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Fully 3-dimensional computations of flow through a long pipe demand a huge num-
ber of degrees of freedom making it very expensive to explore parameter space and
difficult to isolate the structure of the underlying dynamics. We therefore introduce a
‘2 1

2
-dimensional’ model of pipe flow which is a minimal 3-dimensionalisation of the ax-

isymmetric case: only sinusoidal variation in azimuth plus azimuthal shifts are retained,
yet the same dynamics familiar from experiments are found. In particular the model
retains the subcritical dynamics of fully resolved pipe flow, capturing realistic localised
‘puff’-like structures which can decay abruptly after long times, as well as global ‘slug’
turbulence. Relaminarisation statistics of puffs reproduce the memoryless feature of pipe
flow and reiterate the existence of a critical Reynolds number above which they become
permanent, provided that the pipe is long enough to permit localisation. In a short pipe,
exact travelling-wave solutions are found nearby to flow trajectories on the boundary be-
tween laminar and turbulent flow, with visitations occurring more frequently as the flow
rate is increased. In a long pipe, the attracting state on the laminar-turbulent boundary
is a localised structure which resembles a smoothened puff. This ‘edge’ state remains
localised even for Reynolds numbers where the turbulent state is global suggesting that
a slug is a destabilised puff rather than being a completely separate state.

1. Introduction

Laminar flow through a pipe is possible under controlled laboratory conditions up to
flow rates well beyond those at which turbulence is typically observed. Pfenniger (1961)
achieved laminar flow at Reynolds numbers, Re := UD/ν, as high as 100 000, where U
is the mean axial speed, D the diameter and ν the kinematic viscosity, indicating that,
rather than the transition to turbulence being via a linear instability, some other mech-
anism must be responsible. Given an initial disturbance of sufficiently large amplitude,
self-sustained turbulence is observed for Re of approximately 2000. This turbulent flow
exhibits distinct spatial structures at different flow rates. For Re up to around 2250 the
region of turbulence remains localised, with a length of approximately 20D, and is re-
ferred to as a ‘puff’ (Wygnanski & Champagne 1973). At larger flow rates these puffs
slowly delocalise by splitting into two or more puffs. At much larger Re, of around 2800,
the disturbances develop into a rapidly expanding active region of turbulence, referred
to as a ‘slug’. No explanation has been offered that predicts such a progression in flow
regimes and many issues remain unresolved.
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The dynamics of perturbations at transitional Reynolds numbers is believed to be
strongly influenced by a rapidly increasing number of branches of exact solutions that
have been found to appear at these Re (Faisst & Eckhardt 2003; Wedin & Kerswell 2004;
Kerswell 2005; Pringle & Kerswell 2007). At Re < 1750, puffs are observed to suddenly
and unexpectedly decay in experiments (Peixinho & Mullin 2006), and it has been sug-
gested that the turbulent state wanders between these unstable solutions before relam-
inarising (Faisst & Eckhardt 2004). The same data also suggest that the mean lifetime
for a puff becomes infinite at Re = 1750 indicating that the puffs become permanent
states at this point (Peixinho & Mullin 2006). This critical Re has been reproduced to
within 7% using numerical computations which adopted the experimental protocol for
initiating the puffs and worked within a long periodic pipe of 50D, so as to realistically
capture the puff structure (Willis & Kerswell 2007b). However, experiments using a dif-
ferent way of initiating the puffs and designed to capture longer puff transients claim
that no such critical Re exists (Hof et al. 2006). Simulations also presented there in a
short ≈ 6D pipe appear to support this conclusion. The obvious question is then whether
numerically-simulated turbulence which fills a short pipe has the same relaminarisation
characteristics as localised puff turbulence captured in longer numerical domains. A com-
plete statistical study using fully-resolved 3-dimensional computations across a spectrum
of periodic pipe domains remains prohibitively expensive, whereas a survey using a real-
istic model system could provide a clarifying demonstration of difference.

Evidence has also emerged recently that the many of the exact solutions known thus far
sit on a separatrix between laminar and turbulent states, forming an ‘edge’ to the chaotic
region of phase space (Schneider et al. 2007b; Kerswell & Tutty 2007; Willis & Kerswell
2007a; Duguet et al. 2007) (see Itano & Toh (2001); Wang et al. (2007); Viswanath (2007)
for similar observations in channel and plane Couette flow). Schneider et al. (2007) have
examined the dynamics of flow restricted to lie in this separatrix in a short 5D pipe,
finding at long times a chaotic attractor apparently centred on a simple travelling wave
solution (Pringle & Kerswell 2007). In such a short pipe, the turbulence naturally fills
the pipe when triggered and the laminar-turbulent boundary endstate, or ‘edge’ state, is
also a global state. In a longer (> 25D) pipe, however, localised puffs are the naturally
triggered state at low Re which raises the issue of how the corresponding ‘edge’ state
looks and how its variation with Re. For example, is it initially localised and does it lose
localisation at the same Re as the turbulent puff? Again, a realistic model system can
suggest probable answers to these questions quickly.

