. As we shall see, however, various results of Poincaré’s would be picked
up by generations of successors, studied, developed, and extended in a great variety of
directions. None, it can be safely said, was ever truly lost or forgotten.

What is true, on the other hand, is that Poincaré’s results, which we have summarized
above, were not, until much later, mobilized in an integrated manner. Comprising dozens of
books and hundreds of articles, his lifework never was once and for all, so to speak, digested
by successors. In fact, whether they even appeared as such to Poincaré himself is not clear.
The dynamical systems synthesis is a post facto construction that has to be accounted for on
its own terms. As a matter of fact, Poincaré’s published papers and books have constantly
been revisited until the present, and only through this process was their meaning fully fleshed
out and dynamical system theory developed. And it is this very persistent back-and-forth
motion between the master and later contributors that makes the longue-durée history an
unavoidable, but especially slippery, task for the historian of chaos.

1.2. Key Moments in the History of Dynamical Systems

The above discussion has suggested why, even if Poincaré originated the domain, it
remains nonetheless impossible to write a single history starting with him and unfolding
linearly. In fact, it would seem that several contemporaneous histories loop back to his sem-
inal work, interact, and unfold again along different directions. Under the marked influence
of some major developers of the field who have repeatedly drawn attention to historical
sources both in research papers and later commentaries, studies of various moments of
Poincaré’s conceptual heritage have been produced. (For a history of Poincaré’ heritage,
see Dahan Dalmedico [1996c]).

The field’s main contributors have almost always striven toward the construction of
scientific “traditions” whose last heirs they would have been. In the following, we shall
several times seize the opportunity of underscoring this process apropos Smale, the Russians,
Mira, Mandelbrot, and others. In a simpler fashion, most specialists have repeatedly revisited
earlier works in search of tools and methods. In [Dahan Dalmedico et al. 1992] several
leading representatives of the domain (J.-C.Yoccoz, Jacques Laskar, Pierre Bergé, and
Marie Farge) frequently cited historical sources and, generally, it seemed to them important
to illuminate accounts of recent scientific developments with lengthy discussions of the
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works of C. Bernard, L. Boltzmann, V. Boussinesq, A. Cournot, J. Hadamard, and P.-S.
Laplace, as well as crucial mentions of Lagrange, Maxwell, Rayleigh, etc. The resulting
history of dynamical systems theory therefore often presents itself as a series of revivals of
older results, as scores of half-forgotten authors from the 20th century were rediscovered
by wide spectra of scientists. Let us here recall the principal moments, which have attracted
special attention:

—at the turn of the 20th century, Aleksandr Lyapunov’s work on stability theory,
emphasizing quantitative evaluation of the divergence rate between solutions with different
initial conditions;

—in the first half of the 20th century, the fundamental use of modern topolo-
gical techniques by George D. Birkhoff concerning conservative dynamical systems (see
Section 1.7);

—in the 1920s and 1930s, the study by Balthasar van der Pol and other radio engineers
on so-called relaxation oscillations, or sustained periodic solutions to nonlinear dissipative
equations with a few degrees of freedom (see Section 1.5);

—in the 1930s and 1940s, the theoretical developments in the study of such oscillations
made by Aleksandr Andronov’s school, with in particular their results concerning “coarse
(or rough) systems” in two dimensions (see Section 1.4);

—in the 1940s, the careful analytical and topological study on differential equations
by Mary Cartwright and John E. Littlewood and Norman Levinson (see Section 1.5), which
are direct offshoots of the wartime scientific mobilization;

—from the postwar period to the 1960s, the Nonlinear Oscillation Project led by
Solomon Lefschetz, who translated work available in Russian for the English-speaking
world and, in the Cold War context, organized research along similar lines in the United
States (see Section 1.6);

—in the same period, the work of Andrei N. Kolmogorov and his students on the stabil-
ity of Hamiltonian systems, and celestial mechanics in particular, leading to the celebrated
KAM theorem (see Section 2.1).

Of course, the above list has no pretense of being exhaustive or definitive. One could just as
well insert Eberhard Hopf’s and Kurt Otto Friedrichs’s work concerning bifurcation theory:
contemporary mathematicians having “rediscovered” it tried to recover its “prehistory”
(see Marsden & McCracken [1976] including an English translation of Hopf’s original
paper [1942] and various mathematical commentaries). One could mention Marston Morse’s
symbolic dynamics whose seminal work before World War II was Morse & Hedlund [1938].
One could recall Arnaud Denjoy’s paper [1932] on abstract topology where he took up a
question unresolved by Poincaré concerning the curves defined by a differential equation
of the surface of a torus and using maps from the circle to the circle as his basic tool. The
success of fractals, finally, has directed attention to Gaston Julia’s and Pierre Fatou’s work
on discrete recurrences [Chabert 1990].

1.3. Smale: At the Confluence of Three “Traditions”

It is not uncommon in the history of science to base the reconstruction of the past on
accounts given by some of its most prominent actors—in other words, to inherit from the
winner’s history. In the 1960s, the American topologist Steve Smale clearly dominated
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dynamical systems theory by his stature. (Smale’s specific contribution to the theory of
dynamical systems, which was crucial, will be discussed in more detail in Section 2.1
below. For a biography of Smale, see [Batterson 2000]. Several autobiographical accounts
and testimonies from friends and students are gathered in [Hirsch et al. 1993]). More than
anyone else Smale has shaped the contemporary conception of the domain, as well as the
perception of its history. In a seminal article published in 1967 he sketched the methods,
tools, goals, and, above all, the broad vision that have thereafter underlain this field of
mathematics. In this paper and a whole series of studies devoted to dynamical systems
mainly published between 1960 and 1980, as well as in a few autobiographical pieces,
Smale laid out a network of historical sources that, in 1998, he organized as follows:

I was lucky to find myself in Rio at the confluence of three different historical traditions in the subject
of dynamics (called ordinary differential equations at the time) [Smale 1998, 44].

The three “traditions” he referred to were: (1) the Gorki school starting with Andronov
and Pontryagin in the 1930s and picked up by Lefschetz’s group at Princeton after World
War II; (2) the tradition coming out of studies of the van der Pol equation via Cartwright
and Levinson (ca. 1926–1949); and (3) the somewhat forgotten tradition of Poincaré and
Birkhoff from the turn of the century to the 1920s and 1930s. According to Smale, the first
tradition had cultivated part of the mathematical arsenal first put in place by Poincaré and
adapted it to dissipative systems, but it seemed to have lost the memory of the wealth and
complexity of dynamical behaviors one could expect. The second tradition had hit upon such
complex behavior, but lacking much of Poincaré’s sophisticated qualitative theory, was at
a loss in perceiving its deep significance in terms of topological classification of dynamical
systems and, down the road, of mathematical modeling. Picking up the third tradition Smale
could perceive the way to use the full arsenal of tools bequeathed by Poincaré and marry
the complexity of dynamical behaviors to the simplicity of the topological approach. This
view of the prehistory of Smale’s dynamical systems theory has been very successful due
in part to its convincing tracing back of the emergence and development of several key
mathematical concepts.

From a very complex genealogy Smale has therefore extracted three main threads, for he
saw himself as standing at their crossroads. His scientific stature together with the impor-
tance of his own contributions conferred retrospective legitimacy to the three filiations thus
constructed. By and large, we will follow them. However, it is important to underscore that,
on a long term, they have no obvious, absolute consistency. Adopting the viewpoint of other
protagonists partaking in the 1970s reconfiguration, different histories might be possible,
which would emphasize other threads and other nodes. And, for that matter, different his-
tories of this kind have been suggested. Mandelbrot [1975], for one, offered a retrospective
prehistory of fractals, starting from Hausdorff, Fatou, and Julia, via lesser-known figures (at
the time) such as meteorologist Lewis Fry Richardson, probability theorist Paul Lévy, and the
precursor of “econophysics” Louis Bachelier, up to himself [Chabert 1990]. Let us note
that a complete “prehistory” of fractals might require to add to Mandelbrot’s first sketch
the specific contribution of Soviet mathematicians, esp. Pulkin [1950], as was suggested by
Christian Mira (see below). To follow ergodic theory and the link between instability and
statistical physics as Russian physicist Yakov Sinai [1992 & 1993] has done, while agree-
ing on the importance of Poincaré, Birkhoff, Hopf, and Kolmogorov, leads one to insist on
different aspect of their œuvres, as well as on the specific contribution of other physicists



HMAT 29 HISTORY OF DYNAMICAL SYSTEMS AND CHAOS 285

such as Ludwig Boltzmann, Willard Gibbs, Max Born, or the Russian statistical physicist
Nikolai Sergeievich Krylov.8 Quite visible and prevalent in some physicists’ early works
on chaos (prior to 1975), this viewpoint has been all but suppressed by the popular success
of dynamical systems. By focusing on discrete recurrences, mathematicians closer to en-
gineering concerns, as applied mathematician Christian Mira insisted upon, have thrown
light on other contributions and traditions (see Mira’s “Exposé introductif” in [Mira &
Lagasse 1976]; see also Mira [1986; 1997] and the historical comments he sprinkled in his
books [Gumowski & Mira 1980; 1982]). This last line of development will be discussed in
Sections 3.3 and 4.1 below.

To summarize, the now classic historiography of the period prior to the 1960s is structured
by three main elements: (1) an uncontested point of origin: Poincaré’s multifaceted lifework;
(2) the towering figure of the mathematician Smale who in 1959–1970 produced an astute
synthesis reconfiguring dynamical systems theory; and (3) the three traditions reconstructed
by him that give a coherent prehistory of his own synthesis. In the following, we have
exploited Smale’s synthesis as, so to speak, an entry point into the intricate history of
dynamical systems theory and offer our personal contemporary rereading of these traditions.
We will see that, by paying some attention to the sociohistorical context, the landscape
becomes incomparably richer, and also more problematic.

1.4. Andronov’s Gorki School

Let us first develop the case of Andronov’s school in some details, since it probably is
the one with which the reader will be least familiar (see Diner [1992], Dahan [1994;1996b]
for some aspects of Andronov’s school, and also Dahan & Gouzévitch [forthcoming]).
Andronov’s roots and his self-acknowledged sources are twofold: (1) his mentor, physi-
cist L. I. Mandelstham, whose work concerning optics, radiophysics, and the theory of
oscillations contained an actual program of unification for the study of nature on the basis
of the “physics of oscillations;” and (2) Poincaré, whose work he referred to as early as
1928 and never ceased to study, recommend to students, and publish in the Soviet Union.
After having acquired a strong training in mathematics and physics, in his thesis Andronov
attacked an engineering problem suggested by Mandelstham: to take self-induction into
account in the case of the electromagnetic switch. Analogous to van der Pol’s relaxation–
oscillation (see Section 1.5), this oscillator is a dissipative system whose vibrations are
sustained by a nonoscillating external source of energy. In phase space, Andronov [1929]
noticed, this motion is analogous to Poincaré’s limit cycles. Using results from Méthodes
nouvelles de la mécanique céleste, he developed a “storing method” to study the stabil-
ity of periodic solutions. It was far from self-evident that one could transfer Poincaré’s
methods and results from Hamiltonian mechanics to dissipative systems involving a few
degrees of freedom; but it was a crucial move. Henceforth, by using, transposing, or ex-
tending Poincaré’s arsenal Andronov would endeavor to develop Mandelstham’s program.
Also reaping Lyapunov’s heritage, Andronov focused on the problem of stability. Combin-
ing Poincaré’s small-parameter method with Lyapunov’s stability theory, he established a

8 A student of V. A. Fock’s, N. S. Krylov, defended in July 1941 a thesis on “Mixing processes in phase space.”
Published posthumously in 1950, his ambitious monograph on the foundations of statistical mechanics came as
a surprise in the West when it was translated in 1977. On its crucial influence in the Soviet Union, see Sinai’s
postface in Krylov [1977]. On N. S. Krylov, see Diner [1992].



286 AUBIN AND DAHAN HMAT 29

method for finding periodic solutions and studying their stability. (No doubt because of its
quantitative aspects, Lyapunov’s theory has tended to be neglected in historical accounts
given by dynamical systems theorists influenced by Smale).

In 1931 Andronov settled far from Moscow, in Gorki, where there already was a small
radiophysics institute, the lead of which he took. This institute, which he decided to develop,
allowed him to found his own research school devoted to the study of nonlinear oscilla-
tions. From a scientific and strategic point of view, the context was favorable to the study
of self-sustained oscillations. In this period, questions concerning oscillations in electric,
thermionic, and electronic circuits, and later electronic scanning and television attracted
much more interest than the study of mechanical vibrations ever did. A reason for this
was that, undesirable in mechanical devices (such as trains and airplanes), vibrations were
parasitic effects one sought to eliminate or at least control rather than study and indeed
calibrate precisely (e.g., in radio receivers). (On the history of electrical and radio engineer-
ing, see Bennett [1993] and Dunsheath [1962]). In the 1930s, the stabilization of nonlinear
vibrations and resonance phenomena seemed vital for Soviet military power. At the First
All-Union Conference on Auto-oscillations, held in Moscow in November 1931, the scien-
tific and technological importance of the problem was underscored, work was organized,
and Andronov and his Gorki institute were put in charge of research efforts. Gathering a
team of pure and applied mathematicians, physicists, and engineers, he intended to tackle
theoretical and practical problems simultaneously and in close cooperation.

In the course of 1930s, nonlinear oscillation theory—that is, the study of differential
equations involving a small number of degrees of freedom principally stemming from
radio technology—formed Andronov’s privileged field of inquiry in close contact with
applications: electrical circuitry with vacuum tubes, neon tubes, relaxation oscillations in
radiophysics and electrical engineering, oscillation in vehicle wheels, machine regulation
and control, etc. The several highly theoretical tools then used and developed by Andronov
and his collaborators (point maps, recurrences, bifurcations, critical cases, stability, and the
famous notion of “systèmes grossiers” discussed below) were all subservient to applications.
In particular the point-map method—explored by Poincaré in the case of the first-return
map—was, for a time, essential. Well adapted to engineering problems (especially auto-
matic regulation) where discrete equations were useful, this method made it natural to
think about the states of the system considered as points in phase space. It also made it
easier to extend the theoretical framework common to both Hamiltonian and dissipative
systems.

Most of these results, together with their context of application, were gathered in
Andronov, Vitt, and Khaikin’s Theory of Oscillations, first published in 1937.9 The struc-
ture of the treatise reflected the research program from which it emerged: the basic topic
was nonlinear systems with one degree of freedom and related oscillations and attention
was especially focused on concrete examples treated as fully as possible (Froude’s pendu-
lum, clock theory, circuit with vacuum tubes, ship stabilizer, Prony’s break, and so forth).
Contrary to celestial mechanics (where Newton’s law was supposed to be exactly true), in
considering “real physical systems [which] we are always forced to simplify and idealize”

9 Victim of Stalinist purges in 1937, Aleksandr Adol’fovich Vitt had his name removed from the original Russian
edition. The book was first translated into English by Lefschetz in 1949 in an abridged form, and then again in
1966 in its entirety.



HMAT 29 HISTORY OF DYNAMICAL SYSTEMS AND CHAOS 287

[Andronov et al. 1966, xv]. In a lengthy introduction they explained that:

It is evident that since small random perturbations are inevitable in all physical systems, processes which
are possible only in the absence of any random deviations or perturbations whatsoever cannot actually
occur in them [Andronov et al. 1966, xviii].

These considerations had led Andronov and his collaborators (his wife E. Leontovich,
A. G. Maier, N. N. Bautin, and others) to develop the theory of bifurcations, that is, the study
of qualitative changes in phase portraits as parameters were slightly varied, and, from there,
to the double stability of systems—that is, with respect to variations in initial conditions
(in reference to Lyapunov’s theory), and with respect to variations in a parameter, or, as he
wrote, to “the mathematical model itself.” The implication of this second type of stability
was clear: “we have always to allow for the possibility of small variations of the form of
the differential equations which describe a physical system” [Andronov et al. 1966, xxvii].

From such concerns emerged the notion of “coarse systems.” First introduced in the
literature as “systèmes grossiers” by Andronov and Pontryagin [1937], this term has been
diversely translated in English, as “coarse” or “rough systems.” In his 1949 translation
[Andronov et al. 1949], Lefschetz called these systems “structurally stable systems.” As
Arnol’d [1994, 224] has emphasized, this notion appeared in Andronov’s work as both a
mathematically rigorous definition and a general idea about the type of systems useful for
mathematical modeling in physics and engineering. In mathematical terms, it stated that a
system was coarse if a small variation in the equation induced a “small” homeomorphism
under which the phase portrait was qualitatively unchanged, mapping trajectories into tra-
jectories, critical points into critical points, limit cycles into limit cycles, and so on, that is,
in two-dimensions, the phase portrait of the modified system,

dx

dt
= P(x, y) + p(x, y);

dy

dt
= Q(x, y) + q(x, y),

was qualitatively equivalent to the unperturbed one (with p = q = 0).
The most important physical question concerned stationary states, either states of equi-

librium or periodic motions, “the most typical [motions] over long intervals of time”
[Andronov et al. 1949, xxvii]. This is why the search for limit cycles, in general very difficult,
was crucial, and the treatise summed up the methods available for this task (Poincaré’s index
method, the criterion of Bendixson [1901], and Andronov’s own methods). Under the con-
straints of double stability mentioned above, one was interested in classifying expected typi-
cal behaviors. Sophisticated mathematical methods were elaborated to answer the question:
What is it necessary to know about a given system in order to be able completely to determine
the qualitative structure of its orbits? In contemporary topological language, this amounts
to identify a complete invariant of the system under topological conjugation. As early as
1937, it would seem, Andronov’s school had developed the theory of two-dimensional
coarse systems, including a characterization of possible bifurcations and the identification
of a topological invariant (the scheme), the offshoot of which was that, in two-dimensional
coarse systems, only stable limit cycles could represent self-oscillating phenomena.

At the end of the 1930s Andronov and his school turned their attention to automatic
control theory (dynamics of flight, clocks, geared regulators, etc.). A characteristic trait of
such systems was discontinuous nonlinearity, due to dry friction, relay switches, and so forth.



