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*This book is perhaps the most user-friendly
infroductory text to the essentials of quan-
tum field theory and its many modern
applications. With his physically intuitive
approach, Professor Zee makes A serious
topic more reachable for beginners,
reducing the conceptual barrier while pre- Z
serving enough mathematical details nec-

essary for a firm grasp of the subject.”

—Bei-Lok Hu, University of Maryland
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“Like the famous Feynman Lectures on
Physics, this book has the flavor of a good
blackboard lecture. Zee presents technical
details, but only insofar as they serve the
larger purpose of giving insight into quantum
field theory and bringing out its beauty.”
—Stephen M. Barr, University of Delaware

*This is a fantastic book—exciting, amusing.,
unique, and very valuable.”
—Clifford V. Johnson, University of Durham
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“Tony Zee explains quantum field theory

with a clear and engaging style. For bud-

ding or seasoned condensed maiter physi-

cists alike, he shows us that field theory is a

nourishing nut to be cracked and savored.”

—Matthew P. A. Fisher, Kavili Institute for
Theoretical Physics
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20 I Motivation and Foundation

Figure L.3.1

Disturbing the vacuum

We would like to do something more exciting than watching a boiling sea of
quantum fluctuations. We would like to disturb the vacuum. Some_where in space,
at some instant in time, we would like to create a particle, watch it propagate f9r
a while, and then annihilate it somewhere else in space, at some‘ later instant 1n
time. In other words, we want to create a source and a sink {sometlrpes referred to
collectively as sources) at which particles can be created and annihilated.

To see how to do this, let us go back to the mattress. Bounce up and down
on it to create some excitations. Obviously, pushing on the mass labeled by. a
in the mattress corresponds to adding a term such as J,(1)g, to the potential
V(qy. g2 - -+ » gn)- More generally, we can add Z? J,(t)g,. When we goto ﬁeld
theory this added term gets promoted to J (x)@(x) in the field theory Lagrangian,
according to the promotion table (6). " ;

This so-called source function J (7, %) describes how the mattress 1S being
disturbed. We can choose whatever function we like, corresponding to our freedom
to push on the mattress wherever and whenever we %ike. In Partlcula.r, J(x) can
vanish everywhere in spacetime except in some localized regions. ;

By bouncing up and down on the mattress we can get wave packets gomg off
here and there (Fig. 1.3.1). This corresponds precisely to sources (and sinks) for
particles. Thus, we really want the path integral

z =[ D‘peifd”‘xi%(Btp)z—V(fP)-i-J(X)fP(I)] an
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Free field theory

The functional integral in (11) is impossible to do except when

L(p) = 1[(09)* — m*¢’] (12)

The corresponding theory is called the free or Gaussian theory. The equation of
motion (9) works out to be (3% + m?)¢ = 0, known as the Klein-Gordon equation.”
Being linear, it can be solved immediately to give ¢(¥, 1) = ¢' (@1 =k%) with

w? =k + m? (13)

In the natural units we are using, # = 1 and so frequency o is the same as energy
fiew and wave vector £ is the same as momentum #ik. Thus, we recognize (13) as
the energy-momentum relation for a particle of mass m, namely the sophisticate’s
version of the layperson’s E = me*. We expect this field theory to describe a
relativistic particle of mass m.

Let us now evaluate (11) in this special case:

sz Dy | 0 -mie e T0) (14)

Integrating by parts under the ff d*x and not worrying about the possible contri-
bution of boundary terms at infinity (we implicitly assume that the fields we are
integrating over fall off sufficiently rapidly), we write

7 =f Dweifd%[——%w(&z-«-mz)w-i-hp] (15)

You will encounter functional integrals like this again and again in your study
of field theory. The trick is to imagine discretizing spacetime. You don’t actu-
ally have to do it: Just imagine doing it. Let me sketch how this goes. Replace
the function g (x) by the vector ¢; = ¢(ia) with i an integer and a the lattice
spacing. (For simplicity, I am writing things as if we were in 1-dimensional space-
time. More generally, just let the index i enumerate the lattice points in some
way.) Then differential operators become matrices. For example, d¢(ia) — (1/a)
(i1 —@)=2 i Mije; with some appropriate matrix M. Integrals become
sums. For example, [ d*xJ (x)¢(x) = a* 3, Jig;.