The use of model systems is well established in plane Couette flow, which exhibits the
same abrupt subcritical transition behaviour as pipe flow. Several approaches have been
designed to reduce the number of degrees of freedom of this problem in order develop
more tractable models. The minimal flow unit introduced by Jiménez & Moin (1991) has
been useful in identifying the key components that lead to self-sustaining turbulence in
a very small domain (Hamilton et al. 1995). The model by Lagha & Manneville (2007)
severely truncates the degrees of freedom in the cross-stream direction, but captures
spanwise and streamwise spatial structures observed in plane Couette flow. Using this
model, attempts have been made to measure the lifetime of localised turbulence and to
determine the characteristic structures seen during the relaminarisation process itself.
Currently, such calculations would be prohibitively expensive for fully 3-dimensional
models. Severe truncation to only a few Fourier modes in the tilted cross-wise direction
has also proven useful in determining the origin of oblique bands in plane Couette flow
(Barkley & Tuckerman 2007).

The aim of this article is to establish a model system which preserves the rich dynamics
of pipe flow but reduces the number of degrees of freedom of the system, so considerably
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that the two current issues mentioned above can be probed: (a) Do the relaminarisation
statistics for numerically-simulated turbulent puffs differ in character between short and
long pipes? In particular, do long-pipe simulations indicate a critical Re for sustained
puffs whereas short-pipe simulations not? (b) What does the attracting ‘edge’ state in
the laminar-turbulent boundary look like in a long pipe? Is it localised like a puff and, if
so, does it delocalise at the same Re as a puff?

Previous attempts to find such a reduced model have focused on axisymmetric pipe flow
(Patera & Orszag 1981) and helical pipe flow (Landman 1990a,b), but in both cases the
subcritical dynamics of pipe flow is not retained. We briefly revisit these calculations to
search afresh for evidence of turbulent transients before introducing a new 2 1

2
-dimensional

model which retains the salient features of fully 3-dimensional pipe flow. The presentation
starts by discussing the formulation used for the calculations performed throughout this
and earlier work (Willis & Kerswell 2007b,a).

2. Formulation

For lengths scaled by the diameter D and velocities by the fixed mean axial speed U ,
the non-dimensional form of the Navier–Stokes equation is

(∂t + u · ∇)u = −∇p+
32

Re
(1 + β) ẑ +

1

Re
∇

2u, (2.1)

where the non-dimensional variable β is the fractional pressure, additional to the laminar
flow, required to maintain a steady U . A Reynolds number Rep, based on the applied
pressure gradient, is given by Rep = Re (1 + β). Our numerical formulation is based
on the potential formulation of Marqués (1990), which is further re-expressed to ease
numerical solution. An averaging operator is introduced in the axial direction, z, which
is periodic over a length 2π/α,

Pz ( · ) =
α

2π

∫ 2π/α

0

( · ) dz. (2.2)

The velocity, u, is then expressed in terms of a potential ψ = ψ(r, θ, z), the axially
independent flow h = h(r, θ) and a purely axially-dependent potential φ = φ(r, θ, z),

u = h ẑ + ∇ ∧ (ẑψ) + ∇ ∧ ∇ ∧ (ẑφ), (2.3)

such that Pz φ = 0. Writing the nonlinear terms as b = (u ·∇)u, the governing equations
become

(∂t − 1

Re
∇2)h = −Pz ẑ · b,

(∂t − 1

Re
∇2)∇2∇2

hφ = −(1 − Pz) ẑ · ∇ ∧ ∇ ∧ b, (2.4)

(∂t − 1

Re
∇2)∇2

hψ = ẑ · ∇ ∧ b,

where ∇2
h := ∇2−∂zz. For a boundary condition u = g(θ, z), conditions on the potentials

are

h = 0, φ = 0, −∂rψ = gθ, −∇2
hφ = gz, (2.5)

1

r ∂θψ + ∂rzφ = gr, ∂rz∇2
hψ − 1

r∂θ∇2∇2
hφ = Re r̂ · ∇ ∧ b − ∂zz r̂ · ∇ ∧ g

(see appendix A for details). Note that r̂ ·∇∧ b = 0 on the boundary unless an internal
body force is added. Variables are expanded in Fourier modes,

A(r, θ, z) =
∑

k,m

Akm(r) exp(iαkz + imθ). (2.6)
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As the variables are real, their coefficients satisfy the property Akm = A∗
−k,−m, where

∗ indicates the complex conjugate, and therefore only coefficients with m > 0 are kept.
Numerical truncation in k and m is discussed in following sections. The operator Pz

picks out k = 0 modes and (1 − Pz) retrieves k 6= 0 modes. In addition to the boundary
conditions (2.5), regularity at the axis imposes symmetries on the Fourier modes across
the axis. For the potentials, each mode is even(odd) in r if m is even(odd).

