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Abstract

We study diffusion phenomena in ¢ priori unstable (initially hyper-
bolic) Hamiltonian systems. These systems are perturbations of integrable
ones, which have a family of hyperbolic tori. We prove that in the case
of two and a half degrees of freedom the action variable generically drifts
(i.e., changes on a trajectory by a quantity of order one). Moreover, there
exists a trajectory such that the velocity of this drift is £/loge, where ¢
is the parameter of the perturbation.

1 Introduction

In [1] Arnold proposed an example of a near-integrable Hamiltonian sys-
tem

$:8H/ay, y:—@H/aa:, H:Ho(y)+EH1($,y,t,E), (11)
z€T"=R"/Z", yeR", teT, &€ (—eco,c0)

with convex in the actions y unperturbed Hamiltonian Hy, where the vari-
ables y can change by a quantity of order 1 on a trajectory. Later this
phenomenon was called the Arnold diffusion. Arnold [1] also presented
a mechanism for such a diffusion. It is well-known: a chain of hyper-
bolic tori (a transition chain) should exist in the perturbed problem. The
corresponding chain of stable and unstable asymptotic surfaces should
be connected by heteroclinic trajectories. Then the drift of the actions
appears on a trajectory, which follows this chain of asymptotic surfaces.

The main problem associated to the Arnold diffusion is its genericity
for systems (1.1). It is very important what smoothness assumptions
are imposed on H. Real-analytic case is usually regarded as the most
interesting.

According to the Nekhoroshev theory [29], in real-analytic systems,
satisfying a rather weak steepness condition, average velocity of the action
drift along a trajectory is estimated from above by an exponentially small
quantity e=*="" Wwith some positive o, 8. Actually, the exponentially
small effects present the main difficulty in the analysis of the phenomenon.
Another difficulty is connected with the fact that tori in a transition chain
generically form not continuous, but Cantorian family. In particular, such
a family contains gaps. It is clear that these gaps should not be too large.
Otherwise it is very difficult for asymptotic surfaces of two tori, separated
by a gap, to reach each other. Estimates for the width of gaps must use
KAM technics. Because of this they should be cumbersome and non-
trivial.

When constructing his example, Arnold did not overcome these dif-
ficulties, but went around them by using some tricks. In the Arnold
example transition chain is formed by a smooth family of hyperbolic tori.
The problem of exponentially small effects dissapears, because the per-
turbation depends on two small parameters: £ and § ~ e_c/‘/g, c > 0.
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The parameter ¢ is responsible for the appearence of hyperbolic tori, and
¢ for the existence of heteroclinic connections between them. Since § is
exponentially small with respect to ¢, existence of these connections can
be detected by the Poincaré-Melnikov method.

Douady [18] established in C'*°-smooth Hamiltonian systems with 3
degrees of freedom the existence of formaly stable elliptic equilibriums
which are Lyapunov unstable. The instability is generated by the Arnold
diffusion. Slightly smoother situation (Gevrey-a case, a > 1) is considered
in [25]. Velocity of the diffusion is estimated.

Generalizing the Arnold’s ideas, Fontich and Martin [20] constructed a
large class of real-analytic systems (still highly non-generic) with diffusion
trajectories. Perturbations, depending on two parameters are considered
n [21]. However, unlike the original Arnold paper, the second small pa-
rameter, 4, is not exponentially small with respect to the first one, ¢, i.e.,
6 = £P, where p is sufficiently large. Variational approach for the Arnold
example was proposed in [4]. Simé and Valls [31] performed numerical
analysis of the problem in the Arnold example with ¢ = §.

Recently Mather [27] announced variational proof of genericity of the
Arnold diffusion for systems (1.1) with positive definite Hessian 8* Ho/dy*
in the case of two and a half degrees of freedom.

There are several simpler problems, where diffusion-like phenomena
(i.e., drift of slow variables along transition chains) occur without expo-
nentially small effects.