Now, lo and behold, the integral (15) is just the integral we did in (1.2.15)

2 The Klein-Gordon equation was actually discovered by Schridinger before he found
the equation that now bears his name. Later, in 1926, it was written down independently by
Klein, Gordon, Fock, Kudar, de Donder, and Van Dungen.
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] +00 f+oc- o /-HXJ dq dq2 - qu e”‘f"z)q‘A.q-”J‘q
—0o0C —00 —00 :
Qri)N P |
— ( ) ef(:/2)J-A -J (16)
det[A]

The role of A in (16) is played in (15) by the differential operator —(32 +m?).
The defining equation for the inverse A - A l=TorA; A;k' = §;; becomes in the
continuum limit

—@*+mHDx —y) =8V —y) (7

We denote the continuum limit of A;k' by D(x — y) (which we know must be a
function of x — y, and not of x and y separately, since no point in spacetime is
special). Note that in going from the lattice to the continuum Kronecker is replaced
by Dirac. It is very useful to be able to go back and forth mentally between the
lattice and the continuum.

Our final result is

7)) = (i'e’”mff d*xd*y I D=NT) = i W) (18)

with D(x) determined by solving (17). The overall factor €, which corresponds to
the overall factor with the determinant in (16), does not depend on J and, as will
become clear in the discussion to follow, is often of no interest to us. Asarule ]
will omit writing € altogether. Clearly, € = Z(J = 0) so that W (J) is defined by

Z(J) =2 =0y (19)
Observe that

W(J) = f% [f d*xd*yJ(x)D(x — )J(¥) (20)

is a simple quadratic functional of J. In contrast, Z(J ) depends on arbitrarily high
powers of J. This fact will be of importance in Chapter 1.7.

Free propagator

The function D(x), known as the propagator, plays an essential role in quantum
field theory. As the inverse of a differential operator it is clearly closely related to
the Green’s function you encountered in a course on electromagnetism.
Physicists are sloppy about mathematical rigor, but even so, they have to be
careful once in a while to make sure that what they are doing actually makes sense.
For the integral in (15) to converge for large ¢ we replace m? — m? — ie so that
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the integrand contains e [t is a positive infinitesimal®
grand contains a factor e , where ¢ is a positive infinitesimal” we
will let tend to zero later.

We can solve (17) easily by going to momentum space and recalling the repre-
sentation of the Dirac delta function

s (x —y) = %er‘ku)) 1)
The solution is
d*k eikx=y)
Q)4 k2 —m? +ie

D(x —y)= (22)
which you can check by plugging into (17). Note that the so-called ie prescription
we just mentioned is essential; otherwise the k integral would hit a pole.

To evaluate D(x) we first integrate over kY by the method of contours. De-

fine w;, = +v k2 + m?. The integrand has two poles in the complex k° plane, at

=+, fa)f — ie, which in the £ — 0 limit is equal to +w, — i¢ and —wy + ie. For X0
positive we can extend the integration contour that goes from —o0 to +00 on the
real axis to include the infinite semicircle in the upper half-plane, thus enclosing
the pole at —wy, + ie and giving —i f[d3k/(2;r)32wk]e"(”’k“"'}). For x” negative
we close the contour in the lower half-plane. Thus
3 - -
D(x) = —i d’k [e—i(m“—k-f)g(xl)) +ei(wklfk»§}9(_x0)] (23)
(27)3 2w,

Physically, D(x) describes the amplitude for a disturbance in the field to prop-
agate from the origin to x. We expect drastically different behavior depending
on whether x is inside or outside the lightcone. Without evaluating the inte-
gral we can see roughly how things go. For x = (¢, 0) with, say, r > 0, D(x) =
—i [[d*k/(27) 2wy ]e ¥ is a superposition of plane waves and thus we should
have oscillatory behavior. In contrast, for x" =0, we have, upon interpreting
00)=1, Dx)=—i [ |:d3k/(23r)32v k2 + mz] e %% and the square root cut
starting at &=im leads to an exponential decay ~ e Mm%l as we would expect. Clas-
sically, a particle cannot get outside the lightcone, but a quantum field can “leak™

out over a distance of the order m .