The system for h is simple to solve as it is second order and has two boundary conditions
on h, one at the boundary and a symmetry condition at the axis. The system for ψ and
φ is more difficult to invert as it is coupled through the boundary condition. To enable
numerical solution we reformulate the system for ψ and φ into a set of five equations,
each second-order in r. Each Fourier mode for ψ,φ is expanded as the superposition

ψ(r) = ψ̄(r) + aψH(r), (2.7)

φ(r) = φ̄(r) + b φH(r),

where the coefficients a and b are scalars. Subscripts k and m have been dropped. The
barred and superscripted functions solve two distinct systems. Firstly,

(∂t − 1

Re
∇2) φ̄2 = −(1 − Pz) ẑ · ∇ ∧ ∇ ∧ b, (2.8)

∇2φ̄1 = φ̄2,

∇2
hφ̄ = φ̄1,

(∂t − 1

Re
∇2) ψ̄1 = ẑ · ∇ ∧ b, (2.9)

∇2
hψ̄ = ψ̄1,

with boundary conditions

φ̄2 = φ̄ = 0, −φ̄1 = gz, ∂rψ̄1 = 0,

{

ψ̄ = 0 if m = 0
−∂rψ̄ = gθ if m 6= 0

, (2.10)

where ∇2 ≡ (1/r)∂r + ∂rr −m2/r2 − α2k2 and ∇2
h ≡ (1/r)∂r + ∂rr −m2/r2. This time-

dependent system is written in matrix-vector form, according to the time and radial
discretisation, then inverted sequentially for φ̄2 → φ̄1 → φ̄ and ψ̄1 → ψ̄. The second
homogenised system is

(∂t − 1

Re
∇2)φH

2 = 0, (2.11)

∇2φH
1 = φH

2 ,

∇2
hφ

H = φH
1 ,

(∂t − 1

Re
∇2)ψH

1 = 0, (2.12)

∇2
hψ

H = ψH
1 ,

with boundary conditions

φH
2 = 1, φH

1 = φH = 0, ∂rψ
H
1 = 1,

{

ψH = 0 if m = 0
∂rψ

H = 0 if m 6= 0
. (2.13)

As this system has no time-dependent b, solutions with superscript H may be pre-
computed. The original boundary conditions on φ and ψ are satisfied upon reconstruc-
tion from the barred and superscripted variables. Two boundary conditions are satis-
fied by construction for all cases: as φ̄ and φH satisfy trivial boundary conditions, then
φ = φ̄+ b φH = 0 on the boundary; similarly −φ1 = gz is satisfied automatically.

For axisymmetric modes, m = 0, the system is of lower order as ψ always appears as
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∂rψ, including in the boundary condition. The condition involving b is not required for
this case (see appendix A). The simplest solution is to add the boundary condition ψ = 0
so that we may invert for ψ for all modes. When m = 0 the remaining two boundary
conditions which couple the potentials are satisfied by selecting scalars a and b according
to the following evaluated on the boundary:

a = −(∂rψ̄ + gθ)/∂rψ
H , b = −(∂rzφ̄− gr)/∂rzφ

H if m = 0. (2.14)

For non-axisymmetric modes, m 6= 0, the condition −∂rψ = gθ is satisfied automati-
cally. The last two conditions are satisfied by solving the system for a and b evaluated
on the boundary,

[

1

r∂θψ
H ∂rzφ

H

−∂rzψ
H
1

1

r∂θφ
H
2

] [

a
b

]

= −
[

1

r ∂θψ̄ + ∂rzφ̄− gr

Re r̂ · ∇ ∧ b − ∂zz r̂ · ∇ ∧ g

]

if m 6= 0. (2.15)

As this only requires the inversion of a 2×2 matrix and theH-functions are pre-computed,
this is an inexpensive way to ensure all boundary conditions are simultaneously satisfied
to machine precision.

Both finite-difference and Chebyshev expansions have been used in radius. The lat-
ter is better at low radial resolution, but the former involves only banded matrices (a
9-point stencil is used), requiring less memory, and is faster for high radial resolutions.
Time discretisation is second-order using Crank–Nicolson for the diffusion term and an
Euler predictor step for the non-linear terms. Information from a Crank–Nicolson correc-
tor step is used to control the timestep size. Nonlinear terms, b, are evaluated using the
pseudo-spectral method and are dealiased using the 3

2
-rule. The code was tested to re-

produce eigenvalues about the laminar state, eigenvalues about nonlinear travelling wave
solutions from Wedin & Kerswell (2004), by direct comparison with a primitive variable
code (Kerswell & Tutty 2007) during the relaminarisation of a perturbed travelling wave,
and to calculate the turbulent statistics of Eggels et al. (1994).

3. The absence of turbulence in previous models

The original calculations for axisymmetric pipe flow (Patera & Orszag 1981) and for
helical flow (Landman 1990a) found no evidence for turbulence or even long transients
at Re 6 4000. Here we show that this conclusion extends to Re as large as 105 and for
huge initial disturbances suggesting that there are no exact unstable solutions beyond
Hagen-Poiseuille flow within these dynamical subspaces.

The axisymmetric model is straightforward to simulate using the numerical algorithm
described above by time stepping only modes with m = 0. In helical flow, variations in θ
and z are reduced to a dependency in the one variable ξ = θ + αz, where α is the pitch
of the helix and periodicity over L = 2π/α is preserved. In this scenario the flow may be
expanded u(r, ξ) =

∑

q uq(r) exp(iqξ), corresponding to taking only modes k = m → q
in our formulation. Letting u′ be the deviation from the laminar flow, random initial
disturbances of the form

u′ =
∑

k2+m2 6=0

r2(1

2
− r)2 (α2k2 +m2)−

1

2 akm exp(iαkz + imθ), (3.1)

were applied to the flow (after projection onto the space of solenoidal functions to enforce
incompressibility), where the components of akm were random numbers in C s.t. |akm| =
1.