288 AUBIN AND DAHAN HMAT 29

Andronov considered multidimensional problems, which aimed the arsenal developed for
the two-dimensional case at nonstandard situations. Andronov, Bautin, Maier, and others
dealt with stabilization problems (e.g., for automatic-pilot airplanes, the so-called Mises–
Vishegradsky problem) and other nonlinear oscillation problems. Questions concerning the
theoretical physics of oscillations were also studied from a practical standpoint: diodes and
magnetrons in particular, which led to the statistical study of high frequencies. Andronov’s
school therefore pioneered the study of fluctuations and the influence of parasitic noise on
self-oscillating processes, on which relied modern electronics and, later, masers and lasers
(Pontryagin, Andronov, and Vitt published their famous notice “On the Statistical Treatment
of Dynamical Systems” in 1933; on masers and lasers, see Bromberg [1991]).

During the “Great Patriotic War,” and even more in the Cold War, the Gorki institute’s
funding increased greatly. A Radiophysics School was set up which remained in close
contact with Andronov’s institute. Contracts with the military and “P.O. boxes” were plenty.
(For top-secret contracts from the Defense Ministry in the old Soviet Union, a P.O. box
number often was the only identity given to correspondents.) Several other domains, from
various fields of physics (high-frequency physics, electronics, astrophysics) as well as
engineering science, came into their realm: waves and radar, interactions between magnetic
fields (crucial for various instrumentation problems), missile-launching problems, etc. After
Andronov’s death in 1951, his collaborators Zheliztsov and Neimark were connected with
top-secret work on nuclear reactors and the control of explosion processes because of their
expertise in regulation.

The global picture of the work conducted in the Soviet Union still remains rather obscure.
The article giving the most complete survey of the diversity of Soviet research in the domain
is [Diner 1992]. Let us mention that another school developed in Kiev, Ukraine, in the
1930s. Most famously represented by Nikolai M. Krylov and Nikolai M. Bogoliubov,10 the
Kiev school focused on “nonlinear mechanics” using—rather than qualitative approaches—
analytic, quantitative methods, such as asymptotic methods, development in series, and
averaging and approximation procedures mainly coming from Poincaré [1892–1899, Vol. 2].
In Kiev, just as in Gorki, practical and technological concerns were tightly mingled with
fundamental theoretical or mathematical developments.

The second school that played a fundamental role in the Soviet Union was, of course, that
of Andrei N. Kolmogorov, whose work on classical mechanics was influenced by Krylov
and Bogoliubov. Comparable only to Poincaré’s in scope and depth, Kolmogorov’s œuvre
crossed dynamical systems theory from different angles: probability theory, stochastic pro-
cesses, information theory, turbulence, spectral theory, and above all the general theory of
Hamiltonian systems in classical mechanics and ergodic theory. The editor of his Selected
Works, V. M. Tikhomirov, had divided Kolmogorov’s lifework into three realms: order
(mathematics and mechanics), “chaos” (probability theory and statistics), and information
and algorithmic theories, where these two realms had no natural border. As Tikhomirov
explained, “the conception of randomness as algorithmic complexity, the attempt at dis-
covering the essence of the notion of order and chaos fill the creative life of Andrei
Nikolaievich, and so to speak tie all his creative efforts in a single knot” (quoted in Diner
[1992, 353–354]). It is important to emphasize that, contrary to Poincaré, Kolmogorov

10 N. M. Krylov is not to be confused with N. S. Krylov, mentioned above. For accessible surveys from the
period, see Krylov & Bogoliubov [1933; 1943]. An influential exposé was Bogoliubov & Mitropolski [1961].
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trained scores of students who would become world leaders in the field of dynamical sys-
tems theory once communication with the West was made easier in the early 1970s, among
whom Manin, Arnol’d, Sinai, and Novikov. (On Kolmogorov see Diner [1992], Arnol’d
[1993], and Shiryaev [1989], as well as the volume edited by the American and the London
Mathematical Societies [2000]). Clearly, a detailed study of mathematics in the Soviet
Union and its impact on the “chaos revolution” is still wanting.

1.5. Van der Pol Equation: From Radio Engineering to Topological Monsters

The second “tradition” to have influenced Smale focused more tightly on the study of
differential equations. As he recalled it, it was through a letter from MIT mathematician
Norman Levinson, received while he was in Brazil, that Smale first got into contact with
it. Having co-authored the main graduate textbook [Coddington & Levinson 1955] on or-
dinary differential equations, Levinson—Smale [1998, 41] wrote—“was a scientist to be
taken seriously.” As he saw it, however, this tradition had its root not in the abstract theory
of differential equations, but in the work of Balthasar van der Pol, a Dutch electrical engi-
neer working for the Philips Research Laboratories in Eindhoven [van der Pol 1926, van
der Pol & van der Mark 1928, van der Pol 1948]. Stemming from radio engineering, the
problems he raised were very close to those tackled just a few months later by Andronov,
who always acknowledged the former’s decisive influence. By simplifying the equation for
the amplitude of an oscillating current driven by a triode, van der Pol had exhibited an
example of a dissipative equation without forcing which exhibited sustained spontaneous
oscillations:

v′′ − ε(1 − v2)v′ + v = 0.

In 1926, when he started to investigate its behavior for larger values of ε (where in fact the
original technical problem required it to be much smaller than 1), van der Pol disclosed the
theory of relaxation oscillation. He developed a theory of synchronization (of the proper
frequency with external force) and studied the phenomenon of frequency demultiplication.
Applying the mathematical arsenal familiar to the practitioners of electromagnetic theory,
these engineers studied differential equations by craftily transforming them (e.g., by variable
changes), and then using graphical methods (isoclines) and phase-space representations to
discuss general trajectories.

Hitting upon the oscillatory behavior seemingly so common in the world (from “a
pneumatic hammer” to “the menstruation”), van der Pol and his collaborator van der Mark
built an electrical model of the heartbeat [van der Pol & van der Mark 1928]. From then
on, whether for the sake of mathematics or applications, a great number of investigations
focused on the van der Pol equation and various generalizations, the most important for our
purpose being the forced equation introduced by Liénard [1928],

ÿ + f (y)ẏ + y = p(t),

involving a forcing termp(t).
In the 1930s it seemed that self-sustained oscillations, and relaxation oscillations in par-

ticular, became extremely lively research topics. According to van der Pol’s own count, this
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had led by 1947 to “at least one hundred papers and books, particularly from the Russian and
French quarters” [van der Pol 1948, 1150]. According to the engineer Philippe Le Corbeiller,
author of a monograph on self-sustained systems [1931], a “method born by chance amongst
engineers must constitute a . . . Theory of Oscillations whose theorems would in principle
be independent from their mechanical, thermodynamic, electrical, chemical, physiological,
biological, or economic applications” [Le Corbeiller 1933, 328]. In Germany the Heinrich-
Herz Institut für Schwingenforschung was founded, headed by K. W. Wagner. This was
“rather a curious branch of mathematics developed by different people from different stand-
points, straight mechanics, radio oscillations, pure mathematics and servo-mechanisms of
automatic control theory” [Cartwright 1952, 88]. In a rare consensus, postwar pure and ap-
plied mathematicians concurred that van der Pol’s equation was “one of the few interesting
problems which contemporary physics has suggested to mathematics” [Weil 1946, 332].
(See also von Kármán [1940]).11

During World War II, the conditions for a renewal of interest in this type of prob-
lem on the part of mathematicians were ripe again. As Freeman Dyson [1997, 66] has
written:

The whole development of radio in World War Two depended on highpower amplifiers, and it was a
matter of life and death to have amplifiers that did what they were supposed to do. The soldiers were
plagued with amplifiers that misbehaved and blamed the manufacturers for their erratic behavior.

As early as January 1938 a memorandum was issued by the Radio Research Board of
the British Department of Scientific and Industrial Research urging mathematicians to
assist in “solving the type of equations occurring in radio works, laying emphasis on the
need to know how the frequencies of the periodic solutions varied with the parameters of
the equation” [Cartwright 1952, 86]. Of interest to our purpose, serious work was done
by Cartwright and Littlewood, and later Levinson on these “very objectionable-looking
differential equations occurring in connection with radar” (McMurran & Tattersall [1996],
836; see also [Cartwright 1974] and [McMurran & Tattersall 1999]). In occupied France
Rocard wrote the first version of his famous textbook [Rocard 1941] on nonlinear oscillations
in July 1940. Reissued up to the 1960s, Rocard’s textbook served as an introduction to the
topic for many French “chaologists.”

With respect to the van der Pol and Liénard equations, both mathematicians and engineers
focused on finding stable periodic solutions. The emphasis was put on the frequency, rather
than amplitude, of oscillation, leading to a focus on the (x , t) plane, where time is explicit,
rather the phase plane (x , v), where v is the derivative of x with respect to time. From an
electrical engineer’s viewpoint, the stability of solutions was crucial. As Cartwright [1952,
84] has recalled:

The radio engineers want their systems to oscillate, and to oscillate in a very orderly way, and therefore
want to know not only whether the system has a periodic solution, but whether it is stable, what its
period and amplitude content are, and how these vary with parameters of the equations.

Contrary to Andronov and his followers, however, this line of research approached prob-
lems, as Cartwright herself acknowledged, “with little knowledge of the classical work of

11 van der Pol’s work and the subsequent surge of research on relaxation-oscillations seriously deserve further
historical investigation; for a discussion of it see [Israel 1996, 34–51].
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Poincaré, Liapounov, and Birkhoff” [Cartwright 1952, 86]. A skilled analyst and an expe-
rienced mathematician nonetheless, Cartwright used keen topological methods introduced
by Levinson [1944] to study the following Liénard equation:

ÿ − k(1 − y2)ẏ + y = bλk cos(λt + a).

In the paper written with Littlewood in 1945, they showed that for b > 2/3, and k large
enough, a periodic solution existed, toward which all other solutions tended. But for b < 2/3,
they were faced with a “very bizarre” set K0 of nonperiodic trajectories, which was con-
nected, of measure zero, separating the plane into two regions, bounded and unbounded,
but very complicated [Cartwright & Littlewood 1945, 182–184]. They were puzzled by this
“bad curve” (a fractal set according to Abraham [1985]), and in a footnote they acknowl-
edged: “our faith in our result was one time sustained only by the experimental evidence”
provided by [van der Pol & van der Mark 1927]. They found comfort in a paper by Birkhoff
[1932] on remarkable curves, which however was not self-evidently connected to dynamics.
In technological terms, as Dyson [1997, 66] wrote, Cartwright and Littlewood had

discovered that as you raise the gain of the amplifier, the solution of the equation become more and more
irregular. At low power the solutions has the same period as the input, but as the power increases you
see solutions with double the period, and finally you have solutions that are not periodic at all.

Mathematically speaking, the set exhibited by Cartwright and Littlewood was distressing,
but what was its significance? Using the technique of the Poincaré map, Levinson [1949]
showed what the pair has merely hinted at, namely that Birkhoff’s curves could arise in
dynamical systems. He defined a transformation in the phase space associated with the
differential equation as such: given (y, v), where v = y′ and y(t) is the solution of the
forced Liénard equation, Levinson defined a transformation T from the plane to the plane
as T (y, v) = (y1, v1), where y1 = y(t + 2π ) and v1 = v(t + 2π ). Both he and Cartwright
and Littlewood noticed the robust character of these “bizarre” properties; these were not
exceptional “monsters,” but stable behaviors that could not be perturbed away. These sets
were those Smale interpreted geometrically rather than analytically to come up with the
famous “horseshoe.”

1.6. Lefschetz’s Synthesis: Cold War Mathematics?

If the first tradition invoked by Smale—through which he was actually introduced to this
field of mathematics—had its roots in the Soviet Union of the 1930s, it had been translated
and heavily mediated by Princeton mathematician Solomon Lefschetz. Like for Andronov’s
school, this work bore the heavy stamp of the war (both WWII and the Cold War). Having
met a Russian émigré, Nicholas Minorski, who had during WWII written a voluminous
report on Soviet nonlinear oscillation research for the Navy, Lefschetz was convinced that
this was a vital field of applied mathematics that had been neglected in the United States
and ought to be publicly supported. “Many hold the opinion that the classical contributions
of Poincaré, Liapounoff and Birkhoff have exhausted the possibilities. This is certainly not
the opinion of a large school of Soviet physico-mathematicians” [Lefschetz 1946, iii]. In
the context of heavy military support for basic research created by World War II, he set up
a “Project on Differential Equations” most specifically devoted to nonlinear equations.
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[Its objectives] were stated to be, on the one hand, research in the field and, on the other, the development
of a group of young men who could take their place as applied mathematicians in Industry or in an
emergency, in various defense organizations [Lefschetz 1959, 2].

Repeatedly, Lefschetz would express his worry about the “mathematical gap” he discerned
between the Soviet Union and the United States. In press releases, he often revealingly
described nonlinear differential equations as “the involved mathematical systems which
underlie almost every natural movement, including those which must be understood in order
to develop more accurate rocket control systems.” After his retirement, he set up the Research
Institute in Advanced Study at the Martin Company, an aviation and missile manufacturer.

Having supervised the “free translation” of [Krylov & Bogoliubov 1943], Lefschetz
went on to adapt the monograph [Andronov et al. 1949] and reprint Lyapunov [1907]. At
Princeton, he oriented several Ph.D. students towards nonlinear oscillations and control
theory; he headed a lively seminar where, in particular, Cartwright lectured for several
weeks in 1949; he oversaw the publication of a subseries of Princeton’s Annals of Mathe-
matics Series, which gathered the result of his group’s activity; finally, he organized several
international conferences. (On the history of Lefschetz’s group, see [Lefschetz 1959] and
[Dahan Dalmedico 1994]). Before we discuss the orientation of the group toward the global
approach to dynamical systems theory that prefigured Smale’s, let us mention that it also
led to the influential mathematical work of Joseph LaSalle, Jack K. Hale, and others, much
closer to control theory. (On control theory, see for example LaSalle [1987]).

Contrary to what Smale seemed to imply, Lefschetz benefited not only from the crucial
import from Andronov’s school, but also from the Kiev school and Cartwright, Littlewood,
and Levinson’s topological approach. This partial synthesis helped Lefschetz in drawing
attention to structural stability in conjunction with topological equivalence. In his English
translation of [Andronov et al., 1949] he had indeed, as we have seen, replaced coarse-
ness by “structural stability,” therefore shifting the focus from the system to its property.
(In Section 2.1 below, the scientific translation work performed by Lefschetz’s group, con-
cerning especially structural stability, will be discussed in more detail). From a methodolog-
ical guide for the study of nonlinear systems, Andronov’s ideas became a useful, intriguing,
but rather technical mathematical concept. To consider it in such terms, however, impelled
Lefschetz to move from an early emphasis on the analytic study of specific nonlinear os-
cillators, perhaps catered to perceived engineering needs, to a more global program of
classification. In his Dynamical Equations: Geometric Theory Lefschetz [1957] submitted
Poincaré to a careful study and produced a much more ambitious synthesis of the domain
than his previous monograph [Lefschetz 1946] had been. In the late 1950s, Lefschetz geared
the field toward global analysis, in the sense that systems would henceforth only be handled
as representatives of classes to which they belonged.

Cold War rhetoric notwithstanding, and albeit remaining close to engineering concerns,
the work done in the project mainly consisted in the analytic study of specific classes of
nonlinear differential equations without paying much attention to applications. The project
was indeed successful in building an intellectual and institutional basis for the subject of
differential equations in the United States and “nearly all its [younger] members remained
in the academic world,” Lefschetz [1959, 22] noted in his final report. When Smale joined
this group around 1959, it consisted of an active community of practitioners moving to-
ward more and more abstracts methods and concerns. Attracted by the prospect of using



HMAT 29 HISTORY OF DYNAMICAL SYSTEMS AND CHAOS 293

his topology background for some specific problems of general classification, he greatly
accelerated this evolution.

1.7. Looping Back to Poincaré: The Homoclinic Tangle

In view of the above, it is somewhat surprising that Smale insisted that he found himself
at the confluence of still another, independent “tradition,” the older, more or less forgotten
one going back to Poincaré and Birkhoff. Did not these authors already figure prominently
in the traditions he was inheriting from more directly? Smale, however, recalled having
realized the utmost relevance of Poincaré’s work for dynamical systems theory not from
differential equations specialists, but by chance, “from browsing Birkhoff’s collected works”
while he was in Rio de Janeiro in 1959–1960. Indeed, working on the structural stability of
gradient systems Smale [1990, 32] “noticed how dynamics led to a new way . . . to attack the
Poincaré conjecture, . . . and before long all my work focused on that problem.” Not without
difficulty, he proved the conjecture in dimensions greater than 5, which in 1966 “probably
warrant[ed] his presence” at the Moscow Congress where he was awarded the Fields Medal
[Thom 1968a, 25]. (On the Poincaré conjecture, see Volkert [1996].) Considering Smale’s
interest in topology, on the one hand, and his pursuit of complicated structures in dynamical
systems, on the other, it is hardly surprising that he was attracted to Poincaré’s results in
the latter field. He went on:

Unfortunately, the scientific community had lost track of these important ideas surrounding homoclinic
points of Poincaré. In the conferences in differential equations and dynamics that I attended at that time
there was no awareness (if the conferees had known of this work of Poincaré and Birkhoff, the conjectures
in my rather publicized talks would have been answered earlier). Even Levinson never showed in his
book, papers, or correspondence with me that he was aware of homoclinic points. It is astounding how
important scientific ideas can get lost, even when they are exposed by leading mathematicians of the
preceding decades ([Smale 1998, 44], our emphasis).12

Albeit having been trained at Chicago, George D. Birkhoff was the only true disciple
of Poincaré in the Western hemisphere. Shortly after the latter’s untimely death in 1912,
Birkhoff established his reputation by proving a conjecture known as “Poincaré’s last ge-
ometric theorem” (see Section 1.1 above). Having read the Méthodes nouvelles in 1912,
Birkhoff started to work on the field he would call dynamical systems. That year, he intro-
duced the notions of “minimal” and “recurrent” motions. In Chapter 7 of his Dynamical
Systems [Birkhoff 1927], he developed a “General Theory” going further than Poincaré
and Hadamard in the topological study of curves defined by differential equations. In par-
ticular, Birkhoff generalized Poincaré’s limit cycles, by introducing several concepts that
prefigured different facets of the attractor concept: nonwandering, minimal, alpha- and
omega-limit sets, central and recurrent motions. In his own words, “the set W of wander-
ing points of M is made up of curves of motion filling open n-dimensional continua. The
set M1 of non-wandering points is made up of the complementary closed set of curves of
motions” [Birkhoff 1927, 192]. Now, finding the nonwandering set M2 with respect to M1,
and constructing the sequence M1, M2, etc., we must at some point end the process with
a set C of central motions. Recurrent motions are those that come back arbitrary close to
every point of the curve of motion. They are in the set of central motions but the reverse is

12 For surveys of the results of Poincaré and his followers concerning homoclinic points, see [Anderson 1994].
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not necessarily true. α- and ω-limit points are defined as the sets of limit points as time (t)
tends to − or +∞. Nonwandering sets are in general larger than limit sets. (For these, and
other, definitions, see Birkhoff [1927, 191–200]. An attractor has been succinctly defined
as “an indecomposable, closed, invariant set . . . which attracts all orbits starting at points
in some neighborhood” by Holmes [1990]).