Exercises

1.3.1. Verify that D(x) decays exponentially for spacelike separation.

1.3.2. Work out the propagator D(x) for a free-field theory in (1 + I)-dimensional
spacetime and study the large x' behavior for 20 =0.

3 As is customary, ¢ is treated as generic, so that ¢ multiplied by any positive number is
still €.



Chapter 1.4

From Field to Particle to Force

From field to particle

In the previous chapter we obtained for the free theory
1
WhN=-3 [ [ d*xd*yJ (x)D(x = I () (1

which we now write in terms of the Fourier transform J (k) = [ d*xe ™ J (x):

1 [ d'% 1
W) = — * k 2
D==3] e’ “miis @

[Note that J (k)* = J(—k) for J(x) real.]

We can jump up and down on the mattress any way we like. In other words, we
can choose any J(x) we want, and by exploiting this freedom of choice, we can
extract a remarkable amount of physics.

Consider J (x) = J,(x) + Jo(x), where J;(x) and J,(x) are concentrated in two
local regions 1 and 2 in spacetime (Fig. 1.4.1). Then W (J) contains four terms, of
the form J{'Jy, J3 Jp, J{Jp, and J3J;. Letus focus on the last two of these terms,
one of which reads

Liglod'k 1

W =5 [ G h® G h® ®)

We see that W (J) is large only if J;(x) and J,(x) overlap significantly in their
Fourier transform and if in the region of overlap in momentum space k* — m*
almost vanishes. There is a “resonance type” spike at k> = m?, that s, if the energy-
momentum relation of a particle of mass m is satisfied. (We will use the language of
the relativistic physicist, writing “momentum space” for energy-momentum space,
and lapse into nonrelativistic language only when the context demands it, such as
in “energy-momentum relation.”)

We thus interpret the physics contained in our simple field theory as follows:
In region 1 in spacetime there exists a source that sends out a “disturbance in the
field,” which is later absorbed by a sink in region 2 in spacetime. Experimentalists
choose to call this disturbance in the field a particle of mass m. Our expectation

~ A
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x|

Figure L4.1

based on the equation of motion that the theory contains a particle of mass m is
fulfilled.

A bit of jargon: When k? = m?, k is said to be on mass shell. Note, however,
that in (3) we integrate over all k, including values of k far from the mass shell.
For arbitrary k, it is a linguistic convenience to say that a “virtual particle” of
momentum k propagates from the source to the sink.

From particle to force

We can now go on to consider other possibilities for J(x) (which we will refer
to generically as sources), for example, J(x) = J;(x) + Jo(x), where J,(x) =
8®)(& — %,). In other words, J(x) is a sum of sources that are time-independent
infinitely sharp spikes located at ¥, and X, in space. (If you like more mathematical
rigor than is offered here, you are welcome to replace the delta function by lumpy
functions peaking at ¥,,. You would simply clutter up the formulas without gaining
much.) More picturesquely, we are describing two massive lumps sitting at % and
¥, on the mattress and not moving at all [no time dependence in J (x)].

What do the quantum fluctuations in the field ¢, that is, the vibrations in the
mattress, do to the two lumps sitting on the mattress? If you expect an attraction
between the two lumps, you are quite right.

As before, W (J) contains four terms. We neglect the “self-interaction” term
JyJ; since this contribution would be present in W regardless of whether J; is
present or not. We want to study the interaction between the two “massive lumps”
represented by J; and J,. Similarly we neglect J,J5.

Plugging into (1) and doing the integral over d*x and d°y we immediately obtain
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dE® 0. . 3 ek -R)
W(J)Z_.[f dx[)dy(}f _(:"Arl("i-\]“ . 3 ﬂe 7 . 4
2 2m)° ks —m? +ie

(The factor 2 comes from the two terms J,J; and J;J,. ) Integrating over y" we
get a delta function setting k” to zero (so that & is certainly not on mass shell, to
throw the jargon around a bit). Thus we are left with

d3k ei!:-(f,—,(:)
)=} dx° S
e (f x) @5 B 1 m? ©)

Note that the infinitesimal ie can be dropped since the denominator k2 + m? is
always positive.