Figure 1 shows time evolution of random disturbances at Re = 10 000 for a pipe of
length 2π diameters. Initial disturbances were normalised for E′

k 6=0
/E0 up to 0.4, where
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Figure 1. Decay of axisymmetric (dashed) and helical (solid) perturbations, initially of energy
up to 40% of the laminar profile (Re = 10, 000 and pipe 2π D long).

E′
k 6=0 is the energy of the axially-dependent modes and E0 is the energy of the laminar

profile; i.e. disturbances of up to 40% of the energy of the laminar flow were considered.
By way of comparison, the turbulent test case of Eggels et al. (1994) has only E′

k 6=0/E0 ≈
0.014 at Re = 5300. The number of finite difference points in radius and truncation of
the Fourier modes was (160,±256) in (r, z) and (r, ξ); the large radial resolution was
required to stably solve for such high initial energies. Axisymmetric disturbances show
almost no sign of nonlinear interactions at this Re and decay almost monotonically. Five
other sets of runs for other random disturbances showed similar behaviour. Helical flow
is slightly more promising showing occasional moments of growth against a dominant
decay.

Helical flow exhibits a linear instability at relatively small rotation rates about the axis,
which occurs at longer L for larger Re (Mackrodt 1976). This supercritical bifurcation
and the subsequent nonlinear waves (Toplosky & Akylas 1988; Landman 1990b) provided
an excellent test of the helical code. Measuring the rotation rate by RΩ = 1

4
ΩRe, where

the angular velocity Ω is in units U/D, there is a supercritical bifurcation to helical waves
at RΩ = −52.43, Re = 4000 and L = 16π. Figure 2 shows evolution of five random initial
disturbances of E′

k 6=0/E0 up to 0.3 in the presence of rotation; truncation at (80,±128)
in (r, ξ). For RΩ = −50 the flow quickly returns the the parabolic profile. At RΩ = −100
and −300, well beyond the linear instability, the flow rapidly returns to a finite-amplitude
helical wave flow. This supercritical behaviour persists for modest rotations so that no
long term turbulent transients can be generated. Barnes & Kerswell (2000) have shown
that these helical waves themselves undergo a supercritical Hopf bifurcation so that
solutions cannot obviously be traced back to non-rotating flow. Figure 2 suggests that
disconnected branches which could lead to subcritical turbulence in rotating helical pipe
flow are unlikely to exist.
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Figure 2. Large helical disturbances scaled from 4% to 20% of E0 rapidly settle to parabolic
flow for RΩ = −50 and to laminar helical waves for RΩ = −100, −300 (Re = 4000, L = 16π).

Our calculations suggest that rotating helical pipe flow follows the supercritical route
to turbulence via a sequence of supercritical bifurcations, rather than the abrupt subcrit-
ical behaviour of 3-dimensional non-rotating pipe flow. Having seen strong decay at Re

approximately five times that for which turbulence is observed in the laboratory, it ap-
pears that neither dynamics restricted to helical or axisymmetric subspaces are relevant
for the observed transition.

4. A 21

2
-dimensional model

We now introduce a third model which has high resolution in the cross-stream (radial)
and streamwise (axial) directions, but only a few modes in the spanwise (azimuth) direc-
tion. The model was chosen to preserve a high radial resolution as streak features close to
the wall appear to be important in the self-sustaining process as do detachments from the
wall during the relaminarisation stages of low Reynolds number turbulence. High axial
resolution was retained to allow the possibility of localised turbulent structures. This left
only the azimuthal direction in which to reduce the number of degrees of freedom: only
Fourier modes m = 0,±m0 were considered, which corresponds to a sinusoidal variation
in azimuth, an azimuthal shift of the sinusoid and a mean mode.

4.1. Spatial characteristics

Localised structures, surprisingly similar to puffs, were captured by the 2 1

2
-dimensional

model. Figure 3 compares a puff structure from a simulation fully resolved in azimuth
(all m up to ±24) with a ‘puff’ from the 2 1

2
-dimensional model (m = −3, 0, 3). The plots

are of the correct aspect ratio but only half of the computational domain is shown. Puffs
from the model appear to be similar to resolved puffs in both length and structure, having
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Figure 3. Axial vorticity in the (r, z)-plane, 1:1 aspect ratio, flow up the page; only 25 D of a
periodic 50 D domain shown. From left to right: fully 3-dimensional simulations at Re = 2000,
2300, 2700 and 2 1

2
-dimensional simulations at Re = 2600, 3200, 4000. Presented for both mod-

els are localised ‘puffs’, the early stages of delocalisation by the generation of a second puff
downstream, and global slug-turbulence at larger Re.
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Figure 4. Initial trials of the 2 1

2
-D model for several m-fold rotational symmetries.