The stability of dynamical systems was the central concern of Birkhoff in his 1927
book. He introduced a large array of notions of stability for dynamical systems and their
periodic solutions, some of which were already present in the literature, but some of which
were new: complete or trigonometric stability, stability of the first order, permanent stability
(“for which small displacements from equilibrium remain small over time”), semipermanent
stability, unilateral stability (due to Lyapunov), and stability in the sense of Poisson (due to
Poincaré). Birkhoff also systematically introduced topological arguments into the study of
dynamical systems, proving the ergodic theorem and introducing formal methods leading
to symbolic dynamics extended by Morse, Hedlund, and later Ulam.

Smale’s independent rediscovery of this “tradition” raises once more the central conun-
drum of the historiography of chaos. According to Marston Morse (in his introduction to
the 1966 reprint of [Birkhoff 1927], v), “History has responded to these pages on Dy-
namical Systems in an unmistakable way,” in that it shaped much of the work done by
Kolmogorov, Arnol’d, and Möser on the celebrated KAM theorem (briefly discussed below
in Section 2.1.). For Smale, however, it was a revelation, for most of the concepts listed
above had been downplayed in the literature familiar to Lefschetz’s collaborators. But
Birkhoff had been a prominent member of the American Mathematical Society, teaching at
Harvard from 1912 to the end of his life in 1944. So how can we account for the fact that
some of Poincaré’s ideas, taken up and extended by Birkhoff had been forgotten? In fact,
Lefschetz believed that conservative systems had been studied too much: like the Gorki and
Kiev schools, one definitely had to turn one’s attention to dissipative systems, much more
useful as far as concrete applications were concerned. In the immediate postwar period, the
separation between conservative and dissipative systems had become just as tight as the
dichotomy between two competing models for the mathematical sciences: Next to the theo-
retical questions concerning mainly celestial mechanics pursued, by and large, individually
by the Harvard professor before WWII, a new type of mathematical research was impos-
ing itself—goal-oriented investigations sponsored by the Office of Naval Research and
responsive to engineering needs and national interests.

Moreover, as Smale’s quotation above shows, his own interest in Poincaré focused on a
very specific topic—homoclinic points—and this was the idea he thought had got “lost,”
and not, obviously, Poincaré and Birkhoff’s whole lifework. Emphasizing the complexity of
dynamical systems, in his 1962 address at the Stockholm Congress, he quoted (in French)
the dramatic description of homoclinic points given by Poincaré [1892–1899: 3, 389]:

When one tries to depict the figure formed by these two curves and their infinity of intersections, . . . these
intersections form a kind of net, web, or infinitely tight mesh. . . . One is struck by the complexity of
this figure that I am not even attempting to draw. Nothing can give a better idea of the complexity of the
3-body problem and of all the problems of dynamics in general.13

13 We follow the translation of Barrow-Green [1997, 162]. Only the last two sentences were quoted by Smale
[1963, 494].
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Homoclinic points provided him an example of a theorem stating that there existed struc-
turally stable systems with an infinite number of periodic points (and minimal set homeo-
morphic to a Cantor set). Moreover, Poincaré’s very definition of homoclinic points requires
the study of (in anachronistic language, but in a form easy to recognize) stable and unsta-
ble manifolds [Hirsch 1984, 36–38]. Adopted by Smale in the 1960s, this approach was
precisely what allowed him to innovate in the field.

1.8. Epistemological Reconstruction and History

At the end of this sketch of a historical cartography of dynamical systems theory before
1960, one is bound to be struck by the great heterogeneity among particular situations.
Whether defined by epistemological proximity or socioinstitutional situation, each of the
groups here described emphasized different aspects of the domain. Objects of study were
sometimes opposite (conservative systems for Poincaré and Birkhoff vs dissipative systems
for engineers); various central questions were favored (stability for Lyapunov, recurrent and
central motions for Birkhoff, resonance for engineers, etc.); approaches and methods also
varied (analytic methods for Lyapunov, point transformation for Andronov, ergodic theory
and limit-set methods for Birkhoff, and so on). In addition, the actors’ social insertion was
very contrasting. In the 1930s, for example, what could the socioprofessional worlds of the
mathematician Birkhoff (professor at Harvard), the “Grand Old Man of Radio” van der Pol
(at the Philips Research Lab), and the Soviet “physico [engineer] mathematician” Andronov
at Gorki have had in common? What, in the 1950s, had Kolmogorov’s school in common
with Lefschetz’s? It is precisely this manifold character of social and epistemic landscapes
that poses problem in this history.

Not only are the elements selected for this “prehistory” of dynamical systems theory as it
emerged in the 1960s very heterogeneous, but it is full of blatant holes and omissions. Shift-
ing the viewpoint, focusing on the problem of the relationship between order and disorder—a
crucial theme for the conceptual reconfigurations of the 1970s among statistical physicists—
would for example lead one toward a completely different reconstruction of the historical
roads to chaos. We have already mentioned the fact that some prominent actors (Mandelbrot,
Sinai, Mira) have indeed themselves sketched historical filiations that differ markedly from
the one developed here. In the Introduction, we hinted that enlarging the framework of our
study to the “nonlinear sciences” in general (turbulence, population dynamics, meteorology,
etc.) introduces even more complexity and points to other historical chains. Is a prehistory
of chaos, bridging from Poincaré to his wide rediscovery in the 1970s, at all possible?

The entry point we have ourselves chosen—emphasizing the conceptual road to Smale’s
synthesis developed over the years by Smale himself and his followers—has provided us
with a consistent historical survey. Their effort goes a long way in explicating the source
of many key mathematical concepts. As such, it forms a convincing epistemological recon-
struction of the history of dynamical systems theory—but it is no more than that! To speak
of “traditions,” in addition, is here a source of perplexing confusion, blocking more refined
understandings of the “chaos revolution” and even the topological brand of dynamical sys-
tems theory. The fascinating back and forth motion between Poincaré and his successors is
unfortunately camouflaged. None of these “traditions” was ever hermetically sealed from
the others, and interactions with other domains are thus underestimated. Finally, albeit
representing important lines of transmission for specific problems, ideas, and results, they
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certainly did not share research programs, institutional continuities, or disciplinary identi-
ties. What deserves to be explained in this history is as much the fact that communication
among the actors sometimes was difficult as the fact that reappropriation and transfers could
nevertheless take place. Beyond the neglects and losses, the ruptures and “rediscoveries”
so often celebrated or deplored in the history of Poincaré’s heritage, only the analysis of
these groups’ various scientific programs and the specific contexts in which they operated
can account for the meandrous exploitation of this heritage.

Each of the groups whose work we have reviewed (especially Andronov’s school and
Lefschetz’s project) reaped several heritages and was itself at the origin of further devel-
opments in various directions.14 The phenomena to which we shall now shift our focus
occurred on a whole different scale. In the course of the 1960s and 1970s, the domain of
dynamical systems theory “exploded” in a new environment from all points of view. In the
technical realm, the development of computers and numerical-simulation methods started
to be widely disseminated. On a scientific level, the role of models and the importance
of the nonlinear domain were strongly affirmed. The rise of interdisciplinary work and its
associated ideology changed research conditions. Culturally, one noticed a vogue for chaos
and disorder, and a general motion back to the macroscopic and the concrete. More than
for the previous period, in our study of the emergence of chaos we will perforce have to
enlarge our angle of vision.

THESIS 2: LOCAL RECONFIGURATION (SMALE, LORENZ, AND RUELLE)

In the 1960s, the convergence and reconfiguration of chaos was prepared by the taking
into consideration of instabilities in dynamical systems. This process emerged more or less
independently from outstanding individual works in various scientific fields: most notably,
Smale, who established the bases of a new mathematical branch—hyperbolic theory—
and Lorenz, who in 1963 exhibited a simple low-dimensional formal model with complex
trajectories. Over the decade, however, both series of results remained strictly confined
to the professional and disciplinary milieus that had produced them. Out of them, the
consciousness of a global phenomenon emerged only slowly, eased by some applied topol-
ogists’ conviction of commanding the elements of a global qualitative classification of
dynamics. That this classification should have a tremendous importance for the model-
ing of natural phenomena was brilliantly illustrated by Ruelle’s work by the end of the
decade.

If the process we want to describe is to be characterized essentially as convergence and
reconfiguration (Thesis 3, below), the period from 1960 to 1970 witnessed no movement at
all comparable in scale to the processes at play in the following decade among the domains
that concern us. However, crucial conceptual innovations in several disciplinary sectors led
to important reorganizations; methodological reassessments were suggested with the aim
of integrating new techniques—numerical or purely mathematical—with more traditional
modeling practices; and limited movements of sociodisciplinary convergence were set into
motion as new concepts, practices, and methodologies were seized upon as ways to start
braiding together various hitherto independent threads.

14 In July 2001, for example, a large conference at Nizhni Novgorod emphasized the three great lines of research
emerging from Andronov’s work: the mathematical theory of dynamical systems, control theory, and radiophysics.
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2.1. Smale’s Topologization of Dynamical Systems Theory

The mathematical theory of dynamical systems, in particular, was totally reinvented
by Smale’s introduction of topological tools and methods.15 In fact, his biographer has
retrospectively viewed dynamical systems theory prior to his involvement as “not even a
mathematical subspecialty, . . . [but rather] a mathematical wilderness lacking established
problems” [Batterson 2000, 72–73]. Taking up this field intermittently throughout the
decade, Smale indeed “set the agenda, made the important conjectures, and proved the
big theorems” [Batterson 2000, ix–x], even while being interrupted by frequent changes of
residence, intense political activities, and spectacular forays in pure topology. Even at the
time, one could claim that “in a completely unexplored domain, in a mathematical jungle of
inextricable wealth, [Smale] is the first to have shown the way and placed a few milestones”
[Thom 1968a, 28].

Among the first areas where the topologization of dynamical systems theory took
place was the study of “coarse systems.” Picking it up from Andronov and Pontryagin,
Father Henry DeBaggis [1952] detailed their characterization of two-dimensional
structurally stable systems, establishing that they were, in some sense, simple (i.e., involved
no strange attractor, but only fixed point and limit cycles). Using a topological approach,
Mauricio Peixoto [1959] then proved that “most” dynamical systems in two dimensions
were structurally stable or, in technical terms, that the set of structurally stable systems
was dense in the set of two-dimensional dynamical systems. To use a term he borrowed
from Thom (who himself picked it up from Italian algebraic geometers), this property
was generic. This was a crucial step, substituting a mathematical statement to Andronov’s
methodological argument in favor of the usefulness of structural stability.

Having met Peixoto at Princeton, Smale conjectured that several-variable systems fol-
lowed a similar pattern. “I was immediately enthusiastic,” he wrote, “with the possibility
that, using my topology background, I could extend [Peixoto’s] work to n dimensions”
[Smale 1980, 148]. Using Thom’s notion of transversality, he indeed was able to extend
the classification used by Peixoto and DeBaggis to higher dimensions, thereby defining
an important class of dynamical systems, which he called “hyperbolic.” Smale then ven-
tured two daring conjectures, stating that he believed that structurally stable systems were
(1) generic, i.e., they formed a dense set; and (2) simple, in the sense that their attractors
could only be a finite collection of fixed points or limit cycles [Smale 1960]. Quite soon,
however, he himself would show that for n > 2 there are structurally stable systems with
very complicated dynamics (with an infinite set of periodic trajectories), a counterexample
he christened the “horseshoe.” Introduced in Smale [1965], the horseshoe is one of the
most celebrated exemplars of chaos. (For discussions, see, e.g., [Diacu & Holmes 1996;
Ekeland 1984, 70–73]). The exhibition of this complicated dynamics—just as in Lorenz’s
famous “butterfly” (cf. Section 2.2 below), which was contemporaneous but independent
from Smale’s horseshoe—clearly displayed the unavoidable phenomenological complexity
of even very simple systems. With the horseshoe, Smale’s hope that every system could
be approximated by one with simple dynamics was squashed. Even acknowledging the

15 Smale’s collaborators and students have produced excellent summaries of his work in dynamical systems
[Hirsch 1984; Palis 1993]. We have ourselves offered our own interpretation of Smale’s work in relation to that of
his predecessors [Dahan Dalmedico 1994, Aubin 1998a].



298 AUBIN AND DAHAN HMAT 29

existence of complex systems, he showed, structural stability was not a generic property
of dynamical systems [Smale 1966]. Although both of his conjectures had been shown (by
himself) to be “overenthusiastic,” Smale had in the process succeeded in extending to higher
dimensions a program whose implicit goal was to determine by mathematical means the
class of systems that was useful for modeling.

When he published the seminal article “Differentiable Dynamical Systems” [Smale
1967], which offered a foundation on original topological ground for a domain hitherto
dominated by analytical approaches, Smale presented a picture more complex than he had
first expected. “A masterpiece of the mathematical literature, . . . this was exuberant in new
ideas, new problems, new or unfinished paths of research. . . . Yet it was also much more
solid, coherent and overwhelming: a theory, the theory of hyperbolic systems” [Palis 1993,
173]. Smale had switched earlier emphasis on structural stability to the notion of hyperbolic
systems. A diffeomorphism is called hyperbolic, or satisfies “axiom A,” if its nonwandering
set 
 is hyperbolic and its set of periodic orbits in dense in 
. An invariant set 
 is hyper-
bolic if the tangent bundle restricted to 
 splits into two subbundles, in which the derivative
of the map operates, respectively, as a uniform contraction and expansion [Palis 1993, 173–
174]. Smale’s paper offered a layout for several decades of work. The goal, which has since
proved elusive, remained to classify hyperbolic systems on the basis of topological criteria.

In addition to writing the foundational paper of the domain, Smale turned the Mathe-
matics Department at Berkeley into a world-class research center on dynamical systems
attracting faculty members, postdocs, and students, trained no less than 14 graduate students
in four years, 1967–1970 [Hirsch et al. 1993, 59], and maintained close relationships with
two other centers investigating related topics in similar ways—the Mathematical Institute at
Warwick University headed by E. Christopher Zeeman, and the Institut des Hautes Études
Scientifiques (IHÉS) near Paris, under René Thom’s lead. (On the history of IHÉS, see
Aubin [1998a, 1998b, and Jackson [1999]). Characteristically, Smale would on the whole
leave it to others to carry out the “script” he had written, as he was also fond of doing
in politics. (For a detailed account of Smale’s political activities, see Batterson [2000]).
Jerry Rubin, co-organizer with Smale of the 1965 Vietnam Day in Berkeley, would in 1994
recollect:

In six months, he laid out the whole direction of the antiwar movement. He was almost like the Lone
Ranger. He came in on his horse and gave us the message, and then dropped the silver bullet and went
off (quoted in Batterson [2000, 126]).

In 1961 Smale traveled to the Soviet Union where he met Kolmogorov and “in his word, an
extraordinarily gifted group of mathematicians: Anosov, Novikov, and Sinai” [Palis 1993,
170]. On this occasion Smale stated a conjecture according to which geodesic flows on
compact manifolds of negative curvature and algebraic automorphisms of the torus were
coarse. The announcement made public by D. V. Anosov at the 1962 International Congress
of Mathematicians in Stockholm that he had proved Smale’s conjecture led to important
advances in dynamical systems theory. Indeed, with so-called Anosov systems (a large class
of hyperbolic structurally stable systems), the widespread opinion holding that conservative
systems could not be coarse was contradicted.

Similarly, the theorem presented by Kolmogorov at the Amsterdam International
Congress of Mathematicians in 1954, and proved in the following decade by Arnol’d and
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Möser—the so-called KAM theorem—established that Birkhoff’s conjecture was mistaken:
ergodic conservative systems were not dense in the set of all Hamiltonian systems; i.e., er-
godicity was not a generic property (see [Arnol’d & Avez 1967, Abraham & Marsden 1967,
Moffat 1990, Diacu & Holmes 1996, Chap. 5]). This meant that the relationship between
order and disorder, stability and instability in celestial mechanics had to be rethought. Ex-
hibiting the homoclinic tangle, a mesh of intertwined curves (also emphasized by Smale)
picturing the intricate nature of possible solutions and the infinity of allowed scenarios,
Poincaré and his followers had been too hasty in assuming that stable orbits did not exist.
When perturbations were sufficiently small, KAM theorem showed that a majority of orbits
were stable and quasi-periodic (albeit nonperiodic, the latter never diverged too far away
from the periodic orbits of the unperturbed system); others were unpredictable; still others
were caught in islets of stability within an ocean of chaos. In the course of the decade, work
inspired by Kolmogorov’s theorem turned Hamiltonian dynamics, from the “hopelessly
obsolete, outmoded and purely formal branch of analytical mechanics” it once was, into “a
fashionable branch of mathematics” [Arnol’d 1993, 132]. Among the scientists whose nu-
merical work was triggered by KAM, we may count some who would extract, from simple
systems, delicately complicated behaviors that would play crucial roles in the emergence
of chaos, in particular astronomer Michel Hénon and physicist Joseph Ford (see [Hénon &
Heiles 1964, Walker & Ford 1969]).