The factor ([ dx") should have filled us with fear and trepidation: an integral
over time, it seems to be infinite. Fear not! Recall that in the path integral formalism
Z=e€ e represents (0 e~'H7 |0) = ¢ 'ET, where E is the energy due to the
presence of the two sources acting on each other. The factor ( [ dx") produces
precisely the time interval 7. All is well. Setting i W = i ET we obtain from (5)

i s
PRl . N B ©)
(27)3 k2 4+ m2

This energy is negative! The presence of two delta function sources, at ¥, and
X5, has lowered the energy. In other words, the two sources attract each other by
virtue of their coupling to the field ¢ . We have derived our first physical result in
quantum field theory!

We identify E as the potential energy between two static sources. Even without
doing the integral we see that as the separation X} — x> between the two sources
becomes large, the oscillatory exponential cuts off the integral. The characteristic
distance is the inverse of the characteristic value of k, which is m. Thus, we expect
the attraction between the two sources to decrease rapidly to zero over the distance
1/m.

The range of the attractive force generated by the field ¢ is determined inversely
by the mass m of the particle described by the field. Got that?

The integral is done in the appendix to this chapter and gives

E=—— g mr 1)

The resultis as we expected: The potential drops off exponentially over the distance
scale 1/m. Obviously, d E /dr > 0: The two massive lumps sitting on the mattress
can lower the energy by getting closer to each other.

What we have derived was one of the most celebrated results in twentieth-
century physics. Yukawa proposed that the attraction between nucleons in the
atomic nucleus is due to their coupling to a field like the ¢ field described here.
The known range of the nuclear force enabled him to predict not only the existence
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of the particle associated with this field, now called the 7 meson' or the pion, l?ut
its mass as well. As you probably know, the pion was eventually discovered with

essentially the properties predicted by Yukawa.

Origin of force

That the exchange of a particle can produce a force was one of the most profound
conceptual advances in physics. We now associate a particle with each of the kn(?wn
forces: for example, the photon with the electromagnetic force and. the graviton
with the gravitational force; the former is experimentally well established and the
latter while it has not yet been detected experimentally hardly anyone doubts its
existence. We will discuss the photon and the graviton in the next chapter, but
we can already answer a question smart high school students often ask: thy do
Newton'’s gravitational force and Coulomb’s electric force both obey the 1/r< law?

We see from (7) that if the mass m of the mediating particle vanishes, the.force
produced will obey the 1/ r2 law. If you trace back over our derivation, you will see
that this comes about from the fact that the Lagrangian density for the simplest field
theory involves two powers of the spacetime derivative 3 (since any term involving
one derivative such as ¢ d¢ is not Lorentz invariant). Indeed, the power dependence

of the potential follows simply from dimensional analysis: [ d*k(e'** /k*) ~1/r.

Connected versus disconnected

We end with a couple of formal remarks of importance to us only in Chapter 1.7.
First, note that we might want to draw a small picture Fig.(1.4.2) to represent the
integrand J (x)D(x — y)J(y) in W(J): A disturbance propagates from y to x (or
vice versa). In fact, this is the beginning of Feynman diagrams! Second, recall that

00 W J n
ZN=2Ud=0))Y [’—%)]
=0 iy

For instance, the n = 2 term in Z(J)/Z(J = 0) is given by

I B
% (f;) [[[[ d*x,d*xyd*x3d*xy D(x; — x3)

D(x3 — x4)J (x)J (x2)J (x3) J (x4)

The integrand is graphically described in Figure 1.4.3. The process is said to be
disconnected: The propagation from x; to x, and the propagation from x; to x4

I The etymology behind this word is quite interesting (A. Zee, Fearful Symm.erry: see pp.
169 and 335 to learn, among other things, the French objection and the connection between

meson and illusion).
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Figure 1.4.2

Figure 1.4.3
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proceed independently. We will come back to the difference between connected
and disconnected in Chapter .7.