First, we mention the Mather problem [26]. Consider a 2-torus with
some Riemannian metric and a perturbation of a free motion of a particle
on the torus by a time-periodic potential. Then generically there exists a
trajectory on which the energy tends to infinity." The geometric mecha-
nism of this on a first glance quite unexpected phenomenon is as follows.
Let v be a minimal geodesic in some homotopy class of closed curves on
the torus. It is well-known that generically this geodesic is hyperbolic i.e.,
exponentially unstable. Since the perturbation is nonautonomous, it is
natural to regard time as a phase variable. Then v generates in the un-
perturbed system a 1-parametric family of hyperbolic 2-dimensional tori.
Projection of each torus of the family to the configuration space is y x T,
where T is the circle of time. The family is parametrized by the veloc-
ity of the particle motion on v. After the perturbation majority of the
tori survive, heteroclinic intersections of their asymptotic surfaces appear,
and therefore, we obtain a transition chain. The coresponding proofs are
contained in [10] and [15]. Note that the original Mather’s proof, based
on variational methods, is still not published. A proof, partially based on
Mather’s variational ideas is presented in [23].

An unusual set up (quite far from the original Arnold’s one) was pro-
posed by Easton, Meiss and Roberts [19]. They consider diffusion in a
system, which is not near-integrable. On the contrary, the system is close
to the anti-integrable limit [2, 3, 24]. Because of a strong hyperbolic prop-
erties of the system the construction of diffusion trajectories turns out to
be simple and elegant.

In this paper we deal with the so-called a priori unstable systems. The
terminology is taken from [12], where the systems (1.1) are called a priori
stable.

As usual, it is more convenient to consider the case of a non-autonomous
system with periodic in time Hamiltonian function. The general form of
the Hamiltonian of a near-integrable non-autonomous a priori unstable
system with two and a half degrees of freedom is as follows:

H(y’m7/v’ u7 t7 E:) = Ho(y’v7 u) + E:Hl(y’ m’U7 u7 t) + 0(62)' (1'2)

Here z mod 1 is a point of the torus T = R/Z, y € Dy C R, where Dy is
an interval, the pair (v,u) belongs to an open domain D C R2. The pairs
z and y, v and v are canonically conjugate i.e., the symplectic structure

IThe torus can be replaced by any compact 2-dimensional manifold of positive genus.
There are also multidimensional generalizations [10].



is as follows: w = dy A dx + dv A du. The Hamiltonian equations have the
form

y=—0H/0x, ©=0H/dy, ©=—-0H/0u, u=0H/0v. (1.3)

We assume that H is 1-periodic in ¢ and the parameter ¢ is small. Below
we regard ¢t as a point of the torus T. It is convenient to assume that
e > 0.

The system with Hamiltonian Hy is integrable. We call it unperturbed.
The Hamiltonian (1.2) satisfies several hypotheses.

Hol. The function H is C*-smooth in all arguments, r € {6,7,...,00,w}
and Hy is real-analytic.

In fact, the smoothness assumptions can be considerably weakened: it
is sufficient to have a finite large enough smoothness for Hy as well.

Ho2. For any y° € Do the function Ho(y®,v,u) has a nondegener-
ate saddle point (v,u) = (v°,u°), smoothly depending on y°. Any point

(vo,uo) belongs to a compact connected component of the set

;y\(yO) = {(Uvu) €D: Ho(yo,v,u) = Ho(yovvovuo)}'

In dynamical terminology (v°,u°) is a hyperbolic equilibrium of the
system with one degree of freedom and Hamiltonian Ho(y°,v,u), and
the corresponding separatrices 7y are doubled. In particular, topologically
these separatrices form a figure-eight-like structure.

A priori unstable systems with a larger number of degrees of freedom
are defined similarly, but  and y variables become multi-dimensional.

We denote the loops of the “eight” by 3% (3°), where 3+ (y°) is called
the upper loop and 7~ (y°) the lower one, 5(y°) = 7 (¥*) U3~ (y°). The
loops 7% (y°) have the natural orientation generated by the flow of the
system. We can define an orientation on D by the coordinate system u, v.

Ho2*. For any y° € Do the natural orientation of 5T (y°) coincides
with the orientation of the domain D i.e., the motion on the separatrices
is counterclockwise (see Fig 1).

This hypothesis is not restrictive. Indeed, if it does not hold, we
perform the change t — —t, H — —H.
In this paper we assume that two other hypotheses hold:

Ho3. In the unperturbed Hamiltonian the variables y are separated
from u and v i.e., Ho(y,v,u) = F(y, f(v,u)).

Because of Ho3 location of an equilibrium (v°,u°) does not depend
on y. Below without loss of generality we assume that v° = u° = 0.