Each of these three results (Smale’s, Anosov’s, and KAM) challenged prevailing in-
tuitions about the relationship between stability and order in systems describing nature.
Previously, disorder had generally been associated with statistical methods, which, using
the law of large numbers, generated mean values obeying simple laws. Although Poincaré’s
and Birkhoff’s results, among others, showed this opposition between order and disorder
to be not so clearcut, until the late 1950s only statistical methods seemed adequate to deal
with “disordered” phenomena and were thus privileged in physics, meteorology, hydrody-
namics, mechanics, etc. A significant example is the numerical experiment performed by
Fermi, Pasta, and Ulam at Los Alamos in the 1940s and 1950s. While ergodicity (which was
expected) would have justified a statistical treatment, the semiorder uncovered by the com-
puter simulation resisted any mathematical formulation and remained very hard to interpret
[Fermi, Pasta, & Ulam 1955].

In the 1960s, however, only Smale came up with a vast synthesis which not only set
up an agenda for future research and provided the intellectual and personnel means for
carrying it out, but also reconstructed the prehistory of this (re)nascent mathematical domain
redirecting attention towards classical results by Poincaré, Andronov and Pontryagin, and
Birkhoff and Morse. (See his paper “On How I Got Started in Dynamical Systems (1959–
1962)” in [Smale 1980, 147–151], based on a talk at Berkeley circa 1976.) But contrary
to the illustrious predecessors he claimed for himself, Smale’s synthesis remained internal
to mathematics: its goals were set by abstract questions of topological classification; its
language (diffeomorphisms, homeomorphisms, etc.) remained largely incomprehensible
to practitioners of other disciplines. “I cannot recall in my four years at Berkeley having
seen many actual differential equations,” one of Smale’s students, Nancy Kopell, later
remembered [Hirsch et al. 1993, 545]. Only when contacts with Thom’s IHÉS school were
definitely established around 1970 would Smale tackle applications in economics, celestial
mechanics, circuit electronics, and biology (see Section 2.3).
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2.2. Meteorology and Lorenz’s Laboratory Models

Retrospectively, the second towering figure of the decade no doubt is Edward Lorenz,
whose 1963 numerical integration of a simple equation exhibited the famous strange
attractor to which his name is now attached. In this period, Lorenz was neither alone
in performing numerical simulation, nor even alone in exhibiting complex behaviors stem-
ming from the integration of simple nonlinear equations with a small number of degrees
of freedom (e.g., Rikitake [1958] or Ueda [1992]).16 But the singularity of his work stems
from its particular location at the confluence of several problématiques—new large-scale
modeling methods in meteorology, methodological reflection on the nature of models, and
original heuristic use of the computer. These three issues would later be characteristic of
chaos [Dahan Dalmedico 2001a]. The fact that this model was widely taken up and studied
by “chaologists” over the course of the 1970s increases its importance, even if the exact
mathematical properties of the Lorenz attractor would only be completely understood some
30 years later [Tucker 1999, Viana 2000]. More than the elegant exhibition of a mathe-
matical result, Lorenz’s work is better construed in terms of its impact on mathematical
modeling practices.

As early as the late 1940s, John von Neumann promoted and organized the Meteorology
Project in connection with his plans for building an electronic computer at Princeton. When
Jules Charney joined the Project in 1948, its objective was clear: “The development of a
method for the numerical integration of the meteorological equations which is suitable for
use in conjunction with the electronic computing machine now under construction at the
Institute for Advanced Study;” and a single approach prevailed: “To consider a hierarchy
of ‘pilot problems’ embodying successively more and more of the physical, numerical, and
observational aspects of the general forecast problem.”17 So the guiding philosophy was to
construct a hierarchy of increasingly complex atmospheric models, whose features at each
successive step were to be determined by analyzing the shortcomings of the previous model.
These models can be called physical models, in the sense that, although based on several
more or less simplified physical assumptions, they are still trying to mimic atmospheric
behaviors and adjusted by making them more complicated. Construed as a giant calculator,
the computer made the treatment of increasingly complicated equations possible, provided
better descriptions of the atmosphere, and therefore raised hopes for accurate long-term
forecasts.

But Charney also suggested using the computer as an inductive machine capable of testing
selected physical assumptions: “The machine, by reducing the mathematical difficulties
involved in carrying a physical argument to its logical conclusion, makes possible the
making and testing of physical hypotheses in a field where controlled experiment is still
visionary and model experiment difficult, and so permits a wider use of inductive methods”
(quoted in [Aspray 1990, 153]). A few years later, this same idea would lead to a very
different kind of model in meteorology, which Charney called “laboratory models.” In
the late 1950s, it became obvious that equations which made crude numerical weather
predictions possible with the first computers would no longer be able to provide the high
quality now required for long-range forecasting, raising the very question of predictability.

16 For a rather complete survey of numerical experimentation in conservative systems, see Hénon [1983].
17 The above quotes come from Jules Charney’s Progress Report of the Meteorology Group at the Institute of

Advanced Study, July 1, 1948 to June 30, 1949 (Jules Charney Papers, MIT Archives), quoted by Aspray [1990, 139].
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Involved in the Statistical Forecasting Project at MIT, Lorenz had for several years used,
like a majority of meteorologists, an array of statistical methods, the most widespread
being linear regression methods. Since these often failed to yield accurate forecasts, it
was debated whether the unpredictability was caused by a lack of available data or by
the inadequacy of linear methods. In the MIT Project, meteorologists generated “weather
maps” by dynamical prediction (i.e., through the numerical integration of a set of non-
linear differential equations), which they then tried to reproduce by means of linear re-
gressions. Using a simple system of 12 equations, Lorenz exhibited a nonperiodic solu-
tion roughly mimicking the evolution of the atmosphere and investigated the significance
of the instability. Running the simulation 40 times with different initial “errors” (small
deviation in initial conditions), he observed very rapid divergences. On this basis, he
concluded in 1960 that the statistical method was invalid. If this model captured some-
thing essential about the atmosphere, long-term predictability was furthermore definitively
utopian.

Lorenz [1960a] presented his results during a Symposium held in Tokyo, a turning point
for the community particularly instructive to us as it highlights the difficulty in locating
the source of instabilities [Lorenz 1960b]. The crucial question was to assess the extent to
which the model represented atmospheric evolution. With their small number of dimensions,
“Lorenz-like systems,” as Charney nicknamed them, could mimic reality only in a very
rough manner. Asked why he assumed that sensitivity to initial data was connected with the
small number of parameters in the model, Lorenz was unable to provide a more satisfying
answer than that it was a “matter of feeling.” Lorenz had worked hard to reach his result.
It is not at all by pure chance, as many popular accounts would have it, that he discovered
chaotic behaviors. In our opinion, many of these accounts greatly exaggerate an anecdote
according to which, Lorenz left his computer to get a cup of coffee, only to find chaotic
solutions flashing on the computer screen as he came back. (For his own personal account,
see Lorenz [1993]).

Many people hoped that by adding a large number of degrees of freedom, one would
stabilize the system and hence achieve long-term predictability. In 1960, Charney was still
optimistic: “there is no reason why numerical methods should not be capable of predicting
the life cycle of a single system,” he declared; only current models did have “fatal de-
fects” (his comment following [Lorenz 1962, 648]). Relentlessly, the same crucial question
emerged: Should one impute forecasting difficulties to computers and computing methods,
to models, or, more fundamentally, to the atmosphere itself?

That same year, Lorenz [1960b] also explained that the use of dynamical equations to
further understanding of atmospheric phenomena, justified their simplification beyond the
point where they were expected to yield acceptable weather predictions. Although they
might appear as rough approximations, “maximum simplifications,” Lorenz claimed, clar-
ified our understanding of the phenomena and lead to plausible hypotheses to be tested
by careful observational studies and more refined systems of equations. By judiciously
omitting certain terms from the dynamical equations and by comparing the result of the
prediction with reality, one could estimate the cost of these omissions and thereby dis-
criminate between important and non-important terms. Capturing the alternative, Charney
[1962b, 289] wrote that, faced with nonlinear problems, scientists will have to “choose
either a precise model in order to predict or an extreme simplification in order to under-
stand.”
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In the following years, Lorenz’s system was further reduced to just three degrees of
freedom. Studying the convective motion of a fluid heated from below (a very frequent at-
mospheric phenomenon), Barry Saltzmann, from the Travelers Weather Center at Hartford,
Connecticut, used Lorenz’s approach to develop a simple model involving 7 variables, four
of which quickly flattened down while the other three wandered non-periodically. After
hearing of Saltzmann’s simulations, Lorenz concluded that the following system of three
equations,

ẋ = σ x + σ y,

ẏ = xz + γ x − y,

ż = xy − bz.

might well exhibit similar nonperiodic solutions (see [Lorenz 1993, 136–160]).
In his seminal paper, Lorenz [1963] numerically integrated a special case of this system

and proved that almost all solutions (of which there was a countable infinity) were unstable.
This implied that quasi-periodic solutions could not exist, and that, in this system, irreg-
ular unstable trajectories were the general case. Hence a fundamental problem emerged:
if nonperiodic solutions were unstable, two neighboring trajectories would diverge very
quickly. Otherwise, the attractor—a term which appeared later and was obviously not used
by Lorenz although he paid attention to the portion of phase space to which solutions
tended—would have to be confined in a three-dimensional bowl, forcing two trajectories to
come back very close to one another. Together with the requirement that two solutions can-
not intersect, these constraints led Lorenz to imagine a special structure: an infinitely folded
surface, the “butterfly” that has become familiar. Representing the attractor in terms of a two-
dimensional projection, Lorenz resorted to Poincaré’s first-return map to study his
attractor.

Let us note that the concept of a fictive laboratory model linked to the numerical simulation
methodology of this group of meteorologists (Lorenz, Charney, and others) is a significant
rupture in modeling practices. These models need not be faithful representation aimed at
predicting the weather, but rather drastically simplified models designed for understanding
certain behaviors. And the computer is no longer merely construed as a giant calculator;
no longer simply synthetic, its role becomes experimental and heuristic. Lorenz’s use of
the computer indeed was crucial at two levels: (1) the property of sensitivity to initial
conditions—later to be widely known as the “butterfly effect”—is revealed by numerical
instabilities; (2) the surprising image of the attractor exhibited on his screen by Lorenz has a
much greater suggestive value than Poincaré’s purely verbal—and somewhat confusing—
descriptions.

The conclusions drawn by Lorenz in his paper were twofold: (1) From a theoretical stand-
point, he showed that very complicated behaviors could arise from very simple systems—
chaotic behavior could be generated with only three variables involved. In contradiction to
the old, well-established tenet according to which simple causes gave rise to simple effects,
he found that simplicity could indeed generate complexity. And (2) he also exhibited the
property of sensitivity to initial conditions and thus opened a window on the understanding
of turbulence. At the meteorological level (provided his model had anything to do with the
atmosphere), hopes for long-range predictions were now doomed.
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2.3. Catastrophe: Thom and Topological Modeling

As mentioned above, Smale’s recasting of dynamical systems theory did not occur in a
vacuum. If traditional specialists in differential equations might have remained skeptical
of his naive conjectures, others, like mathematicians in the Soviet Union and, above all,
French 1954 Fields Medal recipient René Thom, had their interest aroused by the questions
his topological approach raised. The latter in fact played a crucial role in shaping not only
Smale’s approach to the problems of dynamical systems, but also the mathematical tools
he mobilized for this task.18

From the late 1950s onward, Thom embarked on a research program in differential topol-
ogy exhibiting many similarities with Smale’s. He was actually responsible for introduc-
ing the notion of genericity in global analysis, had picked up structural stability from
Peixoto and Smale, and shared with the latter credit for the attractor concept. Thom
wished to classify the generic singularities of real structurally stable mappings from Rn

to R p. Like Smale with dynamical systems, Thom hoped that structurally stable map-
pings were generic and, on this basis, mobilized recent advances in topology to reform
the classic theory of singularities of Hassler Whitney and Marston Morse. However, con-
trary to Smale, who more or less tried to guess the axioms that would lead to a dense
set of dynamical systems, Thom chose to attack the more difficult program of classify-
ing generic singularities and spent several years bogged down in extreme mathematical
difficulties.

From his preliminary classification already published in 1956 and “whose exactitude
[was] not guaranteed” [Thom 1956, 364], Thom developed the famous list of the seven
“elementary catastrophes” in the following decade. By the end of the 1960s, when this
program was completed for low-dimensional cases by the formal proofs of John N. Mather,
Thom was already stretching its significance far beyond mathematics. While at Strasbourg,
he had started to experiment with cusps in caustics in order to see whether he could find
“the physical effect of a theorem of mathematics” [Thom 1991, 27]. Turning to biology,
inspired by C. H. Waddington’s notion of a “chreod,” Thom elaborated a “dynamical theory
of morphogenesis” which was presented in 1966 [Thom 1968b]. Based on the notion of
catastrophes, this theory explored the appearance of forms in living organisms without
paying attention to specific molecular or genetic substrates. In the following years, Thom
presented models for various biological processes, as well as for linguistics.

In 1972, Thom published his Structural Stability and Morphogenesis, a manifesto for a
new philosophical approach to mathematical modeling, which had essentially been written
before 1968. The goal was to understand phenomena concerned with the apparition and de-
struction of form directly, that is, without relying on reductionist methods. The models built
with the help of this topological approach were inherently qualitative, not suited for action or
prediction, but rather aimed at describing, and intelligibly understanding, mundane pheno-
mena. This approach would be widely—and infamously—known as catastrophe theory.19

18 For a further development of the similarities between Thom’s and Smale’s programs, see Aubin [2001].
This topic is also treated at length in Aubin [1998a], while the relation between Thom’s mathematical work and
philosophy is analyzed in Aubin [forthcoming].

19 Thom [1972] is the foundational text for catastrophe theory. His most important follower was the English
mathematician E. C. Zeeman [1977]. For histories of catastrophe theory, see Woodcock & Davis [1978]; Tonietti
[1983]; Ekeland [1984]; Arnol’d [1992]; and Aubin [1998a; 2001; forthcoming].
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Beyond its failure to fulfill overblown ambitions, catastrophe theory provided a context
that favored intense interactions between Thom’s research school and dynamical systems
specialists whose importance has often been misconstrued. As Thom [1973; repr. in Zeeman
1977, 366] himself recognized,

We cannot consider catastrophe theory as a scientific theory in the usual sense of the term. . . . [W]e
must consider it as a language, a method, which allows to classify, to systematize empirical data, and
which provides these phenomena with the beginning of an explanation that makes them intelligible.

Albeit only properly concerned with gradient, and not general, dynamical systems, (ele-
mentary) catastrophe theory essentially was an attempt at drawing the consequences that
recent topological approaches akin to Smale’s hyperbolic theory had in store for the practice
of modeling natural (and/or social) phenomena. It therefore provided a model for imple-
menting topological modeling practices in various domains of science that, in particular, led
Smale and his Berkeley school to applications. These “applied topologists” argued that their
approach provided guidelines one could substitute for the “lucky guess” usually informing
model-building [Thom 1968b]. In particular, they developed and exploited an arsenal of
topologically informed notions (attractors, hyperbolic systems, genericity) that were well
suited for a qualitative study of dynamical systems, which focused on identifying their
global, structural, yet dynamical, features. They then dreamed of a more abstract applied
mathematics that was directed “towards socially positive goals,” and “accessible and attrac-
tive to the modern mathematician, one who has been brought up in the purist, Bourbakist
style of education” [Smale 1972 [1980], 95 and 100].

In bitter controversies flaring out around 1977–1980, catastrophe theorists were blamed
mainly for their tendency to claim too much, suggesting a willingness to let mathematics
dictate how reality should be, but also for neglecting existing literature and personal contact
in fields of application, for their refusal to be constrained by experimentation, and for using
arcane, very sophisticated mathematical techniques without undertaking proper pedagogical
efforts. The most hurtful critique was Sussman & Zahler [1978], as well as Smale’s [1978]
devastating review of [Zeeman 1977]. (For analyses of the controversy, in addition to the
works cited in footnote 19, see Guckenheimer [1978] and Boutot [1993a]). As a result,
catastrophe theory was largely discredited. But more than mathematical theory, more than
philosophy, it was an actual modeling practice that circulated among a restricted group of
mathematicians who started to build models in a great variety of domains. Reflecting on
the fate of catastrophe theory, Thom [1991, 47] once declared:

Sociologically speaking, it can be said that the theory is a shipwreck. But in some sense, it is a subtle
wreck, because the ideas I have introduced gained ground. . . . Therefore, it is true that, in a sense, the
ambitions of the theory failed, but in practice, the theory has succeeded.

We want to argue that catastrophe theory has indeed “survived” both in the topological
approach that informed Smale’s dynamical systems theory and in the modeling practices
it promoted, making use of topological tools for the understanding of changes of regimes,
such as in the paradigmatic case of the onset of turbulence.

2.4. Disciplinary Confluence: The Ruelle-Takens Theory of Turbulence

Let us come to the third dominant figure in the intellectual and disciplinary reconfiguration
that we associate with the emergence of chaos—mathematical physicist David Ruelle. In
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what follows, we focus on the 1971 article coauthored by Ruelle and Floris Takens and
deliberately neglect most of their later work, which had considerable importance for the
development of dynamical systems theory and chaos (for reprints, see Ruelle [1994]). As
will appear clearly, our reason for doing so is that we are mostly interested in the social
process by which abstract mathematical theories came to be seen as immensely relevant
to hydrodynamics, physics, chemistry and so forth. This, together with our interest in the
IHÉS local context, explains why we single Ruelle out.

Before the controversy on catastrophe theory, to the intense collaboration network estab-
lished amongst Berkeley, Warwick, and IHÉS, to the missionary atmosphere it generated,
specialists from other disciplines were attracted. Ruelle, Thom’s colleague at IHÉS, was
among them. Having worked on quantum field theory and statistical physics, in October
1968 he was already “trying to look at some problems of hydrodynamics or, more generally,
of ‘dissipative phenomena’ from a physical point of view analogous to Thom’s” [quoted in
Aubin 1998a, 358]. Less than three years later, he published with Takens an article titled
“On the Nature of Turbulence” [Ruelle & Takens 1971] in which they suggested, but did
not show rigorously, that turbulent motion in fluid could be explained mathematically by
the existence of generic “strange attractors” in the system of the Navier–Stokes equations
(NSE), rather than by an infinite accumulation of oscillatory modes as was commonly as-
sumed by (part of) the physics community [Landau 1944]. In this explanation of turbulence,
disorder stemmed from the topological character of the system of equations governing fluid
flows, rather than external noise; it was a dynamical, not statistical, property of the system.
Nonperiodic—not quasi-periodic—motion was the definition they offered for it.