Appendix

Writing X = (¥, — X) and u = cos 6 with 9 the angle between k and ¥, we evaluate the
integral in (6) spherical coordinates (with k = |k| and r = |%]) to be

[s.] +1 ikru . o0 ‘
I= ! f dk k? du-e—zi_#f dkkﬂ (8)
2m)% Jo -1 K4+m?2  @2m)kir Jo k2 4+ m?

Since the integrand is even, we can extend the integral and write it as

o ] o0 .
1[ T ULLLC A N RS
2 J o 4+m? 2 J-w k2 + m?

Since r is positive, we can close the contour in the upper half-plane and pick up the pole at
+im, obtaining (1/2i)(2mi)(im/2im)e™™" = (m/2)e~™". Thus, I = (1/4mr)e ™"
Exercise

L.4.1. Calculate the analog of the inverse square law in a (2 4 1)-dimensional universe,
and more generally in a (D + 1)-dimensional universe.



Chapter 1.5

Coulomb and Newton:
Repulsion and Attraction

Why like charges repel

We suggested that quantum field theory can explain both Newton’s gravitational
force and Coulomb’s electric force naturally. Between like objects Newton'’s force
is attractive while Coulomb’s force is repulsive. Is quantum field theory “smart
enough” to produce this observational fact, one of the most basic in our under-
standing of the physical universe? You bet!

We will first treat the quantum field theory of the electromagnetic field, known
as quantum electrodynamics or QED for short. In order to avoid complications
at this stage associated with gauge invariance (about which much more later) I
will consider instead the field theory of a massive spin 1 meson, or vector meson.
After all, experimentally all we know is an upper bound on the photon mass,
which although tiny is not mathematically zero. We can adopt a pragmatic attitude:
Calculate with a photon mass m and set m = 0 at the end, and if the result does
not blow up in our faces, we will presume that it is OK.!

Recall Maxwell’s Lagrangian for electromagnetism £ = —}F, F"", where
F,,=38,A,—d,A, with A,(x) the vector potential. You can see the reason for
the important overall minus sign in the Lagrangian by looking at the coefficient
of (3yA;)%, which has to be positive, just like the coefficient of (dy¢)? in the
Lagrangian for the scalar field. This says simply that time variation should cost
a positive amount of action.

I will now give the photon a small mass by changing the Lagrangian to L =
—}F,,F* + %mzA“A“ + A, J*. (The mass term is written in analogy to the
mass term m2@? in the scalar field Lagrangian; we will see later that it is indeed
the photon mass.) I have also added a source J#(x) ,which in this context is more
familiarly known as a current. We will assume that the current is conserved so that
a,J n=0.

I'When I took a field theory course as a student with Sidney Coleman this was how he
treated QED in order to avoid discussing gauge invariance.
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Well, you know that the field theory of our vector meson is defined by the path
integral Z = [ DA &5 = ¢/W(/) with the action

S(A):fa"‘xL=fa‘4x{2lA“[(82+m2)g“”—3"3”}A,,+AMJ“} 1

The second equality follows upon integrating by parts [compare (1.3.15)].

By now you have learned that we simply apply (I.3.16). We merely have to find
the inverse of the differential operator in the square bracket; in other words, we
have to solve

[ +m?)g"” — 3#9"1D,; (x) = 816 (x) )
As before [compare (1.3.17)] we go to momentum space by defining

d*k

ikx
aryi Db

Duk(x) =

Plugging in, we find that [—(k*> — m?)g"’ + k*k"]D,, (k) = 8", giving

—&un t kukk/mz

Dul(k) = 3B m2

(3)
This is the photon, or more accurately the massive vector meson, propagator. Thus

4 - k,k,/m?
W)= 1 d*k JE ) Buv + Kk, /m

2J) @m)* k2 —m?+ie

J" (k) “

Since current conservation d, J#(x) = 0 gets translated into momentum space
as kw.] (k) w 0, we can throw away the k,k, term in the photon propagator. The
effective action simplifies to

1 d*k 1

W(J) == R
=3 (2n)4J O e e ® ©

No further computation is needed to obtain a profound result. Just compare this
result to (1.4.2). The field theory has produced an extra sign. The potential energy
between two lumps of charge density J°(x) is positive. The electromagnetic force
between like charges is repulsive!