In this paper we answer two important questions concerning the dif-
fusion in a priori unstable systems.

(I) Is this phenomenon generic i.e., takes place for generic Hop, satisfy-
ing Ho1-Hp8 and generic H; for some reasonable meaning of genericity?

(IT) What is the maximal velocity of the drift of y?

We present positive answer to question (I) and give the lower estimate
for the velocity of the diffusion const - £/|loge|.

We put

E(y) = Ho(y,0,0), v=E,:Dy— R.

The following hypothesis depends on a positive parameter c..

Ho4(c.). The function v'(y) = dv(y)/dy does not vanish at strong
resonances i.e., at the points, where v =p/q, p € Z, g € N, ¢ < 1/cx.
Furthermore, for any y € Do we have: |V'(y)| + [V (y)| > 2¢v for some
cy > 0.

Let D C Do be an interval such that its closure D also belongs to Dp.



Theorem 1 Suppose that Ho satisfies Ho1-Ho3. Then for generic Hy
there ezist c«,e0 > 0 such that if Hod(c.) holds and € € (0,e0), the
perturbed system has a trajectory

(z(t),y(®), v(t),ut)),  t€[0,T] (1.4)

such that

(i) D C [y(0),y(T)],

(ii) e1 < oL < ¢2 for some c1,c2 > 0.

Remarks. 1 The words “generic H1” mean that H; belongs to an
open dense set in C* (Do x T x D x T,R). More precisely, Hy must
satisfy hypotheses H11-H13 (see Section 5). Conditions H;1-H; 3 are
constructive and, in principle, can be checked for a given H;.

It is possible to formulate the theorem in a slightly another way. We
can put € =1 and say that H; is small enough in the C*-norm. But then
instead of the genericity condition for H; we have to say that H; belongs
to a cusp-residual subset of a small ball in C* (compare with [27]). These
two possibilities are obviously equivalent.

2 Assertion (i) means that (1.4) is a diffusion trajectory, passing
through D, and according to (ii), the average velocity of the diffusion
is of order £/|loge|. The same estimate for the diffusion velocity was ob-
tained in [5] for quasi-periodic perturbation of a pendulum, in [14], under
the assumption that a transition chain is given, and in [7, 6] in a "non-
resonant” domain of a multi-dimensional a prior: unstable version of the
Arnold example. Note that perturbations in these papers are trigonomet-
ric polynomials i.e., non-degeneric.

3 Variational approach to the problem of diffusion in a prior: unstable
systems is developed in [36, 37]. More traditional geometric methods
combined with new ideas in the vicinity of resonances are used in [16].
Note that in these papers speed of the diffusion is not estimated.

3 Theorem 1 remains true if equations (1.3) have non-conservative
terms of order O(g?).

4 Tt is clear that Theorem 1 in fact, gives the existence of infinitely
many trajectories with properties (i)—(ii). The obvious lower estimate for
the measure p of the corresponding initial conditions p > e T, ¢ > 0 is
apparently, quite realistic in the sense that the upper estimate should be
similar.

Example. Consider the system (1.3) with H = Hy + ¢Hjq,

2 2
Hy = % + ”7 + Q% cos(2mu), Hi = cos(2mu) f(z, 1), (1.5)

f(z,t) = a(cos(2rz) + cos(2nt) + beos(2m(z — t)) + beos(2m(z +1))).

The unperturbed system is a direct product of a rotator on the cylinder
(r mod 1,y) and a pendulum on the cylinder (v mod 1,v).

We put Dy = (—3/2,3/2). Since we are intrested in the dynamics near
the separatrices of the pendulum, we can regard D as a neighborhood of
the separatrices. Then D is homeomorphic to a neighborhood of an eight
figure on a plane. The unperturbed Hamiltonian Hy obviously satisfies
Hypotheses Ho1-Ho4(c.) with arbitrary c..

Below for convenience we put

Q=7/2, a=n"/8.
Theorem 2 There exists a positive constant bo such that for any b €
(0,b0) the perturbation Hi is generic in the sense of Theorem 1.

Corollary 1.1 Suppose thatb € (0,bo). Then for sufficiently small e > 0
the system (1.3), (1.5) has a trajectory whose y-component passes the
interval (—1,1) during a time interval of order loge/e.