a smooth upstream region close to the wall, an active turbulent region, and a dissipative
region downstream. Only modest radial resolutions were required to observe such struc-
tures: a spectral resolution of 35 Chebyshev modes was used for the calculations of this
section. Several calculations were performed with a lower resolution of 25 radial modes,
but puff structures tended to elongate, requiring a longer pipe and thus offsetting the
reduction in computation times. Axial resolution was chosen to approximately match the
spectral drop-off in r (approximately 4 orders in the magnitude of the spectral coeffi-
cients, or 8 orders in the power spectrum) and was ±384 for L = 16π ≈ 50 diameters.
Axial resolution was changed proportionally for other L considered in the rest of this
section, hence keeping the smallest resolved scale fixed. Puffs were found to translate
within 2% of U , slightly faster than in 3 dimensions, where they travel approximately
10% slower. Also shown in figure 3 is that the transition from localised to global turbu-
lence is gradual, as observed experimentally. At larger Re the puff becomes delocalised,
splitting into two or more localised turbulent regions with relatively laminar regions in
between. At much larger Re the proportion of vigorous turbulence is seen to increase, as
recorded by Gilbrech & Hale (1965).

4.2. Temporal characteristics

Another important feature captured by the model is that localised puffs may survive
for long times before a sudden decay as observed experimentally (Peixinho & Mullin
2006). Typical transients for different m0 are shown in figure 4 which indicates that
higher rotational symmetries tend to decay more quickly. As structures of 3-fold rota-
tional symmetry are the most frequently observed for transitional Re (Duggleby et al.

2007; Willis & Kerswell 2007a; Schneider et al. 2007a), m0 = 3 was chosen for analysis
of the lifetimes of disturbances. For this m0, azimuthal length scales are also compara-
ble to the radial length scale in the model. Figure 5 shows the probability distribution
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Figure 5. Probability of transient surviving to time T (D/U) in the m0 = 3 model for a pipe
of approximately 100 D length (L = 32π); 100 observations per Re.

function for puff lifetimes based upon 100 runs at each of several Re in a pipe ≈ 100
diameters long (L = 32π). Sets of initial puff conditions were generated from snapshots
of a long run at a sufficiently large Re, similar to the annealing procedure adopted in
Peixinho & Mullin (2006) and Willis & Kerswell (2007b). No dependence on the initial
condition was observed, however, other than in the very early times of the transient. For
the model, times of order 105D/U could be achieved, significantly longer than achieved
in Willis & Kerswell (2007b) and in less computation time. The log-plot clearly shows
an exponential distribution indicating a memoryless process.

From the observation times at each Re, a median time, τ , may be calculated. As
mentioned above, whether τ diverges to infinity or not at a finite Re is a matter of
ongoing debate. In laboratory experiments a pipe for which D = 20mm, L = 785D,
Peixinho & Mullin (2006) found evidence that τ ∼ 1/(Rec − Re) with Rec = 1750,
independent of several initial conditions. In contrast, experiments by Hof et al. (2006)
for D = 4mm, L = 7500D, and using a different method to initiate the puff, found
that τ ∼ exp(c1Re), for some constant c1. Numerical experiments by Willis & Kerswell
(2007b,c) using well-resolved puffs in a 50D periodic pipe, however, show lifetimes to be
significantly different from the exponential scaling and the simple power −1 was clearly
seen with Rec = 1870, overestimating the experimental value of 1750 Peixinho & Mullin
(2006) by only 7%. Computational and experimental limitations have confined observa-
tions of τ to O(103 − 104), but the effects of noise accumulated on longer time-scales is
an open issue.

As the error in τ cannot be directly read from the log-plot, figure 5, median times
were analysed using the bootstrapping method adopted in Willis & Kerswell (2007c).
In this method samples of size N are generated by resampling from the original N
observations, with equal probability of selecting each. This is repeated 100 000 times and
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Figure 6. Sensitivity of the lifetime of transients to the pipe length. 100 observations per
point for lengths in diameters, 32π, 16π, 8π, 4π, 2π (from left to right).

the distribution of the means of the samples is used to infer a confidence interval for the
mean of the original data set. When all data fall within a maximum observation time, the
confidence intervals generated by this method are close to those expected from the central
limit theorem: a 95% confidence interval for the median time is approximately τ±2 τ/

√
N .

When data is truncated a mean cannot be directly calculated. The bootstrapping method
easily accommodates for such data by further resampling.

Figure 6 shows the maximum likelihood estimator for 1/τ and 95% confidence intervals
for several lengths of pipe. Lifetimes an order of magnitude larger than the calculations of
Willis & Kerswell (2007b) were possible in a pipe twice as long, L ≈ 100. The difference
between results for the long pipes, L ≈ 50 and L ≈ 100 shows that lifetimes are sensitive
to even small deviations from the laminar profile, caused here by the periodicity. This
problem is unfortunately exacerbated in the model as puffs begin to slowly delocalise
near the Re for which τ becomes large, preventing measurements to even smaller 1/τ .
The gentle-curved fit for the long pipe is τ ∼ 1/(Rec−Re)β with β = 5.0 and Rec = 3450.
Lagha & Manneville (2007) have also found that a 1/(Rec −Re)β scaling is much harder
to distinguish from the exp(c1Re) scaling in their heavily truncated model for plane
Couette flow. What is clear, however, is that as the pipe is shortened, the localised
structure is more strongly affected by the periodicity, and this enhances the probability of
relaminarisation. In the shorter pipes the scaling is more clearly exponential. Particularly
noteworthy is the large jump in the probability of relaminarisation seen going from
L = 16π to L = 8π when localised structures are no longer seen in the shorter pipe.
For L = 4π and L = 2π the disturbance fills the pipe completely. Nevertheless, the
probability of relaminarisation continues to increase and is clearly sensitive to the size
of the domain. While the short periodic pipe could be considered as a simple model for
slug flow, finite observed lifetimes appear to originate from the finiteness of the domain.