We can now safely let the photon mass m go to zero thanks to current conser-
vation, [Note that we could not have done that in (3).] Indeed, referring to (1.4.7)
we see that the potential energy between like charges is

1 1
E=—0e" —» — 6
4mr 4mr ©)
To accommodate positive and negative charges we can simply write J# =
J ;‘ — JI*. We see that a lump with charge density JS is attracted to a lump with

charge density J.
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Bypassing Maxwell

Having done electromagnetism in two minutes flat let me now do gravity. Let us
move on to the massive spin 2 meson field. In my treatment of the massive spin 1
meson field T took a short cut. Assuming that you are familiar with the Maxwell
Lagrangian, I simply added a mass term to it and took off. But I do not feel com-
fortable assuming that you are equally familiar with the corresponding Lagrangian
for the massless spin 2 field (the so-called linearized Einstein Lagrangian, which
I will discuss in a later chapter). So here I will follow another strategy.

I invite you to think physically, and together we will arrive at the propagator
for a massive spin 2 field. First, we will warm up with the massive spin 1 case.

In fact, start with something even easier: the propagator D(k) = 1/ (k% —m?)
for a massive spin 0 field. It tells us that the amplitude for the propagation of a
spin 0 disturbance blows up when the disturbance is almost a real particle. The
residue of the pole is a property of the particle. The propagator for a spin 1 field
D,, carries a pair of Lorentz indices and in fact we know what it is from (3):

—GUA

D) = 7% )
where for later convenience we have defined
k k
G k) =gy — =5 ®)
m

Let us now understand the physics behind G ;. T expect you to remember the
concept of polarization from your course on electromagnetism. A massive spin
1 particle has three degrees of polarization for the obvious reason that in its rest
frame its spin vector can point in three different directions. The three polarization
vectors £ are simply the three unit vectors pointing along the x, y, and z axes,

respectively (a = 1,2, 3):¢’ = (0, 1,0,0), e =(0,0,1,0), e’ =1(0,0,0,1).
In the rest frame k* = (m, 0, 0, 0) and so

mola)
kie =0 ®

Since this is a Lorentz invariant equation, it holds for a moving spin 1 particle as
well. Indeed, with a suitable normalization condition this fixes the three polariza-
tion vectors eff)(k) for a particle with momentum k.

The amplitude for a particle with momentum k and polarization a to be created
at the source is proportional to s;")(k), and the amplitude for it to be absorbed
at the sink is proportional to ef,“) (k). We multiply the amplitudes together to get
the amplitude for propagation from source to sink, and then sum over the three
possible polarizations. Now we understand the residue of the pole in the spin 1
propagator D, (k): It represents y_, £\* (k) £ (k) . To calculate this quantity,
note that by Lorentz invariance it can only be a linear combination of g, and kk; .
The condition k*¢'® = 0 fixes the combination as g, — k,kx /m?. We evaluate
the left-hand side for k at rest with v = A = 1, for instance, and fix the overall and
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all-crucial sign to be —1. Thus

Y DU h) = —G, (k) = — (gv,\ Lt k”’?) (10)
" m

We pave thus constructed the propagator D, (k) for a massive spin 1 particle,
bypassing Maxwell. Onward to spin 2! We want to similarly bypass Einstein.

Bypassing Einstein
A massive spin 2 particle has 5 (2 - 2 + 1 =15, remember?) degrees of polarization,

characterized by the five polarization tensors sﬁ"} (@a=1,2,-.-,5) symmetric in
the indices p and v satisfying

Ke@ =0 (11)
and the tracelessness condition
ghe =0 (12)