A striking feature in Ruelle & Takens [1971] article underscoring the new status as-
signed to differential equations was the form they gave to NSE, the fundamental law for
fluid flows. Indeed in their paper, the equations are nowhere more explicitly specified than
in the following:

dv

dt
= Xµ(v).

“For our present purposes,” they added, “it is not necessary to specify further . . . Xµ”
[Ruelle & Takens 1971, 168]. A unique parameter depending on physical characteristics,
µ represented external stress on the fluid (e.g., the Reynolds or Rayleigh number). When
µ = 0, the fluid tended to rest; for small µ, it tended toward a stationary motion in which
the velocity field remained constant. At a critical value µ1, the system went though a
so-called Hopf bifurcation: the velocity field started to oscillate at a given frequency ω1.20

At a further critical value µ2, a second bifurcation gave rise to a frequency ω2, and so on.
When µ increased sufficiently, “the fluid motion becomes very complicated, irregular and
chaotic, we have turbulence” [Ruelle & Takens 1971, 168, our emphasis]. Contrary to most
hydrodynamicists, Ruelle and Takens were not interested in computing particular critical
values, but only looked at general features of motion as the parameter increased. Based
on their topological knowledge, Ruelle and Takens claimed that since the quasi-periodic

20 Building up on Poincaré’s intuitions, German mathematician Eberhard Hopf had studied the details of the
passage from stationary solutions (corresponding to fixed points in phase space) to periodic ones (viz. limit cycles),
a pioneering work of bifurcation theory, which, albeit noticed by Thom, Mira, Möser, and a few others, remained
nearly confidential until commented upon by Ruelle and Takens close to 30 years later. For his original papers,
see Hopf [1942; 1948].
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motion was not generic for general dissipative systems, it had no chance of being ob-
served. One had to look elsewhere for a “mathematical explanation” of turbulence [Ruelle
1972].

The introduction of the notion of strange attractor was not so much a mathematical
innovation as it was an acute perception of the physical significance of Smale’s horseshoe
and similar systems which had generally been dismissed as “mathematical deductions”
that could “never be utilized”—to use Duhem’s characterization of the sensitivity to initial
conditions exhibited by Hadamard for the geodesics of manifolds with negative curvature
[Duhem 1906 [1954], 138]. Ruelle’s accomplishment is therefore best interpreted as a
crucial rapprochement between a modeling practice inspired by Thom and the tools of
dynamical systems theory mainly developed by Smale.

As opposed to most catastrophe-theoretical speculations and forays into applied areas,
two major distinctive features of Ruelle’s work were the prediction from the Ruelle–Takens
hypothesis of a measurable difference from earlier schemes for turbulence—an experimen-
tal test—and the establishment of some contacts with the hydrodynamics community. At
first timidly, a process of sociodisciplinary convergence between two different traditions,
dynamical systems theory and fluid mechanics, was launched. Except for references to old
works by Leray, Hopf, and Landau, Ruelle’s initial inspiration was hardly built upon a
disciplinary tradition proper to fluid mechanics. Only with an appendix written more than a
year after the main body, and in which he packed up hydrodynamic references, did Ruelle
actually get involved with this field. In the early 1970s, fluid mechanics was a huge, dis-
parate constellation at the confluence of mathematics and engineering. A small community
existed that focused on problems of loss of stability by fluid flows submitted to increasing
stress. Its practitioners were heirs to a technical mathematical tradition that proved capa-
ble of accommodating the topological approach championed by Ruelle.21 Slowly, several
hydrodynamicists would be attracted to the dynamical systems approach, while several
other sociodisciplinary groups taking up problems of hydrodynamic instabilities for vari-
ous reasons would adopt the dynamical systems language as adapted by Ruelle and Takens
(Section 3.2).

At the very end of the 1960s, therefore, the limitations of older statistical methods in the
task of understanding the nature of disorder had become obvious; elements were in place
for the recognition of the inescapable role that complex (“chaotic”) dynamical systems had
to play in the understanding of the world. Indeed, deterministic chaos was made relevant
for the study of natural phenomena by the immediate simplicity of Lorenz’s results. But a
correct comprehension of them depended on a careful exploitation of Smale’s topological
approach to dynamical systems theory. Inspired by Thom’s similar attempts with catastrophe
theory, Ruelle independently from Lorenz showed why this new approach was significant
physically. For this message to be driven home to large audiences, serious sociodisciplinary
convergence processes needed to be launched. From this viewpoint, the confluence of two
disciplines, the mathematical theory of dynamical systems and the theory of nonlinear
hydrodynamic stability, constituted a major turning point.

21 The standard exposition of hydrodynamic linear stability theory was by C.-C. Lin [1955]. In the early 1970s,
Daniel Joseph, Gérard Iooss, and David Sattinger were busy developing nonlinear stability theory in a highly
rigorous functional analytical style.
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THESIS 3: CONVERGENCE AND RECONFIGURATION

From our point of view, the 1970s were a period of rupture in the domain under con-
sideration here, “dynamical systems and chaos.” This rupture was expressed by two si-
multaneous movements: (1) a socio-professional convergence among groups of scientists
coming from a priori different disciplines who met and diversely interacted, and (2) a
conceptual, intellectual reconfiguration centered around new research themes, conceptual
objects, theoretical methods, and experimental systems. Symbolically, these two movements
peaked in November, 1977, with the New York conference on bifurcation theory and appli-
cations. At the time, the rupture was diversely interpreted: scientific revolution, complete
with the advent of a new paradigm, for some, vs a much greater feeling of continuity among
mathematicians.

3.1. Bifurcation in New York, 1977: The Mathematical Skeleton of Chaos?

By its very nature, the sociodisciplinary convergence forming the heart of deterministic
chaos was heterogeneous. By 1975, several elements had fallen into place. Dynamical sys-
tems theorists, applied mathematicians, statistical physicists, hydrodynamicists, population
biologists, etc., started sharing references, concepts, and problems. Experiments were per-
formed with the stated aim of verifying the Ruelle–Takens hypothesis. American physicists
Harry L. Swinney and Jerry P. Gollub from the City College of New York had observed
a transition to turbulence seemingly following the path indicated by Ruelle and Takens
[Gollub & Swinney 1975]. Numerical experimentation was slowly gaining credence as an
acceptable path for theoretical, and even mathematical, research. In one such experiment
on truncated Navier–Stokes equations, John B. McLaughlin and Paul C. Martin had shown
a “semiquantitative agreement” with the Ruelle–Takens conjecture [McLaughlin & Martin
1975]. In the process, Lorenz’s results were spectacularly revived by applied mathemati-
cians and theoretical physicists. (For a citation analysis, see [Elsner & Honoré 1994].) At
Berkeley, a yearlong seminar in 1976–1977 put specialists in hydrodynamics and dynam-
ical systems in close contact with one another, and rigorously tackled the Lorenz attractor
[Bernard & Ratiu 1977]. Investigating the complicated behavior of iterated maps (and re-
discovering a special case of more general results previously obtained by A. N. Šarkovskij
[1964]), applied mathematicians Tien-Yien Li and James A. Yorke gave a name to the
emerging study of complicated, apparently erratic, motions in low-dimensional systems
described by simple deterministic laws—“chaos” [Li & Yorke 1975]. Above all, perhaps,
May successfully publicized their result and some of its consequences for modeling prac-
tices in various areas and concluded that “we would all be better off if more people realised
that simple nonlinear systems do not necessarily possess simple dynamical properties” [May
1976, 467].

Although representatives from one or more of these various domains gathered several
times at other conferences from 1973 to 1977 (see below), one is bound to consider the
New York Academy of Sciences conference Bifurcation Theory and Applications in Scien-
tific Disciplines, held from October 31 to November 4, 1977, as a special moment in the
history of chaos [Gurel & Rössler 1979]. Organized by Okan Gurel of the IBM Corpora-
tion and Otto Rössler from the University of Tübigen, the conference proceedings were
dedicated to Eberhard Hopf on his 75th birthday. Besides the old mathematician, Lorenz
was also greeted by a triumphant ovation as his 1963 paper was definitely brought back
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into the limelight. The conference was moreover attended by Ruelle and Smale, several
of his former students, theorists and experimenters of hydrodynamic stability, Mandelbrot,
May, Yorke, physicists from Hermann Haken’s “synergetics” school in Stuttgart, chemists
from Ilya Prigogine’s “dissipative structure” school in Brussels, economists, biologists, and
many others (74 authors are listed in the proceedings).

The motive behind this large interdisciplinary gathering was twofold: (1) the need to
confront analyses of disordered, unstable phenomenological behaviors distinct by their in-
trinsic nature, yet similarly describable by simple mathematical models, and (2) the need to
diffuse and/or acquire mathematical tools that permitted a better understanding and formal-
ization of these phenomena. On the fore thus was a constant juxtaposition, and sometime
clash, between mathematical approaches and questions stemming from other domains. Em-
phasizing critical solutions as an area of future development, Gurel for example wrote of
the contrast between mathematics and what he, conforming to tradition but inaccurately,
termed “applications:”

Mathematicians are proving theorems stating necessary and sufficient conditions for the existence of
such solutions. . . . In turn, the new discoveries in critical solutions will open up possibilities for mod-
eling complex systems with an increasing exactness. Applied scientists are incorporating these new
mathematical findings in their analyses of applications to practical problems. In both theory and appli-
cations, the need for ingenious techniques adapted from applied mathematics will be undoubtedly felt
[Gurel & Rössler 1979, 3].

Overall, this ecumenical conference was unquestionably held together by mathematical
glue, namely bifurcation theory. History played an important role in introducing the theme
in a manner that was at times strikingly basic. Reaching back to Poincaré and Euler, Gurel
presented bifurcation theory as an analysis of “how the parameters effect [sic] the qual-
itative variations in the solution space” [Gurel & Rössler 1979, 1]. Besides elementary
introductions recounting old mathematical techniques from Poincaré, Lyapunov, and Hopf,
advanced research papers on strange attractors and homoclinic theory included pedestrian
exposés of simplistic models, reports of actual and/or numerical experiments, and wild spec-
ulations. As Gurel acknowledged in his closing remarks, from the participants emerged a
focus on phenomena other than bifurcation, “such as ‘chaos’ and the creation of ‘strange
attractors’ [which] were discussed in not one but many papers presented in diverse sessions”
[Gurel & Rössler 1979, 685]. From the head-on confrontation, new conceptual configura-
tions emerged with force.

3.2. Convergence Before Revolution: The Case of Rayleigh–Bénard

The sole consideration of the above conference, or for that matter others similar to it,
leave few doubts about the leading role played in the “chaos revolution” by the adoption,
and possibly adaptation, of a “dynamical systems approach” to the study of complex be-
haviors [Hirsch 1984]. But it obscures the fact that the socio-professional convergence was
prepared by several partial, overlapping junctions at the subdisciplinary level. In a few
cases, indeed, it would be more accurate to view the adoption of dynamical systems rather
as a consequence of—not a cause for—fruitful encounters among diverse scientific groups.
Indeed, one of the most fascinating and intriguing features, striking to early “chaologists,”
was this communication across disciplinary boundaries. Emphasizing this aspect of chaos,
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Saclay physicist Pierre Bergé, who designed chaotic experiments in fluids, once declared:

among the general qualities which I am pleased to recognize in the study of dynamical systems, there is a
very enriching collaboration between theoreticians and experimentalists and—even more remarkable—
between mathematicians and physicists [Bergé et al. 1984, 267].

It will not suffice to characterize this collaboration as the mere recognition of commonalties
in the mathematical tools that were used. Instead of tools, one may focus on problems,
for example the Rayleigh–Bénard (RB) system, a simple convection cell whose heating
from below induces instability.22 Prior to the late 1960s, except for a small number of
hydrodynamicists very few people were at all interested in simple RB. A physicist from the
Bell Laboratories, Günter Ahlers, later recalled the prevailing mood in the early 1970s before
he took up the problem: “It seems difficult to imagine from our present vantage point; but to
my knowledge none of us had ever heard about this phenomenon as an interesting physical
system” [Ahlers 1995, 94]. Ten years later in Grenoble, a symposium solely devoted to
convection welcomed 57 papers presented by 65 participants from 15 countries [Hopfinger
et al. 1979]. RB had meanwhile become a hot research topic whose theoretical understanding
was naturally helped by making full use of dynamical systems theory. But this new grasp
on the subject was not the reason for the sudden surge of interdisciplinary interest in RB.
By focusing tightly on the history of this problem, one notices clearly that dynamical
systems theory is introduced rather late in the story, and certainly after the moment when
several groups belonging to various communities had already directed their attention to
it. As a result, RB therefore appears as a boundary system (“boundary objects;” see [Star
& Griesemer 1989]), which served as facilitator for both community convergence and
exchanges of scientific practices.

In the first half of the 1970s four groups were concerned with the RB system:

(i) The variegated community of hydrodynamicists, including theorists, experi-
menters, and specialists in numerical computation, who had accumulated extensive knowl-
edge about RB and maintained close contact with one another, but still felt somewhat
unsatisfied with the overall theoretical situation, and were thus on the lookout for innova-
tions allowing them to make progress in the study of the nonlinear stability of transitions
to turbulence [Velarde 1977].

(ii) The statistical physicists specializing in the study of critical phenomena and phase
transitions, who believed that the onset of turbulence could benefit from a theoretical attack
making use of recently discovered universal renormalization methods [Wilson 1971]; as
well as experimenters from the same domain who at about the same moment found that
their own techniques and tools (thermometry, laser light-scattering, computers) could be
applied to turbulence studies with a precision previously unheard of.

(iii) The physicists studying plasmas and liquid crystals, and especially those from
Pierre-Gilles de Gennes’s Orsay group, for whom problems of phase transitions and
turbulence naturally occurred in a simultaneous and inseparable manner and who selected
RB as a test case for their theories. After his appointment at the Collège de France in
1970, de Gennes thus made strenuous attempts to have physicists invest the field of fluid
mechanics, which he felt they had for too long neglected.

22 This approach has been followed in Chapter 8 of [Aubin 1998a].
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(iv) The out-of-equilibrium thermodynamicists and chemists from the Brussels school
set up by Prigogine who in the late 1960s emphasized the formal analogy between
hydrodynamic instabilities and his “dissipative structures,” i.e., the spontaneous organi-
zation of matter arising in out-of-equilibrium situations such as the Belousov–Zhabotinsky
chemical reaction. Prigogine and his coworkers seized RB with the feeling that mathematical
techniques were there more developed than elsewhere [Glansdorff & Prigogine 1971].

In 1973, all the above groups got into formal contact at a conference on instability
and dissipative structure at Brussels [Prigogine & Rice 1975]. For an attack on the RB
problem, many of the crucial interdisciplinary links were by then already well established.
Remarkably, however, no one at the Brussels conference even mentioned the Ruelle &
Takens [1971] paper, nor dealt seriously with qualitative dynamics. But their very desire
to approach hydrodynamic instabilities in an interdisciplinary way was a fertile ground on
which could later prosper the dynamical systems approach. Dynamical systems theorists
(except for Ruelle) only joined the groups listed above in the second half of the decade (see
[Bernard & Ratiu 1977]).

In 1975 at least four very disparate conferences dealt one way or another with questions
of hydrodynamic instabilities and involved one or more of the groups identified above.
The proceedings of these conferences were all published. They were held: (1) at Geilo,
Norway, in April 1975, on the topic of “Fluctuations, Instabilities, and Phase Transitions”
[Riste 1975]; (2) at Orsay, France, in June, focusing on “Turbulence and the Navier–Stokes
Equations” [Tenam 1976]; (3) at Dijon, two weeks later, devoted to “Physical Hydrody-
namics and Instabilities” [Martinet 1976]; and finally (4) at Rennes, in September, on the
topic of “Dynamical Systems in Mathematical Physics” [Keane 1976]. In each the Ruelle–
Takens hypothesis and strange attractors were now discussed and seen as major influences
in reorienting instability research and in adopting a language inspired by Smale’s dynamical
systems theory. At one of these conferences held in Dijon, Martin, a Harvard theoretical
statistical physicist, skillfully synthesized various threads [Martin 1976a, see also Martin
1976b]. For the very first time three of the now classic ingredients of chaos theory, namely
the works of Lorenz, May, and Ruelle and Takens, were together interpreted as various
scenarios for the onset of turbulence. In 1976, Martin together with Gollub convened a
conference at Tilton, New Hampshire, which in many ways prefigured the 1977 New York
meeting. From July 19 to 24, more than a hundred physicists, chemists, hydrodynamicists,
and dynamical systems theorists attended some twenty-odd 45-minute talks at this meeting
focusing on “dynamical instabilities and fluctuations in classical and quantum systems.”23

3.3. Computer and Engineering Mathematics, Toulouse, 1973

To characterize the dual movement—convergence and reconfiguration—at the heart
of chaos merely as the recognition of a mathematical skeleton common to all chaotic
phenomena, namely dynamical systems theory, therefore appears quite reductive, espe-
cially when the latter is narrowed down to Smale’s synthesis. Not only was the convergence
process much more complex in sociological terms than the straightforward encounter of

23 We thank P. C. Martin for sending us the program of this Gordon Research Conference. Another momentous
conference, organized by Joseph Ford and Giulio Casati, took place in Como, Italy in the summer of 1977. On
the French side, let us note the Cargèse 1977 summer school and the Nice “Meeting between Physicists and
Mathematicians” convened by J. Coste, P. Coullet, and A. Chenciner, held in September 1977.
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applied communities with mathematicians, as we saw above, but even the conceptual recon-
figuration cannot be construed simply as the slow recognition of the value of a topological
theory à la Smale. Albeit quickly becoming hegemonic, this scarcely was the only mathe-
matical or theoretical framework that was mobilized.