12 A. P. Willis and R. R. Kerswell

Thus the existence of finite lifetimes from such data cannot be extrapolated to the real
case with confidence as it has been in Hof et al. (2006).

4.3. Characteristics of the laminar–turbulent boundary: short pipe

Given an initially laminar flow, small perturbations decay back to the laminar flow and
larger perturbations develop into turbulence for sufficiently large Re. This naturally leads
to the question of what characterises the dividing set of flows, for which a small pertur-
bation may lead to either laminar or turbulent flow. Itano & Toh (2001) used a shooting
method to find such a boundary in channel flow and discovered that the flow trajectory
on the boundary settled upon what they thought was a travelling wave solution, but later
identified as a near approach to a travelling wave on a periodic orbit (Toh & Itano 2003).
This orbit is stable within the manifold of flows on this laminar-turbulent boundary or
‘edge’. A similar situation is found in plane Couette flow (Lagha et al. 2007), where
a single simple attractor is found. Pipe flow exhibits different characteristics, however,
with Schneider et al. (2007b) finding a chaotic attractor in which trajectories pass nearby
to exact travelling wave solutions (Mellibovsky & Meseguer 2007; Duguet et al. 2007).
When the laminar-turbulent boundary dynamics is restricted within certain symmetry
subspaces, however, simple attractors do emerge (Duguet et al. 2007).

Pipe flow is not so different from channel flow and yet they display different dynamics
on the boundary. It is not difficult to imagine therefore, that the severe truncation of our
model could also lead to a loss of chaotic behaviour on the boundary. In this section we
show that the model preserves the chaotic end state for trajectories on the boundary and
that exact solutions exist. This motivates extension of the results to long computational
domains, where undirected calculations would be prohibitively expensive.

Boundary or edge trajectories for the model are shown in figure 7, for L = π and over a
range of Re. While a difference between the edge and developed turbulence may be seen
by a rapid increase in energy, a clearer measure appears to be β related to the pressure
required to maintain the fixed flux (see equation 2.1), or equivalently the friction. The
pressure gradient is less than 10% greater when on the edge than the laminar value and
is also smooth in time, whereas after a sudden increase to turbulence it is as rapidly
varying as the energy.

At the lowest Re shown in figure 7 the energy of the edge is highly variable in time.
At the next Re = 6500 a period of slow variation is observed. Duguet et al. (2007) have
recently demonstrated that the edge can be used to find exact solutions by identifying
phases where the flow has a relatively simple temporal behaviour. Such an episode is
marked by a triangle where the instantaneous flow was used as an initial condition for
a Newton–Raphson code. This converged to the exact solution pictured in figure 8(a),
confirming that travelling wave solutions do exist for the model. The flow exhibits fast
streaks towards the walls and slow streaks are shed towards the centre. The state found
is also very similar to that marked by a square at Re = 10 000 when the trajectory
for a while appears to settle towards a steady (translating) state. As Re increases the
variability on the edge surprisingly decreases, more so than can be explained by the
increasing viscous time. The viscous time D2/ν scales as Re in our time units, and
longer trajectories at larger Re have been shown in figure 7 to compensate. A possible
explanation for the decreasing variability is that the eigenvalues of the unstable directions
from the travelling waves decrease with increasing Re, thus enabling closer and longer
visitations.

The variability of the boundary in terms of energy or any other chosen amplitude
measure also, of course, indicates the range of such attributes for initial conditions which
will trigger turbulence. The fact that it is easier to trigger turbulence as Re increases (e.g.
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Figure 7. Edge trajectories for L = π. Exact travelling wave solution found nearby to the
triangle at Re = 6500 (shown in figure 8) has very similar structure to that found at the circle
for Re = 10000.
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Figure 8. (a) Cross-sections of an exact travelling-wave solution L = π D, Re = 6500, wavespeed
c = 1.563 U at z = 0, 1

2
L. Dark regions are slower than the laminar profile and white regions

faster. (b) Energy on the boundary (squares) and of turbulence (circles). The slope for the
boundary case is −3, implying that the amplitude, A ∼ Re−1.5. For turbulence E′

k 6=0/E0 ≈ 0.011
which for the 3-dimensional test case was ≈ 0.014 at Re = 5300.
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(a)

(b) (c)

Figure 9. (a) Snapshots of axial vorticity at two different times from a laminar-turbulent
boundary trajectory. L = 16π D, Re = 4000. 20 D of ≈ 50D shown. The disturbance is localised
but with an extended upstream region. (b) An exact solution shown over two axial periods,
L = 1.694 D, discovered using the method of Pringle & Kerswell (2007). (c) The exact solution
of figure 8 found by the method of Duguet et al. (2007), L = π.