Let’s count as a check. A symmetric Lorentz tensor has 4 - 5/2 = 10 components.
The four conditions in (11) and the single condition in (12) cut the number of com-
ponents down to 10 — 4 — 1 =5, precisely the right number. (Just to throw some
jargon around, remember how to construct irreducible group representations? If
not, read Appendix C.) We fix the normalization of €,, by setting the positive

quantity 3, £\9 (k)e'? (k) = 1.
So, in analogy with the spin 1 case we now determine ) _, sffv)(k)si? (k). We
have to construct this object out of g,,, and k,,, or equivalently G wv and k. This

quantity must be a linear combination of terms such as G,,G;,, G wkiks, and
so forth. Using (11) and (12) repeatedly (Exercise 1.5.1) you will easily find that

D e Dhe) (k) = (GuGry + G s G) — 3G, Go (13)
a

'I?he overall sign and proportionality constant are determined by evaluating both
sides for 4 = A = 1 and v = ¢ = 2, for instance.
Thus, we have determined the propagator for a massive spin 2 particle

(G,ulGucr + G;_wGuA) - %G,qukor

Dy 200 = g

(14)

Why we fall

We are now ready to understand one of the fundamental mysteries of the universe:
Why masses attract.
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Recall from your courses on electromagnetism and s:pecial relativity that the
energy or mass density out of which mass is composed is part of a 'stress—e‘nc'rgy
tensor T*". For our purposes, in fact, all you need to rememl:fer is that it is a
symmetric tensor and that the component T% is the energy density. -

To couple to the stress-energy tensor, we need a tensor field ¢;,, symetnc in
its two indices. In other words, the Lagrangian of the world should contain a tc.:rm
like ¢,,, T#". This is in fact how we know that the graviton, the Qartwle resppnmble
for gravity, has spin 2, just as we know that the photon, the part1{:l€ respon‘mble.f?r
electromagnetism and hence coupled to the current J#, has spin 1. In Emstem-s
theory, which we will discuss in a later chapter, ,,,, is of course part of the metric
tensor. .

Just as we pretended that the photon has a small mass to avoid having to dlSCl..lSS
gauge invariance, we will pretend that the graviton has a small mass to avoid having
to discuss general coordinate invariance. Aha, we just found the propagator for a
massive spin 2 particle. So let’s put it to work.

In precise analogy to (4)

4 —8uy + kK, /m?
Wy =1 A s oy ZBw ukv/

JV(k 15)
2] @m)? k2 —m?+ic ® (

describing the interaction between two electromagnetic currents, the interaction
between two lumps of stress energy is described by

W(T) =
1 d4k Tﬂ”(k)* (G‘_&AGUO. -+ Gpm'Gul) b %G#UG;«J Tlf’(k) (16)
2] @n)t K2 —m? +ie

From the conservation of energy and momentum 3,7""(x) =0 and hence
k, TH"(k) = 0, we can replace G,,in(16)by g,,,.

Now comes the punchline. Look at the interaction between two lumps of energy
density 7%, We have from (16) that

1 f d*% .. 1+1-3
- 3T 17)
Wi 2[(211)4T 2 k2 —m2+ie ® (

Comparing with (5) and using the well-known fact that (1+ 1 — ) > 0, we see
that while like charges repel, masses attract. Trumpets, please!

2 For the moment, I ask you to ignore all subtleties and simply assume that in order to
understand gravity it is kosher to let m — 0. I will give a precise discussion of Einstein’s
theory of gravity in Chapter VIIL.1.
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The universe

It is difficult to overstate the importance (not to speak of the beauty) of what we
have learned: The exchange of a spin 0 particle produces an attractive force, of
a spin 1 particle a repulsive force, and of a spin 2 particle an attractive force,
realized in the hadronic strong interaction, the electromagnetic interaction, and the
gravitational interaction, respectively. The universal attraction of gravity produces
an instability that drives the formation of structure in the early universe.’ Denser
regions become denser yet. The attractive nuclear force mediated by the spin
0 particle eventually ignites the stars. Furthermore, the attractive force between
protons and neutrons mediated by the spin O particle is able to overcome the
repulsive electric force between protons mediated by the spin 1 particle to form a
variety of nuclei without which the world would certainly be rather boring. The
repulsion between likes and hence attraction between opposites generated by the
spin 1 particle allow electrically neutral atoms to form.

The world results from a subtle interplay among spin 0, 1, and 2.