An international conference organized by Christian Mira, from the Laboratoire d’automa-
tique et d’analyse de systèmes (CNRS), Toulouse, will make this point explicit [Mira &
Lagasse 1976]. Held in September 1973, this meeting titled “Transformations ponctuelles
et applications” gathered some of the pioneers in the nonlinear sciences (J. Ford, M. Hénon,
J. H. Bartlett, C. Froeschlé, as well as several Soviet scientists including B. V. Chirikov).
Intended as “a meeting of specialists from various disciplines but utilizing mathematical
tools of a similar nature,” this conference was thematically centered on the notion of two-
dimensional recurrences of the type xn+1 = f (xx , yn, λ); yn+1 = g(xn, yn, λ). The focus
still was on dynamical systems, but with a quite different flavor. Rather than fluid mechan-
ics or population dynamics, themes issued from celestial mechanics and engineering science
here dominated (control systems with sample or pulse data, problems of mechanical control
and regulation, etc.); the domains of application mentioned were astronomy and particle
accelerator design. Traditional tools like Poincaré’s homoclinic theory, Lyapunov’s stability
criteria, Birkhoff’s recurrence set, bifurcations, differential equations, discrete recurrences
were preferred to more directly topological notions such as genericity or strange attractors.
Like Smale, Mira situated himself, both at the time and subsequently, at the confluence of
several historical traditions and fought for the recognition of a concrete approach to dynam-
ical systems joining numerical computation and sophisticated mathematical methods, that
would be distinct, in particular, from Smale’s abstract, topological approach. In several his-
torical introductions he adjoined to his work, Mira displayed how he was following the steps
of the masters Lyapunov, Poincaré, and Birkhoff, reviving more or less forgotten mathemat-
ical work on recurrences (Lattès [1906], Julia [1918], Myrberg [1962]; for more on this, see
Section 4.1 below); directly picking up Andronov’s legacy without Lefschetz’s mediation;
paying attention to his Gorki school (in particular, Yu. I. Neimark’s work leaning heavily
toward control theory, as well Chirikov’s more abstract results), but also to other results
from the Soviet Union which followed a more analytical approach (such as those from the
Kiev school, and in particular the Malkin [1956] book on the method of small parameters).

But, in 1973, the most conspicuous characteristic of the Toulouse conference surely was
the prominent position given to the computer. “The renewal of interest for the works of
Poincaré–Birkhoff,” Mira wrote in his introductory statement of the conference proceed-
ings [Mira & Lagasse 1976, 24], “was made possible only through the use of high-speed and
high-capacity computers.” Analog and digital devices were mobilized for producing partic-
ular solutions and bifurcations analyzed using mixed numeric–analytic methods. Contrary
to Smale, Ruelle, and Thom, most of those who participated to the Toulouse conference
indeed had a long practice in numerical computing. From 1964 to 1974, Hénon and Heiles
in France, McMillan, Ford, and Bartlett in the United States, as well as Gumowski at CERN,
had used this tool for problems stemming from celestial mechanics or accelerator design
and the study of homoclinic and heteroclinic structures. Collaborating with Gumowski es-
pecially, Mira had set up at the LAAS a whole research group, supervised the doctorates
of a half-dozen students, and associated the analytic and numeric study of bifurcations for
two-dimensional recurrences with numerous applications in the theory of automatic control,
integral pulse frequency modulation, and ACDC rectifiers, as well as other mathematical
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fields such as differential equation theory (for a survey, see [Lagasse & Mira 1972]). Follow-
ing Poincaré, Lyapunov, Andronov, and Malkin, they paid a special attention to questions
of stability. Exhibiting “regions of stochastic motion,” they produced strikingly beautiful
pictures (recalling Mandelbrot’s famous fractals) that were displayed at the 1973 Toulouse
conference. In a later communication, they emphasized that in order to be “aesthetically
appealing” the patterns “must possess simultaneously a sufficient amount of complexity
and regularity” (Gumowski & Mira [1974], 851).

But the pertinence of such study was not obvious to everyone. Replying to Mira’s inquiry
about CERN’s eventual interest for two-dimensional nonlinear recurrences, Gumowski for
example replied on November 26, 1970:

both on technological and operational levels, the study of such nonlinearity is not urgent [since] it does
not affect the practical exploitation of accelerators. . . . I personally think that a systematic understanding
[of such recurrences] can come out of the studies begun by your initiative at LAAS, but I fear that your
fame, if there is fame, will be posthumous.24

Later to be perpetuated, albeit less visibly than Smale’s synthesis, by the International
Journal of Bifurcation and Chaos in Applied Sciences and Engineering founded in 1991,
the social confluence of the Toulouse conference shows that the theoretical notions picked
up from dynamical systems theory for describing chaotic behaviors were much more mul-
ticolored than the usual post-facto short shrift could lead us to believe. In each period
from the end of the 1920s up until the very recent past, interactions between mathemat-
ics and engineering science have played a crucial role in stimulating the development
of new mathematical tools and methods. Stemming from various technological domains
(radio engineering, electronic engineering, particle accelerator design, regulated mechan-
ical systems, etc.), the study of “concrete dynamical systems” gave rise to research work
in nonlinear analysis which frequently looped back to the seminal works of Poincaré,
Lyapunov, and, later, Andronov.

But in the context of the image war between pure and applied mathematics, which shook
the international mathematical scene after 1945 and which globally saw the hegemony
of the former in public representations of the domain [Dahan Dalmedico 1999a and 2001b],
the notion of fundamental advances made on such a basis was, for a large portion of the
mathematical community, difficult to swallow. After all, computer programming, Gumowski
emphasized as early as 1963, was “an art, in the practice of which there is no substitute
for sound judgment and a lot of experience” [Gumowski 1963, 36]. In total opposition
with Bourbakist ideals, this research tradition has therefore tended to be occulted from the
historiography of dynamical systems [Aubin 1997].

When we consider what has come to be labeled as “deterministic chaos,” the picture be-
comes ever more complex. The intrinsic multidisciplinarity of the convergence meant that
scores of theoretical tools coming from other disciplines than dynamical systems theory per
se were explored and utilized in order better to understand various phenomena involving
the apparition or disappearance of order. As was mentioned earlier, dissipative structures,
catastrophes, and the renormalization group were all mobilized at one time or another and
crossbred. Other mathematical domains also intervened such as ergodic theory, measure

24 Gumowski to Mira (November 26, 1970). We thank Christian Mira for allowing us to consult some of his
personal papers.
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theory, and functional analysis. As a result the theoretical framework of chaos theory, while
overlapping greatly with dynamical systems theory as expounded by Smale, reached far
beyond it. The next section will make it clear that, as the chaos convergence and reconfig-
uration was pursued, emphases on notions stemming from parts of the confrontation other
than dynamical systems theory played a prominent role.

THESIS 4: THE VIEW FROM PHYSICS

Between the end of 1970s and the end of the 1980s, the dual motion of convergence and
reconfiguration was stabilized and reached out to other disciplinary domains. A striking
characteristic of the domain remained the constant confrontation of theoretical, numerical,
and experimental results. There however were two important new elements coming into
play: (1) With Feigenbaum’s work, the crucial relevance of renormalization methods for
chaos theory was finally established, revealing an intimate connection between critical
phenomenon physics and dynamical systems theory. The encounter of renormalization group
methods and dynamical systems theory signaled the emergence of a new type of physics,
which one could label ”universal.”(2) Once chaotic dynamical systems were accepted for
the study of natural phenomena, their emergence starting from equilibrium configurations
became central question: stemming from bifurcation theory with the turbulence problem,
notions such as scenarios and roads to chaos acquired a crucial significance.

4.1. Feigenbaum: Universality in Chaos

It has been discomforting—and indeed irritating—for those tending to identify deter-
ministic chaos with dynamical systems theory that the work of Los Alamos statistical
physicist Mitchell Feigenbaum linking chaos to universality and renormalization theory
was widely hailed as momentous, fundamental, and revolutionary. Emphasizing this con-
tribution, one of the first collections of reprints on this topic was thus titled Universality in
Chaos [Cvitanovic 1983]. (Note however that Pedrag Cvitanovic, a particle physicist at the
IAS in Princeton, had collaborated with Feigenbaum [Gleick 1987, 183].) While making
him perhaps the most conspicuous Romantic hero of his popular account of chaos, Gleick
[1987, 182] acknowledged that Feigenbaum’s “semicelebrity” had indeed been “a special
source of contention.” No other contribution than his encapsulates so nicely the conflicting
perceptions depending on disciplinary affiliations.

One way of understanding the impact of Feigenbaum’s results is to notice that these finally
established the fruitfulness of an extremely appealing, but often disappointing, analogy that
had guided the research of many theoreticians and experimenters alike; that is, the anal-
ogy between critical phase-transition behaviors and instabilities at the onset of turbulence
[Feigenbaum 1978; 1979a & b; 1980].25 Moreover, this was accomplished through the study
of recurrences that had been an early focus of investigation by vocal promoters of chaos.

25 Let us note here that Feigenbaum’s priority claims have sometimes been contested, in particular by Charles
Tresser and Pierre Coullet from the Laboratoire de la matière condensée in Nice; see [Coullet & Tresser 1978; 1980;
Arneodo et al. 1979]. The universal properties of recurrences were also noticed by [Derrida et al. 1977; 1978].
A bitter comment about this controversy is found in [Bergé et al. 1994, n. 2, 269 & nn. 8–9, 289]. Such priority
claims are less a concern for the historian, however, than the extensive networking between communities that
followed the publicity given by Feigenbaum to his own results and in particular the close contacts he established
with experimenter Albert Libchaber at the École normale supérieure in Paris.
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Exhibiting their universal properties, Feigenbaum established the relevance of simple equa-
tions to the modeling of complex behaviors and quickly led to the actual measurement of
critical exponents in physical systems, and, to start with, in a cell filled with liquid helium
heated from below—in other words, a RB system (Section 3.2).

In the following years, many laboriously emphasized that Feigenbaum hardly was the
first one to consider the bifurcation patterns of recurrences of the type xn+1 = fλ(xn) as
the parameter λ was varied. That this was an interesting mathematical problem had in-
deed not escaped the attention of a few isolated mathematicians. This was a classic topic,
already touched upon by Julia [1918], Fatou [1919–1920; 1926] and others, mainly in
the case of complex functions. From 1958 to 1963, Finnish mathematician P. J. Myrberg
published a series of papers investigating the bifurcation properties of the quadratic map
xn+1 = x2

n − λ as λ went from −1/4 to 2. Myrberg was the first to study the limit cycles
of this equation, thereby identifying the cascade of period-doubling bifurcations that have
since made Feigenbaum’s name famous. For the most part published in a Finnish journal,
Myrberg’s results received little notice. An article in the Journal de mathématiques pures
et appliquées [Myrberg 1962] was, however, known to Mira, for example. In Kiev, A. N.
Šarkovskij [1964] (discussed in [Stefan 1977]) proved more general theorems than Li &
Yorke [1975] would a decade later. Exploiting the work listed above, Mira and Gumowski
used numerical methods to exhibit sophisticated special cases of bifurcation, such as the
“structure boı̂tes-emboı̂tées” (called “embedded boxes” by Guckenheimer [1979]) arising
when two singular points of different natures, a critical point and a repulsive cycle, merged.
First introduced by Gumowski & Mira [1975], embedded boxes, as well as the whole ap-
proach of the Toulouse group, was explained in their book [Gumowski & Mira 1980] and its
English version [Gumowski & Mira 1982]. (For historical accounts of recurrence problems
informed by this experience, see Mira [1986; 1996]. For another early mathematical survey
from a point of view closer to Feigenbaum’s and Ruelle’s, see [Collet & Eckmann 1980]).
Most importantly for Feigenbaum, this was also a domain investigated by his colleagues in
the Theoretical Division at Los Alamos [Metropolis et al. 1973], who discovered that the
period-doubling cascade of bifurcations occurred, not only for quadratic maps, but also in
a large class of recurrence functions. Note that recurrences were used for the generation of
“pseudorandom” numbers on which the Monte Carlo method designed by Metropolis and
Ulam relied [Galison 1997, 702–709].

The relevance of such recurrences to the study of dynamical systems was already ob-
vious from the technique of the Poincaré map. And, from a phenomenological viewpoint,
recurrences had indeed been a major field of inquiry for early “chaologists.” Already in
1964, Lorenz investigated the behavior of quadratic recurrences, going as far as hinting at
their relevance to turbulence: “This difference equation captures much of the mathematics,
even if not the physics, of the transition of one regime of flow to another, and, indeed, of
the whole phenomenon of instability” [Lorenz 1964, 10]. Picking up on Lorenz’s study,
applied mathematicians Li and Yorke [1975] and May [1974; 1976] had drawn the attention
of a wide audience to the fact that even the simplest equations, if nonlinear, could exhibit
extremely complicated behaviors. But who was to say whether such simplistic equations
captured anything essential about actual natural phenomena?

Following the great surge of publicity given to these studies, Smale underscored that
the form he had given to dynamical systems theory was explicitly designed to encompass
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discrete systems. After having listened to a talk delivered by the Berkeley mathematician
at Aspen, in the summer of 1975, Feigenbaum was inspired to pick up the problem of
recurrence. With the help of a programmable HP-65 pocket calculator, he investigated the
bifurcation sequence of the logistic map:

xn+1 = 4λxn(1 − xn).

Like Myrberg, Feigenbaum noticed that the period of the stable attracting orbits doubled
each time the parameter passed a critical value λi , with x oscillating between 2i values.
Unlike all his predecessors (except perhaps for Coullet and Tresser who, at about the
same time, independently discovered the same result), he noticed that this series converged
towards a critical value λ∞ at a fixed rate defined as

δ = lim
i→∞

λi+1 − λi

λi+2 − λi+1
= 4.6692016. . . .

This number was universal, that is, characteristic not only of the logistic map, but also of
transcendental recurrences like xn+1 = λ sin πxn . In fact, a very large class of functions of
the interval (with a single, smooth, locally quadratic maximum) exhibited the very same
universal behavior.

More remarkable was Feigenbaum’s use in his demonstration of renormalization group
methods that had just been developed by Kenneth G. Wilson [1971] (a work for which he
received the Nobel prize for physics in 1982). Adapting methods introduced in the 1950s
for quantum electrodynamics, Wilson had conferred, to use Cyril Domb’s expression, “re-
spectability” on the study of critical phenomena in phase transitions. In October 1969 Domb
had indeed written: “Unifying features have been discovered which suggest that the critical
behavior of a larger variety of theoretical models can be described by a simple type of equa-
tion of state. But the rigorous mathematical theory needed to make the above development
‘respectable’ is still lacking” [quoted in Domb 1996, xi]. (For another book on the history of
renormalization, esp. in the case of quantum field theory, see Brown [1993]. For renormal-
ization in QED, see Schweber [1994]). A “vast domain of physics [which had] constituted
itself ‘horizontally”’ [Toulouse & Pfeuty 1975, 7] explored similar transitions in magnetic
materials, superfluid helium, superconducting metals, etc. Physicists suspected that such
analogies that could be rigorously codified in terms of so-called “scaling laws.”26 As Cao &
Schweber [1993, 60] have written, “Leo Kadanoff [1966] derived Widom’s scaling laws us-
ing the idea—which essentially embodied the renormalization group transformation—that
the critical point becomes a fixed point of the transformations on the scale-dependent pa-
rameters” of a physical system. Systematizing this procedure, Wilson’s scheme related the
various parameters characterizing the physics at different scales through the renormalization
group transformations. At the critical point, the behavior of the system was scale invariant
which provided a justification for the “hypothesis of universality,” which expressed the idea
that “apparently dissimilar systems show considerable similarities near their critical point”
[Kadanoff 1976, 2]. Like scaling, the “semi-phenomenological concept” of universality was

26 The scaling laws (i.e., relations among critical exponents) expressed by Widom [1965] provided the main
starting point for Wilson. About scaling laws, see Cao and Schweber [1993, 60] and Hughes [1999, 111]. See also
Wilson’s Nobel lecture [1983] for his account of progress in statistical physics in the mid-1960s.



316 AUBIN AND DAHAN HMAT 29

introduced by Kadanoff [1971], which Wilson turned into “real calculations of critical point
behavior” [Kadanoff 1976, 2].

Noticing that portions of the twice-iterated map fλ( fλ(x)) when scaled appropriately
were similar to the original function fλ(x), Feigenbaum realized that tools commonly used
in renormalization theory could be usefully applied to recurrence problems. Starting from
fλ, one could exhibit a hierarchy of functions gr , mapped into one another by a scaling
T (for which gr−1 = Tgr ) and converging towards a scale-invariant function g, verifying
g(x) = −αg(g(−x/α)), where α was another universal number equal to 2.502907875 . . . .
The fixed point g was unstable (a saddle point in functional space), but, in perfect analogy
with renormalization methods used by Wilson, the study of the linear operator DT (the
derivative) in the neighborhood of the critical point g led to the expression of power laws.
Thus could the equation defining δ be expressed as a power law for the period of limit
cycles P(λi ) ∼ (λ∞ − λi )−ν where the critical exponent ν = log 2/ log δ. A formal proof
of Feigenbaum’s conjectures was provided by Oscar E. Lanford III from Berkeley, incor-
porating them in the secure body of mathematics [Lanford 1982]. Symbolically, the proof
turned out to be computer-assisted and to rely heavily on dynamical systems theory. (See
also [Collet et al. 1980]).

4.2. Renormalization and the Nature of Modeling

To understand the excitement that greeted Feigenbaum’s results, one has to remem-
ber that, for several years prior, attempts at exploiting the appealing analogy between
phase transitions at critical points and hydrodynamic instabilities had mainly been met
with bitter disappointment. This potent analogy took many forms. For experimentalists,
the phenomenological analogy served as a basis for applying their setups to hydrodynamic
phenomena and thus come up with data of greatly improved accuracy. (Nearly all the early
experimenters on the onset of turbulence in fluid, Ahlers, Gollub, Swinney, Bergé, Dubois,
Libchaber, were not at first specialists in hydrodynamics but came to it from an earlier
interest in critical phenomena and phase transitions. On this, see Section 4.3 below). The
theoretical analogy also guided the work of de Gennes and Prigogine and their respective
groups. Similarly, Thom interpreted Landau’s mean-field theory for phase transitions in
terms of catastrophes.