Hof et al. 2003) is reflected in the decrease in the mean boundary energy as Re increases
seen in figure 8(b). Error bars in this figure represent the mean and one standard deviation
above and below this mean but nevertheless, a clean scaling emerges for the amplitude
of A ∼ Re−1.5. Mellibovsky & Meseguer (2006) found this scaling when considering
streamwise perturbations, and Peixinho & Mullin (2007) in laboratory experiments with
obliquely oriented jets.

4.4. Characteristics of the laminar–turbulent boundary: long pipe

The bisection procedure (Itano & Toh 2001; Schneider et al. 2007b; Duguet et al. 2007)
for isolating the laminar-turbulent boundary can equally be applied to flow within a
long pipe although the computational demands becomes increasingly intensive. The 2 1

2
-

dimensional model is ideal for a reconnaissance of likely behaviour, including identifica-
tion of the form the edge state takes. With this motivated, trajectories on the laminar-
turbulent boundary were found for a pipe ≈ 50 diameters long using the pressure gradient
to distinguish between edge and turbulent flow states. Interestingly, the attracting edge
state which emerges looks exactly like a turbulent puff except at the trailing edge (up-
stream region): compare figures 9(a) and 3. In a turbulent puff this is the most energetic
part possessing a fluctuation energy level comparable to homogenised slug turbulence (see
Willis & Kerswell (2007a)) at higher Re. However, the edge state is noticeably smoother
even at Re = 4000 (figure 9) compared to a puff at Re = 2600 (figure 3) which has finer
scales. The similarities between the two are the strong wall structures slanting into the
axis at the upstream region, a region where the axial vorticity reaches the axis (the trail-
ing edge region), followed by a gradual relaminarisation/decay downstream. Interestingly
it is the upstream region that waxes and wanes (compare the two axial vorticity snap
shots of figure 9) rather than the passive-looking downstream wake.

The edge state remains localised just like the turbulent puff up to Re = 3000, but
surprisingly also remains localised for much higher Re when the puff has given way to
(global) slug turbulence. To emphasize this, the localised edge state shown in figure 9 at
Re = 4000 was generated starting from the global disturbance of figure 3. The fact that
the edge state remains puff-like throughout the puff-to-slug transitional Re range suggests
that slug turbulence is destabilised puff-turbulence rather than being a separate state
occupying a different part of phase space. This is certainly consistent with simulations in
which a puff state smoothly evolves into a slug by slowly expanding upstream as well as
downstream. A corollary of this, of course, is that a puff and a slug cannot coexist at a
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given Re: to our knowledge there are no reported experimental observations to contradict
this claim.

Figure 9 also shows the axial vorticity for a travelling wave with shift-and-reflect sym-
metry, found using the method of Pringle & Kerswell (2007) and that for the travelling
wave shown in figure 8 (which has no special symmetry). Both have axial vorticity slanted
from the wall into the central axis reminiscent of the turbulent puff and edge state. A
recent search for coherent fast-streak states within turbulent puffs has indicated that the
flow transiently resembles travelling wave states upstream and downstream of the trailing
edge region (Willis & Kerswell 2007a). Given that the energetic trailing edge region is
absent in the edge state, there seems an even higher likelihood of seeing coherent states
there.

Although the findings in this 2 1

2
-dimensional model are only suggestive of what may

occur in the fully 3-dimensional setting, they are sufficiently interesting to motivate a
fully 3-dimensional long-pipe computation. This is currently underway.

5. Discussion

In this paper, we have described the numerical formulation used to simulate tran-
sitional pipe flow (Willis & Kerswell 2007a,b; Duguet et al. 2007). This is based upon
the poloidal-toroidal potential decomposition of the velocity field discussed by Marqués
(1990), where the difficulty of coupled boundary conditions has been by-passed by influ-
ence matrix methods here. Reducing the system to five simple second-order equations,
the method is accurate, relatively simple to implement and computationally efficient.
This has then been used here to explore dynamical subspaces in the hope of finding a
reduced system to aid understanding.

No evidence for turbulent transients has been found in axisymmetric pipe flow, con-
firming an earlier investigation (Patera & Orszag 1981), or in helical pipe flow consistent
with the work by Landman (1990a,b). Rotating pipe flow displays a classic supercriti-
cal bifurcation route to turbulence (Mackrodt 1976; Toplosky & Akylas 1988; Landman
1990a,b; Barnes & Kerswell 2000) which has no bearing on the non-rotating situation.
A brief search in rotating helical pipe flow failed to find evidence for any disconnected
subcritical branches of solution which may have reached back to the non-rotating limit.
A 2 1

2
-dimensional model, which represents a minimal 3-dimensionalisation of the axisym-

metric limit, does, however, possess a subcritical transition scenario and all the important
spatio-temporal characteristics of fully resolved pipe flow at Re of the same order of mag-
nitude. Localised disturbances, structurally similar to turbulent puffs, are found in the
model at low Re (≈ 2600), which slowly delocalise at intermediate Re (≈ 3200), and
rapidly expand into slugs at high Re (≈ 4000). Exact unstable travelling wave solutions
also exist within the model and appear to underpin the dynamics in phase space.