In this lightning tour of the universe, we did not mention the weak interaction.
In fact, the weak interaction plays a crucial role in keeping stars such as our sun
burning at a steady rate.

Degrees of freedom

Now for a bit of cold water: Logically and mathematically the physics of a particle
with mass m # 0 could well be different from the physics with m = 0. Indeed,
we know from classical electromagnetism that an electromagnetic wave has 2
polarizations, that is, 2 degrees of freedom. For a massive spin 1 particle we can go
to its rest frame, where the rotation group tells us that there are 2.1+ 1 =3 degrees
of freedom. The crucial piece of physics is that we can never bring the massless
photon to its rest frame. Mathematically, the rotation group 5 O (3) degenerates into
$0(2), the group of 2-dimensional rotations around the direction of the photon’s
momentum.

We will see in Chapter II.7 that the longitudinal degree of freedom of a massive
spin 1 meson decouples as we take the mass to zero. The treatment given here
for the interaction between charges (6) is correct. However, in the case of gravity,
the % in (17) is replaced by 1 in Einstein’s theory, as we will see Chapter VIIL1.
Fortunately, the sign of the interaction given in (17) does not change. Mute the
trumpets a bit.

3 A good place to read about gravitational instability and the formation of structure in
the universe along the line sketched here is in A. Zee, Einstein’s Universe (formerly known
as An Old Man’s Toy).



36 I. Motivation and Foundation
Appendix

Pretend that we never heard of the Maxwell Lagrangian. We want to construct a relativistic
Lagrangian for a massive spin 1 meson field. Together we will discover Maxwell. Spin
1 means that the field transforms as a vector under the 3-dimensional rotation group.
The simplest Lorentz object that contains the 3-dimensional vector is obviously the 4-
dimensional vector. Thus, we start with a vector field A, (x).

That the vector field carries mass m means that it satisfies the field equation

(*+mHA, =0 (18)

A spin 1 particle has 3 degrees of freedom [remember, in fancy language, the representation
J of the rotation group has dimension (2 + 1); here j = 1.] On the other hand, the field
A, (x) contains 4 components. Thus, we must impose a constraint to cut down the number
of degrees from 4 to 3. The only Lorentz covariant possibility (linear in A u)is

3,A* =0 (19)

It may also be helpful to look at (18) and (19) in momentum space, where they read
(k* —m*)A,, (k) = 0 and k, A*(k) = 0. The first equation tells us that k> = m? and the
second that if we go to the rest frame k* = (m, f)) then A° vanishes, leaving us with 3
nonzero components A’ withi = 1, 2, 3.

The remarkable observation is that we can combine (18) and (19) into a single equation,
namely

(g% — 3"8")A, + m*A* =0 (20)

Verify that (20) contains both (18) and (19). Act with d,, on (20). We obtain mZB#A” =0,
which implies that 8, A" =0 . (At this step it is crucial that m % 0 and that we are not
talking about the strictly massless photon.) We have thus obtained (19 ); using (19) in (20)
we recover (18).

We can now construct a Lagrangian by multiplying the left-hand side of (20) by +314,
(the ; is conventional but the plus sign is fixed by physics, namely the requirement of
positive kinetic energy); thus

L=3A,13* + m>)gh" — 3"3"1A, (21)

Integrating by parts, we recognize this as the massive version of the Maxwell Lagrangian.
In the limit m — 0 we recover Maxwell.

A word about terminology: Some people insist on calling only Fy,afieldand A, a
potential. Conforming to common usage, we will not make this fine distinction. For us, any
dynamical function of spacetime is a field.

Exercises

L5.1. Write down the most general form for 3, s}fv} (k)si‘;)(k) using symmetry repeat-

edly. For example, it must be invariant under the exchange {1v <> Ao'}. You might
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end up with something like
AG,,Gyo + B(GuGop + G uuGy) + C(G kk, + kk,G)
+ D(k,u,kAGva + k,ukanA + kvkaG,uJ\ + kvk}\Gp:a) + Ekukvkkka (22)

with various unknown A, - - -, E. Apply k* 3", sL“J(k)si‘;)(k) =0 and find out
what that implies for the constants. Proceeding in this way, derive (13).