Wilson’s original paper already signaled the relationship between renormalization group
methods and dynamical system theory, going as far as suggesting that in many dimensions,
“the solutions of the renormalization-group equations might instead [of the critical saddle
point] approach a limit cycle . . . or go into irregular oscillations (ergodic or turbulent?)”
[Wilson 1971, 3182]. In support of this suggestion, he cited Minorski [1962], a book mostly
written during World War II. This suggestion was pursued by French physicist Gérard
Toulouse who, impressed by Thom’s program, used ebullient language to develop the
“conceptual kinship” that constituted ”a new framework for thought” [Toulouse & Pfeuty
1975, 8–9]. From scale invariance near the critical point, it followed that universal behaviors
were independent from atomic and molecular details, or to use Thom’s language, from the
“physicochemical substrate.” For renormalization theory, the dynamical systems approach
had a “great heuristic value,” since in both cases

one is led to a global approach to phenomena, to an analogous classification of singularities, to a similar
understanding of universality properties. This rapprochement may be noted, for it is perhaps indicative
of a theoretical moment in the formation of a certain level of knowledge [Toulouse & Pfeuty 1975, 32].
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The analogy with dynamical systems was, however, severely limited by the fact that, in
renormalization theory, one was mainly interested in fixed points. Limit cycles, much less
strange attractors, did not find immediate analogues in critical phenomena.

While the epistemological analogy thus had at first a limited effect, it nonetheless cre-
ated the conditions for major sociodisciplinary realignments, in particular in directing the
statistical physicists’ attention towards the study of hydrodynamic instability. Summarizing
in 1975 recent advances in the understanding of the onset of turbulence stemming from
this new influx of people and ideas, Martin [1976b, 57] could thus only present a mitigated
balance sheet:

While the experimental techniques that have been invaluable in understanding phase transitions promise
to be very useful in the study of hydrodynamic phenomena. I suspect that the recent addition to our
theoretical arsenal [i.e., renormalization] may be less effective than many had hoped.27

The fact was that, with Feigenbaum’s work, the theoretical analogy finally showed its use-
fulness in a roundabout but simultaneously very profound way. Indeed, renormalization
group methods and modeling practices inspired from dynamical systems theory spectacu-
larly reinforced each other. Starting with Poincaré and even more with Andronov, dynamical
systems theory had made it natural to consider classes of equations rather than single fun-
damental laws (such as, e.g., the Navier–Stokes equation for fluids). Instead of focusing
on a specific set of equations, Ruelle and Takens—and this was perhaps their most daring
assumption—had looked at NSE as a dissipative system only endowed with generic prop-
erties. This was “a point of philosophy,” a hydrodynamicist later argued: “without arguing
about their relevance to physics and more specifically to the study of turbulence, I ought to
confess we can forget about [NSE] here” [Velarde 1981, 210]. “The general lesson” of a
decade of work on deterministic theories of turbulence, Ruelle [1981, 238] added:

seems to be that hydrodynamical systems at the onset of turbulence behave very much as generic
differentiable dynamical systems. . . . Simple systems of differential equations with arbitrarily chosen
coefficients, when studied by . . . computers, yield data so analogous to those of hydrodynamical exper-
iments that it is not possible to tell them apart.

This type of reasoning, one must emphasize, which led to an undervaluation of specific dy-
namical equations (whether discrete or differential) in favor of the consideration of families
also was at the basis of the applied topologists’ approaches discussed above. One of the most
vocal promoters of catastrophe theory, Zeeman [1973, 704] had tried to mobilize topological
arguments in favor of the pertinence of very simple equations in modeling, arguing:

The topologist regards polynomials as rather special, and tends to turn his nose up at so crude a criterion of
simplicity. . . . So perhaps we ought to consider all possible [systems]. Now comes the truly astonishing
fact: when we do consider all [systems], . . . in a certain sense it is . . . the unique example. Herein lies
the punch of the deep and beautiful catastrophe theory.28

By exhibiting the universality of simple recurrences, Feigenbaum went a step further in
rejecting fundamental laws while providing additional reasons—and, in the view of many,

27 Let us note, however, that noticing in Kolmogorov’s theory of turbulence the use of cutoff procedures
conceptually akin to those common in renormalization theory, DeDominicis and Martin [1979] pursued the
analogy in the case of developed turbulence, which is to be clearly distinguished from the onset of turbulence
much studied by “chaologists” (see Section 4.3).

28 For a discussion of this model of the heartbeat and Zeeman’s reasoning behind it, see Aubin [2001].
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more solid than Zeeman’s—to believe that simplistic models could say something mean-
ingful about complex systems. Indeed, while the message extracted earlier had been that
simple equations could exhibit complex behaviors, Feigenbaum [1980 [1989], 51] stated
that universal behaviors firmly established their utmost relevance for the modeling of natural
phenomena.

In fact, most measurable properties of any system . . . can be determined in a way that essentially
bypasses the details of the equations governing each specific system because the theory of his behavior
is universal over such details. That is, so long as a system possesses certain qualitative properties that
enable it to undergo this route to complexity, its quantitative properties are determined. . . . Accordingly,
it is sufficient to study the simplest system exhibiting this phenomenon to comprehend the general case.

Cao and Schweber [1993, 68] argued that renormalization theory—together with effective
field theories—implies “the denial that there are fundamental laws.” In a more sober manner,
this reasoning was common among statistical physicists: “The phenomenon of universality
makes it plain that such [molecular and/or atomic] details are largely irrelevant to critical
point behavior. Thus we may set the tasks in hand in the context of simple model systems,
with the confident expectation that the answers which emerge will have not merely quali-
tative but also quantitative relevance to nature’s own system” [Bruce & Wallace 1989, 242;
quoted in Hughes 1999, 115].

Like the Ising model, the logistic map became in this view the “representation of a repre-
sentation” [Hughes 1999], that is, the object one studied in order “to explore consequences
of the modelling procedure itself” [Collet & Eckmann 1980, 24]. Far from being simplis-
tic, nonrealistic approximations, models like this became “typical” or “representative” of a
universality class—representatives easily amenable to analysis, numerical computation, or
actual experimentation, but whose significance could be extended to a whole class of univer-
sality. (The term “representative”—with its self-conscious political reference—is adopted
from Hughes’s study of the Ising model [Hughes 1999, 127]. For a discussion of “typical”
models, see [Collet & Eckmann 1980]).

As far as experimentation is concerned, finally, let us now note that Feigenbaum’s above
quote draws attention to two aspects which will be developed: (1) contrary to purely topo-
logical approaches, renormalization methods generated quantitative predictions—numbers
verifiable in well-designed experiments; and (2) in order to identify universality classes,
which was required for extracting those numbers, one needed to study qualitatively possible
“routes to complexity.”

4.3. Universal Physics, or the Triumph of Light Experimentation

From the attitude typified by Feigenbaum emerged a new type of physics, concerned with
typical behaviors of classes of systems. “Universal physics,” as we may label it, warranted
the realization of delicate experiments (in vivo or in silico) on specific systems, as well as the
tackling of mundane macroscopic questions, without nonetheless eschewing any pretense of
being “fundamental.” Let us, by detailing an example, examine the way in which techniques
available to experimental statistical physicists were adjusted to the study of hydrodynamics.
As we shall see, physicists studied hydrodynamic systems, not so much as such, but rather
as a way of probing the universal, typical, and generic characters of dynamical systems.

In the early 1970s, Jean-Pierre Boon, an experimenter collaborating with Prigogine’s
Brussels school, was using light-scattering methods for the study of critical behaviors.
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The expansion witnessed by this new experimental technique was allowed by both the
renormalization breakthrough and the availability of new technologies. At a 1973 Brussels
conference Boon characterized the analogy between phase transitions and fluid instability
as “phenomenological;” it was a purely formal “translation:”

at the level of microscopic analysis there is presently no evidence for an actual analogy between hy-
drodynamic or thermal instabilities and phase transitions for the very good reason that the microscopic
mechanism governing the evolution of a system towards an instability point remains at present a totally
open question [Boon 1975, 89].

Visiting the Bell Laboratories in 1970, Boon met staff member Günter Ahlers, whose
Rayleigh–Bénard experiments would inspire key players such as Martin and Libchaber to
take up the study of the onset of turbulence, but at the time, focused on critical phenomena
arising at the superfluid helium transition. Insisting on the “serendipitous aspects of Jean-
Pierre’s visit,” he recalled that his apparatus was at the time “ready and cold,” enabling him
to perform manipulations following Boon’s suggestions. Within “a day or two” he was “able
to obtain heat-transport data which were a great deal more precise than previous results in
the literature” [Ahlers 1995, 94].

This, however, was no coincidence. The material conditions for experimental work were
by then being revolutionized by the introduction of new technologies in the laboratory.
Physicists who had been studying critical phenomena had at their disposal powerful tools
which they brought to bear on fluid mechanics. As he recalled,

although the conventional tools of solid-state physics, such as high-resolution thermometry, lock-in
amplifiers, light scattering, and others played an important role, I believe that the most important experi-
mental development of the 1970’s was the advent of the computer [Ahlers 1995, 96].

To think of the computer as an experimental development may be surprising, but it was more
than a new machine coming into the laboratory. Data acquisition systems and numerical
fast-Fourier transforms “revolutionized the kind of project that could be tackled; . . . they
also gave us a completely new perspective on what types of experiments to do” [Ahlers
1995, 96].

In the early 1970s, Ahlers’s results were simultaneously highly exciting in the opinion
of some hydrodynamicists and hardly worth a publication for their author. Koschmieder
[1974] and Velarde [1977, 521] both lauded Ahlers’ “impressive and most complete work.”
At the time, Ahlers presented his results at the annual meeting of the American Physical
Society and only published a summary; they were developed in a later article [Ahlers 1974].
When their value started to be recognized, however, several other teams of physicists turned
their attention (and light-scattering instruments) toward transitions to instability in fluids.
Among these, one may mention Gollub and Swinney, who used light-scattering methods
to find observations “perhaps consistent with proposals of Ruelle and Takens” [Gollub &
Swinney 1975, 927], and Bergé and Dubois [1976], who used laser technologies to achieve
one of the first precise, nonintrusive measurements of local velocity fields in fluids. The latter
two also actively collaborated with Pomeau and Manneville in exhibiting experimentally
the intermittent scenario, first observed in the course of numerical simulation on the Lorenz
system by Pomeau and Manneville [1979; 1980] and later in fluid experiments [Bergé et al.
1980]. (This scenario is further discussed in relation to the dynamical systems approach in
Aubin [2001] and in Franceschelli [2001]).
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Finally, Libchaber’s delicate experimental work, which dramatically confirmed Feigen-
baum’s intuition, was also inspired by his background in the study of the superfluid helium
transitions. His was a classic RB experiment—very similar to that of Ahlers, with whom
Libchaber was in frequent contact at the Bell Labs and who had aroused his interest in
such problems—especially remarkable, however, for the great precision allowed by local
probes, that is, resistors sensitive to heat. Carefully noting a “demultiplication of frequen-
cies” Libchaber and his collaborator Jean Maurer concluded that this process “appeared as
crucial for the germination of turbulence.” After extensive collaborations with many theo-
reticians, including Feigenbaum, the experiment was interpreted as the first observation of
the period-doubling cascade of bifurcations, providing a value for δ that was “quite bad,” but
not in contradiction to Feigenbaum’s estimate: δ = 3.5 ± 1.5 [Libchaber & Maurer 1981;
1982].

At a time when hierarchies in physics subdisciplines were in flux, when a certain disen-
chantment with reductionist approaches started to be felt, when big questions concerning
the infinitely small and the infinitely large were, relatively speaking, losing prominence, this
new type of “universal physics” felt like fresh air. A representative of this current in physics,
Philip Anderson, thus contended: “The ability to reduce everything to simple fundamental
laws does not imply the ability to start from those laws and reconstruct the universe. In
fact, the more the elementary particle physicists tell us about the nature of the fundamental
laws, the less relevance they seem to have to the very problems of the rest of science, much
less society” [Anderson 1972, 393]. For several physicists and mathematicians this result
came as a revelation: it was “a kind of miracle, not like the usual connection between theory
and experiment.” For another, it was “the best thing that can happen to a scientist, realizing
that something that’s happened in his or her mind exactly corresponds to something that
happens in nature” (Gollub and Kadanoff, quoted in Gleick [1987, 209 and 189]). On a
more pragmatic level, Doyne Farmer noted: “The idea of universality was not just a great
result. Mitchell [Feigenbaum]’s thing was also a technique that employed a whole army
of unemployed critical phenomena people” [Gleick 1987, 268–269]. In terms of material,
cost, and personnel, the experiments were relatively affordable and easy to perform. For
Bergé, this was “the triumph of ‘light physics’” [Bergé, Pomeau & Vidal 1984, 267]. All
this increased the prestige of both statistical physical and hydrodynamics and reinforced
the impression of epistemological rupture that we have talked about.

4.4. Scenarios: Dynamical Systems Theory and the Language of Chaos

In several talks delivered in the summer of 1975, Martin offered a first synthesis of
the works of Landau-Hopf, Ruelle-Takens, May, and Lorenz applied to fluid mechanics.
Already, then, it was made clear that the focus of these studies—still informed by the phase
transition analogy rather than dynamical systems theory—was not so much the “nature” of
turbulence, as Ruelle and Takens had claimed, but rather the transition from stationary flows
to disorderly states. The qualitative identification of the various “roads to chaos” became
an urgent task at hand.

To shift the spotlight, from turbulence to the onset of turbulence, was extraordinarily ef-
ficient in narrowing the gap between widely diversified communities. First, this was one of
the classic problems of hydrodynamics, reaching as far back as Osborne Reynolds and Lord
Rayleigh, who at the end of the 19th century investigated the stability conditions of slightly
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perturbed stationary or periodic flows. A huge literature focused on two specific problems:
Rayleigh–Bénard and Taylor–Couette.29 Second, the approach in terms of “roads to chaos”
could naturally be accommodated by the theory of bifurcations then thriving on both the
topological basis pursued by mostly pure-mathematics-minded dynamical systems special-
ists and the analytic approach in terms of functional spaces favored by the applied mathemat-
ics tradition (a foremost representative of which was the work done at New York University’s
Courant Institute). Finally, as is obvious from the above, this emphasis on transitions al-
lowed tapping into the rich theoretical arsenal and manpower of critical phenomena physics.
As a result, the rapprochement of several communities was tremendously facilitated: hydro-
dynamic stability theorists, statistical physicists, and dynamical systems theorists, as well
as more traditional applied mathematicians and computer simulation specialists.

The culmination of this viewpoint came with an article of Jean-Pierre Eckmann’s from
1981, describing the various “scenarios” forming so many “roads to chaos.” Having served
as crucial personal link between Libchaber and Feigenbaum, Eckmann had been in frequent
contact with Thom and Ruelle in the “stimulating atmosphere at Bures-sur-Yvette” [Collet
& Eckmann 1980, vii]. His paper presented the general philosophy and theory behind this
new “approach to the understanding of irregular (or nearly irregular) phenomena, which
has been relatively successful recently,” adding in a footnote that it could “be viewed as
a concretization of Thom’s catastrophe theory” [Eckmann 1981, 643]. Although it hardly
contain anything new, after more than a decade of work on instabilities in fluids, this was
one of the first syntheses to come out, which was explicitly based on dynamical-systems
modeling practices.

Since the global classification of dynamical systems was far from being achieved,
Eckmann turned to experiments as a guide for which bifurcations from simple attractors to
nontrivial ones might be the most relevant for physics (and chemistry). He introduced the
notion of a scenario to describe the most probable sequences of bifurcations. Three roads
to turbulence deserved the label: the Ruelle–Takens scheme, Feigenbaum’s cascade, and
the Pomeau–Manneville intermittent behavior. Nothing insured that this list was exhaus-
tive. Acknowledging that “this may be a somewhat unfamiliar way of reasoning,” Eckmann
[1981, 646] specified “the nature of the prediction which can be made with the help of sce-
narios.” He characterized scenarios as “if . . . , then . . . ” statements, “i.e., if certain things
happen as the parameter is varied, then certain other things are likely to happen as the
parameter is varied further.” Linked with genericity, the definition of likely “in a physical
context” was tricky.

I do not intend to go to any philosophical depth but, rather, take a pragmatic stand. (1) One never
knows exactly which equation . . . is relevant for the description of the system. (2) When an experiment
is repeated, the equation may have slightly changed. . . . (3) The equation under investigation is one
among several, all of which are very close to each other [Eckmann 1981, 646].

One therefore was faced, he concluded in another publication, “with the problem of isolating
and if possible answering new types of questions which are more or less independent of
detailed knowledge of the dynamics of any given physical system. Such questions have
answers which are universal” [Collet, Eckmann & Koch 1981, 1].

29 The Taylor–Couette problem consists in the study of the stability of a fluid flow contained between two
rotating concentric cylinders. About the early history of this problem, see Donnelly [1991].
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Out of a mathematical failure, a fruitful modeling practice was thus constructed by physi-
cists for physicists. Although mathematicians had not succeeded in classifying generic bi-
furcations, Eckmann offered a scheme emphasizing the benefits of a dynamical systems
approach coupled with experimental results and renormalization theory. This scheme ex-
ploited the robustness of experimental results rather than a general theory of hyperbolic
systems to point to which bifurcations were the likeliest to occur. And it emphasized the
universality of the results to argue in favor of using simple models to understands very
complicated situations. “[W]e need an adequate language for describing deterministic evo-
lution equations,” Eckmann [1981, 643] wrote. This language would be that of dynamical
systems theory.

Statistical physicists therefore adopted the tools and concepts of dynamical systems and
adapted them for their own purpose. Characteristically, when asked why he devoted so
much work to a particular model system—the implication being that it was “not so real as
to be of practical interest, and perhaps not so deep as to have real intellectual interest”—a
key player in the development of both renormalization methods and chaos theory, recalled
to have thought: “I know that his implied criticism is right. So I resolve to learn something
new. The new subject I find is dynamical systems theory” [Kadanoff 1993, 386]. With its
unique capacity for dealing simultaneously with classes of systems, dynamical systems
theory was a natural framework for the type of questions being raised by universality. Even
for physicists, this would become the official language of chaos.