Within this 2 1

2
-dimensional model, the relaminarisation statistics of the puffs have

been examined in pipes of varying lengths. For a 100D pipe (long enough to capture a
puff properly), the median lifetime τ is best fit by the relationship τ ∼ (Rec − Re)−5

indicating a puff becomes sustained at Rec = 3450. On the other hand, in a short pipe
of length 2πD where turbulence is either spontaneously global or absent, an exponen-
tial dependency τ ∼ exp(c1Re) is suggested implying that puffs are never permanent.
These extreme cases clearly indicate the sensitivity of the relaminarisation statistics to
the (periodic) computational domain. Counter intuitively, noise in the form of intrusive
boundary conditions leans in the direction of relaminarising the flow rather than main-
taining the turbulence. It is also worth remarking that longer transients in the 100D pipe
(i.e. Re closer to 3450) could in principle be calculated given the computational savings
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available in the model. However, we found that the puffs start to delocalise for Re ≈ 3200
indicating that in fact, by Re = 3450, the puff has become unstable to a slug-like turbu-
lence. This is, of course, exactly the same issue faced by puffs in the real system: they
delocalise to become slugs for Re = 2250-2500 (Willis & Kerswell 2007a). No claim has
been made anywhere in the literature that slugs are anything other than permanently
sustained once generated. While issues still surround the differing experimental data sets
(Peixinho & Mullin 2006; Hof et al. 2006), the need to resolve the spatial inhomogeneity
of the puff state properly in numerical experiments is clear.

The 2 1

2
-dimensional model has also presented an opportunity to probe the possible dy-

namics on the laminar-turbulent boundary in long pipe flow. Calculations indicate that
the attracting state in this set is a localised puff-like structure which is smoother and
less energetic in the trailing edge region than its turbulent puff counterpart. Also intrigu-
ingly, this end state remains localised way beyond in Re when the puff has delocalised.
This tends to suggest that the turbulent puff still exists as a solution but has become
unstable to a slug state. The variability of the flow on the laminar-turbulent boundary
also highlights the variability in initial conditions which can trigger turbulence. Just fo-
cusing on the mean energy gives an amplitude scaling A ∼ Re−1.5 consistent with some
numerical computations (Mellibovsky & Meseguer 2006) in a short pipe and laboratory
experiments with a carefully specified jet configuration, designed to excite a coherent vor-
tex (Peixinho & Mullin 2007). Clearly, exploring how far this realisation can be usefully
developed is a promising area for future research.

In conclusion, we have introduced a model of pipe flow severely truncated in its az-
imuthal degrees of freedom but otherwise fully resolved in the others. This notwithstand-
ing, the remaining system captures all of the rich dynamical behaviour observed in pipe
flow but obtained at a fraction of the computational cost for the full 3-dimensional situ-
ation. It therefore presents a very accessible arena in which to test ideas quickly before
deciding to invest a considerable effort in the full 3-dimensional system.

Acknowledgments: Many thanks to Yohann Duguet and Chris Pringle for finding exact so-
lutions in the model. This research was funded by the EPSRC under grant GR/S76144/01.

Appendix A. Boundary conditions

The Navier–Stokes equation (2.1) plus the boundary condition u = g(θ, z) are equiv-
alent to (2.4) provided that on the boundary

n̂ · ∇ ∧
[

(∂t −
1

Re
∇

2)u + b

]

= 0, (A 1)

where n̂ is its normal (see Marqués 1990). This condition ensures the term in the square
brackets is equal to a gradient, such as the pressure. If not imposed, this term may be any
χẑ where ∇2

hχ = 0. If this is not a gradient, then an unknown body force is introduced.
For the axisymmetric case χ is constant, the curl of χẑ is then zero, and therefore the
condition is redundant. Otherwise, from the diffusion term in (A 1), using the properties
∇

2u = −∇ ∧ ∇ ∧ u and ∇ ∧ ∇ ∧ (ẑf) = ∇(∂zf) − ẑ∇2f , one finds

r̂ · ∇ ∧ ∇
2u = r̂ · ∇ ∧ ∇ ∧ (ẑ∇2

hψ) + r̂ · ∇ ∧ ∇ ∧ ∇ ∧ (ẑ∇2
hφ) + ∂zzr̂ · ∇ ∧ u
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= ∂rzψ1 −
1

r
∂θφ2 + ∂zzr̂ · ∇ ∧ g,

which leads to the last condition of (2.5). The other conditions simply express u = g(θ, z)
with the gauge freedom φ = 0 on the boundary.

The simplified system for the axially averaged flow, h(r, θ), arises because there exists
a closed circuit c that is not simply-connected running along the axial direction. This
has an associated condition

∫

c

[

(∂t −
1

Re
∇

2)u + b

]

· dl = 0,

which together with Pz on the second curl of the Navier–Stokes equations leads to the
governing equation for h. The boundary condition h = 0 assumes Pz(gz) = 0, which
otherwise would correspond to a translating pipe or moving frame.
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