CONCLUDING REMARKS: THE CULTURAL IMPACT OF CHAOS

At the close of our study, we are facing the question with which we opened it: how
to grasp the essence of the chaos phenomenon and what was its impact? Here, we are
stepping onto shakier ground that has already given rise to the greatest exaggerations. In
the following, we will suggest a few clues that may lead to future research and some definite
conclusions. Compared to other moments in history, this one is clearly so close to us that the
familiar process of continual historical rewriting has hardly had time to take place. The slow
crystallization process that will ultimately attribute actors and pieces of work their definite
place in history (only eventually subject to minor modifications) has not been completed.
If every historical writing necessarily involves an interpretation of history, it is clearer if
we provide the keys to our own interpretation. At every step in our narrative, we have
taken great lengths to explain, granted that exhaustiveness remained out of reach, some of
the most important choices we needed to make. We have tried in particular to justify the
periodization corresponding to our theses or the privileged role attributed to some actors
(Smale mainly, but also Lorenz or Ruelle).30

If temporal distantiation is no option, the proximity of recent history also is an opportunity,
at least for the historian attentive to the interpretations and interests promoted by various
“schools.” The closer one stands from a historical moment the easier it is to see the variegated
texture of the scene. From this close look, stems a dual tension, which we have already

30 Unquestionably, there are other scientists whose work might have been more carefully examined here, such
as Mandelbrot and fractals, or Prigogine and dissipative structures, to cite two coming to mind. We have chosen
not to present, within the bound of this paper, a detailed analysis of their networks and influences—which remains
to be done.
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underscored in our introduction:

(1) the tension between long temporalities (the longue-durée history of mathematical
theories or other branches of science such as fluid mechanics) and short ones, periods of
acceleration and upheaval where intellectual and social configurations shift;

(2) the tension between the local point of view (what happens in a single location or
a single discipline) and the global one, involving large-scale processes concerning many
branches of science and its relationship with the rest of society.

As our chronological development unfolded, both of these tensions—in no way independent
from one another—have been increasing and exacerbated. To confront these tensions is one
of the most stimulating challenges of the historiography of recent science. (On the issues
around historiography of contemporary science, see Söderqvist [1997]).

“Chaos” was a phenomenon that we have characterized as both intellectual and disci-
plinary reconfiguration and socio-professional convergence. Developed from the mid-1970s
to the mid-1980s, it reached its high point a decade later, at the beginning of the 1990s. Our
extensive study, we believe, has amply established that point. Now, whether—or not—it is
called a “scientific revolution” complete with “paradigm shift,” whether—or not—it is, on
the contrary, considered as a mere fashion now on the wane, no one will argue with the fact
that it was a large-scale thing. Several indicators, often mentioned in the above, support this
claim:

—at the disciplinary and professional level, the massive character of chaos was manifest
in the large number of disciplines involved, of publications, of conferences, etc.;

—at the epistemological and conceptual level, actors themselves often perceived chaos
as a true philosophical revolution bringing forth new epistemic cleavages;

—at a social and cultural level, chaos was a phenomenon reaching beyond scientific
milieus and taken over by philosophers, science popularizers, and even littérateurs.

From a renewal of Aristotelian philosophy ([Thom [1988] and his disciple Boutot [1993b])
to the birth of postmodern science [Hayles 1990], nay a global revolution in the history of
humanity—“a major transformation from patriarchy/order to partnership/chaos” [Abraham
1994, 220]—the claims concerning chaos seemed to know no limits. From high-browed
theater [Stoppard 1993] to the bestseller and blockbuster Jurassic Park [Crichton 1990],
chaos theory really appeared ubiquitous in the early 1990s. In scientific communities, the
vogue for chaos went hand in hand with significant shifts in the material, socioinstitutional,
and cultural conditions of their enterprise. Chaos partook in a few general underlying pro-
cesses: it was both influenced by and influential in shaping them. To speak of the “context”
of chaos would therefore be wrong-headed. But a few elements emerge as having interacted
in crucial ways with chaos. Let us, in the following, review them briefly.

For a start, the material conditions of the mathematical sciences were metamorphosed
by the emergence and, above all, the wide diffusion of electronic calculating machines. Let
us also mention the important role, already noted above, played by imaging techniques and
lasers (in particular in phase transitions and turbulence experiments). The computer has
without the hint of a doubt played a crucial role in the multidisciplinary convergence at the
basis of chaos. There are, at the moment, still surprisingly few serious studies of the impact
of the computer on mathematical and, in general, theoretical research. (For a first dent in this
problem, see, e.g., Farge [1988] and Hénon [1983]). On a practical level, this tool provided
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theoreticians with original means of apprehending, and indeed manipulating, conceptual
entities: equations could be solved with any degree of precision required; solutions, surfaces,
and fractal sets could be plotted on screens and paper; and, as we have seen, even in the
laboratories, new experiments could be envisioned while others now became dispensable.
Moreover, the diffusion of results, such as Lorenz’s system, May’s study of the logistic
equation, Li and Yorke’s “Period Three Implies Chaos,” or Feigenbaum’s universality, was
mediated by calculators and analog computers and then digital computers. Finally, besides
being highly suggestive, computer-generated pictures—of attractors (Lorenz’s or Hénon’s)
or fractal sets systematically associated with chaos—eased the circulation of results by
allowing their significance to be grasped without having to master fully some of the most
abstract mathematical concepts of dynamical systems theory. In a word, the day-to-day
practice of scientists was revolutionized, as simulations and numerical explorations became
the predominant basic activity for theoretical work thereby blurring the experiment/theory
and real/virtual categories. It is also obvious, one must acknowledge, that none of this was
limited to chaos or nonlinear phenomena. As an illustration, let us mention the special issue
of the Cahiers de Science et Vie (October 1999) “Comment l’ordinateur transforme les
sciences,” where a spectrum of examples, from the H-Bomb to biology, via astrophysics,
medicine, or natural history, show that the computer transforms not only the practice of
science, but also the very conception of the objects of science.

Second, the success of chaos is linked to the emergence of interrelated ideological dis-
courses and socioprofessional realities. Amongst mathematicians, the crises of 1968 and the
Vietnam War has given rise to a fundamental reevaluation of the nature of their profession,
whose dominant cultural images were turned upside down. For the Bourbakist hegemony
emphasizing the structural and axiomatic conception of pure mathematics disconnected
from applications and the needs of society at large—in short, mathematics “for the honor
of the human spirit” [Weil 1948, Dieudonné 1987]—was progressively substituted a new
conception of mathematics more self-conscious of its social role.31 Among physicists, as
was mentioned above (Section 4.3), one would find a similar evolution. These shifts in
representations were no doubt part of larger mutations. The problem of the relationship
between micro- and macrolevels, with the emergence of the sciences of the mesoscales,
was reactualized at the same time as reductionist attempts seemed to falter (see below). Of
course, such discourses precisely because they have an ideological component are especially
slippery. But one need not agree with either the diagnosis they offer or the very pertinence of
such global ideological discourses, in order to take their existence into account. As we have
seen, Smale’s involvement into the political arena was far from independent of his concern
for directing his work “towards socially positive goals.” To argue cogently for such cultural
connections is, however, rather tricky and would require further studies. Similarly, Thom’s
and Ruelle’s IHÉS, whose structure and spirit left a mark on research conducted within its
walls, was considerably shaken by Alexander Grothendieck’s political engagement about
the “moral responsibility of the scientist” [see Aubin 1998a]. To draw links between in-
tellectual climates and the content of science is often seen as highly problematic, as the
debates that followed Forman’s [1971] attempt at linking Weimar culture and acausality in
quantum mechanics has abundantly demonstrated.

31 On the Bourbakist hegemony over pure mathematics, see Aubin [1997]. The conflict of the two antagonistic
images of mathematics is developed in Dahan Dalmedico [1996a; 1999a; 2001b].
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Changes in disciplinary images corresponded both to desires expressed by scientists
themselves and social demands vis-à-vis science. A further social phenomenon played
a fundamental role in the emergence and success of chaos—that is, the high value put
into interdisciplinary work. Just to take an example, one is struck by the fact that in the
early 1970s de Gennes’s program was carried out with considerable aid from the French
state (the CNRS) intent on promoting interdisciplinary research on a few selected themes
in “small,” rather than “big,” science. A true ideology of interdisciplinarity permeated
this program that led to de Gennes’s very deliberate move to have physicists plunge into
fluid mechanics. (De Gennes’s attempts are detailed in Aubin [1998a, Chap. 8]). Like all
social phenomena, interdisciplinarity—which has up till now remained prominent—must
be studied analytically: a history of its emergence and diffusion is called for; a study of
its sociological underpinning is needed; an analysis of its ideological freight would be
welcome. Chaos could only emerge against this backdrop: conferences, collaborations, and
research and teaching programs generated a context favorable to interdisciplinary research.
Chaos in turn played a role in—and symbolically reinforced—the generalization of this
preexisting trend. It was at this time, for example, that contacts between mathematics and
physics, which had hitherto been allowed to get looser, were rewoven in durable manner. The
deepening economic crisis and important political changes of the 1980s made banal the need
for science to justify its usefulness. In the United States, for example, the alliance conditions
established after WWII between physicists, the military, and the government were disturbed
by the fall of the Berlin wall and the Soviet breakup. More generally, interdisciplinarity
appeared then—and appears even more today—as a cultural value that researchers needed
to cultivate and that permeated science policy discourses. More and more, it seemed that
representations of science and science policy discourses became intertwined. (For a recent
example of policy-makers’ prescriptions emphasizing interdisciplinarity and presented as a
description of contemporary science, see Gibbons et al. [1994] and Nowotny et al. [2001]).

Finally, at a more diffuse cultural, philosophical level, chaos was accompanied by a
discourse relative to deep epistemic ruptures and the emergence of a new paradigm. It
was turned into a symbol of a new way of conceiving and practicing science. Once again,
the question is delicate since we must address both the level of scientific theories and
practices and that of representations, more or less diffuse in wide scientific circles and the
public. This new image was for that matter produced together with a negative—and often
caricatural—image of classical science according to which the main concerns of the latter
were to exhibit order in nature and to reclaim the transparent intelligibility of a world
entirely ruled by determinism.

Still, we feel one can now positively assert: chaos has definitely blurred a number of
old epistemological boundaries and conceptual oppositions hitherto seemingly irreducible
such as order/disorder, random/nonrandom, simple/complex, local/global, stable/unstable,
and microscopic/macroscopic. This epistemic blurring is illustrated by the dialectics at
play in some of the most famous statements of the domain. Sinai’s [1992] “aléatoire du
non-aléatoire” is the most obvious example, but one can also think of Lorenz’s [1963]
“Deterministic Nonperiodic Flow,” of Thom’s [1975] “science des modèles” and “modèle
de la science,” as well as Smale’s [1966] “Structurally Stable Systems Are Not Dense,” and
of course of the Ordre dans le chaos of Bergé et al. [1984]. Since most of these terms only
acquire a precise meaning within a mathematical framework, a complete demonstration of
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this claim would lead us astray. (See Dahan Dalmedico [2000 and forthcoming]). Let us
simply note here that the “determinism quarrel” which vividly opposed Thom and Prigogine
in the early 1980s has been quelled by establishing a new boundary between science and
metaphysics under which the question of the ontological determinism of nature now seems
to be clearly subsumed.32 The epistemological blurring coextensive with chaos partook
in the emergence of a new cultural image of science, even if it surely was not the only
element to do so. Other intellectual factors, such as the epistemic dead end widely seen in
reductionism, and several social, political, and technological factors that gave rise to this
new image of science cannot even cursorily be examined here.

Just as an example, let us underscore the essential role played by the media, not only in
the diffusion, but also in the very constitution of chaos, viewed as a social phenomenon.
The emergence of this cultural space across disciplinary boundaries went hand in hand
with a concern for pedagogy. Because of the diversity of audiences to which they were
addressed, theoretical and experimental results were constantly explicated, reinterpreted,
simplified, essentialized—in a simple but tricky word, popularized. As a result, a “standard”
mode of exposition crystallized (to be found in introductory chapters of conference pro-
ceedings, in popularization articles whether intended for certain sociodisciplinary groups
or lay audiences, in the first treatises [Guckenheimer & Holmes 1983; [Bergé et al. 1984;
Schuster 1984]). Some stories—Lorenz stumbling on sensitive dependence on initial condi-
tions, or the slowness of Feigenbaum’s old HP-65 prompting his second-guessing the next
bifurcation—acquired a quasi-mythical character. For an instructional or illustrative pur-
pose, a few exemplars were constantly rehashed: the Hopf bifurcation, Smale’s horseshoe,
the period-doubling cascade of bifurcation, and of course Lorenz’s butterfly. Key concepts
of dynamical systems theory (bifurcation, attractors, genericity, etc.) were widely dissemi-
nated and perforce made rather simple. Striking to the actors, the simplicity of chaotic ideas
therefore was in part the result of their own pedagogic concerns. As Ruelle [1992, xiv]
stated, “The popular success of chaos is due to several factors: the simplicity and power
of the ideas involved, the striking terminology (strange attractors, chaos), and of course
Gleick’s bestseller.”

Moreover, the domain took a prominent part in the striking emergence of a new type of
scientific book: the theoretical manifesto which deliberately mingled science popularization,
exposés of new theories, and wild, if inspiring, philosophical speculations. As examples,
one may cite Thom [1972, 1974] published in pocket paperback format, soon to be followed
by Mandelbrot [1975] and Prigogine & Stengers [1979].33 To these, one may add countless
widely disseminated, programmatic essays written by the most prominent actors of the
field, as well as popularization articles and books that have gathered such a large audience
that they have had an influence on the representation of the field (esp. Gleick [1987]). All
these aspects would require a subtle analysis that we cannot develop here, but one may

32 Pomian [1990] has collected some of the most important contributions to the debate including the initial
incendiary article by Thom. For an analysis of the debate, see Dahan Dalmedico [1992].

33 In the French intellectual arena, this reinscription of scientific concerns in the wider culture could be attributed
to the editorial success of the Nobel-prize winners François Jacob’s [1970] and Jacques Monod’s [1970] popular
books, as well as the mutation of science itself, ”the rather confused feeling that a new problématique is emerging”
[Pomian 1989, 471]. Felt in the public appeal of Edgar Morin’s [1973, 1977], Michel Serres’s [1977, 1980, 1982],
and Henri Atlan’s [1979] writings, the feeling was that science, taken as a whole, has entered a new paradigm, the
reference to T. S. Kuhn [1970] (translated in French in 1972) being not only explicit but emphasized.
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wonder whether they are specific to chaos or rather characteristic of a new insertion mode
of scientific knowledge in contemporary societies.

In conclusion, we can safely make the following two apparently paradoxical claims.
(1) As a unified site of social convergence, the “science of chaos” does not exist any
more and new “interdisciplines” such as complexity theory are staking claims on its social
position. (2) As an outcome of conceptual reconfigurations, chaos brought forth changes
that are irreversible; it has contributed significantly to the emergence a new epistemological
framework; several of the ideas and results it has introduced have become commonplace.
In short, chaos was a transition that was both ephemeral and irreversible.
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Bergé, P., Pomeau, Y., & Dubois-Gance, M. 1994. Des rythmes au chaos. Paris: Odile Jacob.

Bernard, P., & Ratiu, T., Eds. 1977. Turbulence seminar: Berkeley 1976/77, org. A. Chorin, J. E. Marsden, &
S. Smale, Lecture Notes in Mathematics, Vol. 615. Berlin: Springer-Verlag.
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Charney, J. 1962a. Integration of the primitive and balance equations. In International Symposium on Numerical
Weather Prediction (Tokyo, 1960): Proceedings, Sigekata Syôno, Ed., pp. 131–152. Tokyo: Meteorological
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———. 1996a. L’essor des mathématiques appliquées aux Etats-Unis: L’impact de la seconde guerre mondiale.
Revue d’histoire des mathématiques 2, 149–213.
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mathématiques pures et appliquées, 4th ser. 17, 333–375.

Derrida, B., Gervois, A., & Pomeau, Y. 1977. Itérations d’endomorphismes de la droite réelle et représentation
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Galison, P. 1997. Image and logic: A material culture of microphysics. Chicago: Chicago Univ. Press.

Gennes, P.-G. de. 1975. Phase transition and turbulence: An introduction. In Fluctuations, instabilities, and
phase transitions: Proceedings of the NATO Advanced Study Institute held in Geilo, Norway, April 1975,
T. Riste, Ed., pp. 1–18. New York: Plenum.

Gibbons, M., Limoges, C., Nowotny, H. Schwartzman, S., Scott, P., & Trow, M. 1994. The new production of
knowledge: The dynamics of science and research in contemporary societies. London: Sage.
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Blanchard/Berlin: Akademie Verlag.
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Mawhin, J. 1996. The early reception in France of the work of Poincaré and Lyapunov in the qualitative theory
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Monod, J. 1970. Le hasard et la nécessité. Paris: Éditions du Seuil. Chance and necessity: An essay on the natural
philosophy of modern biology, A. Wainhouse, Trans. New York: Knopf, 1971.

Morgan, M. S., & Morrison, M., Eds. 1999. Models as mediators: Perspectives on natural and social sciences.
Cambridge, UK: Cambridge Univ. Press.

Morin, E. 1973. Le paradigme perdu: La nature humaine. Paris: Éditions du Seuil.

———. 1977. La méthode. 1. La nature de la nature. Paris: Éditions du Seuil.
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336 AUBIN AND DAHAN HMAT 29
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——, Ed. 1990. La Querelle du déterminisme. Philosophie de la science aujourd’hui. Paris: Gallimard/Le Débat.
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———. 1968b. Une théorie dynamique de la morphogénèse. In Towards a theoretical biology. I. Prologomena,
C. H. Waddington, Ed., pp. 152–166. Edinburgh: University of Edinburgh Press. Mathematical models of
morphogenesis, W. M. Brookes & D. Rand, Transl., pp. 13–38. Chichester: Horwood, 1983.
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InterÉditions. Semiophysics: A sketch, V. Meyer, Transl. Redwood City: Addison–Wesley, 1990.

———. 1991. Prédire n’est pas expliquer, interview by E. Noel. Paris: Eshel.

Tokaty, G. A. 1971. A history and philosophy of fluidmechanics. Henley-on-Thames, Oxfordshire: G. T. Foulis.

Tonietti, T. 1983. Catastrofi: Una controversia scientifica. Bari: Dedalo.

Toulouse, G., & Pfeuty, P. 1975. Introduction au groupe de renormalisation et à ses applications. Phénomènes
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