Proof of Theorem 1 uses perturbative methods, but it does not follow
the traditional strategy (construction of a transition chain and a ”shad-
owing” orbit). Our proof is based on the analysis of the corresponding
separatrix map. Due to the dynamical nature of our technics, we do not
use cumbersome methods of KAM-theory.

We do not need the existence of perturbed hyperbolic tori. Hence,
formally we do not have the ”large gap” problem i.e., the problem to
construct a heteroclinic connection between two tori, located on a ”large”
distance from each other. (See detailed discussion of this problem and
some methods to solve it in [16]). However, the ”large gap” problem
does not disappear completely. Its trace (in another language) can be
found in the part of our paper dealing with crossing resonances. Our
method is similar to symbolic dynamics. We construct codes which push
a trajectory in a given direction. By the Attachment lemma (Section 4) a
code generates a trajectory. There are some strong restrictions for a choice
of a code. In a non-resonance domain a proper code can be constructed
easily. At strong resonances the situation is more complicated: sometimes
we even have to return back a little on y-line, but fortunately, succeed to
preserve an evolution in a proper direction with a proper average velocity.

Our proof consists basically of 3 steps.

I. We obtain formulas for the separatrix map [34].

IT. We use these formulas to construct a kind of symbolic dynamics for
the perturbed system [35]. Due to this it is possible to produce a large
class of trajectories.

III. In the present paper we construct diffusion trajectories.

This paper is a continuation of [34]-[35]. Below we present all necessary
information from [34]-[35].

The plan of the paper is as follows. In Section 2 we define the sepa-
ratrix map. In Section 3 we present explicit formulas for the separatrix
map and explain how constants and functions from these formulas can be
expressed in terms of Ho and Hi. In the end of Section 3 we calculate
these functions for system defined by (1.5).

Section 4 contains our main technical tool, the Attachment lemma.
This lemma establishes in the system a kind of symbolic dynamics. Un-
like the usual situation we are not able to construct an infinite code in
advance. We extend the code and the corresponding trajectory step by
step. Arbitrariness in the choice of a code is used in the next sections to
construct a diffusion trajectory.

In Section 5 we present genericity hypotheses for H; and check them
for Hi, satisfying (1.5). Here we also divide D into 3 subsets: D =
Dn UDcr U Dy (nonresonant, clear resonant and vague sets). Each set
consists of a finite number of intervals. Dynamics differs considerably
when y belongs to different sets. So we have to deal with different sets
separately. We construct a trajectory with 7 passing through D in 3 steps.
First (Section 6) we show how to pass through nonresonant intervals.
Then (Section 7) we deal with a clear resonant interval. Finally (Sections
8-11) we consider the case of a vague interval. Sections 13-14 contain
proofs of some technical statements.

In the paper we denote by c all constants which do not play an essential
role. These constants are assumed to be positive and small. The angular
brackets (,) denote the standard inner product in R®, where usually s =
2. If a subscript of a function is a real variable, it denotes the partial
derivative. For example, O = 90/9¢. For convenience we assume that
€ > 0. Below we assume that hypotheses Ho1-Ho4 as well as Ho2* are
satisfied.

2 The separatrix map: construction
The 2-dimensional torus N(y°) = {(y,z,v,u,t) : y = y°,v = u = 0} is

invariant with respect to the unperturbed system and is called hyperbolic
[22, 39] (see also [11], where an invariant definition of a hyperbolic torus



Figure 1:

is presented). There are two asymptotic surfaces

(%), T~ (°) c {(y,z,0,u,t) : y = y°, Ho(y°, v, u) = Ho(y°,0,0)},
T* (%) = {y°} x Tx 75(y%) x T

The surfaces T (y°) consist of unperturbed solutions which tend to N (y°)
as t — +oo.

We consider the dynamics of the perturbed system in a neighborhood
of the set N N N

['=U,5([T (Ul ).
To study this dynamics, it is convenient to pass to the time-one map
T. which assigns to any point (y,z,v,u) the point (y(1),z(1),v(1),u(1)),
where (y(t), z(t),v(t), u(t)) is the solution of system (1.3) with the initial
conditions (y(0),z(0),v(0),u(0)) = (y,z,v,u).

The map To has the 1-dimensional hyperbolic tori L(y) = pr(N(y)),
where pr is the projection (y, z, v, u,t) — (y, z,v,u). We denote by ©F (y)
the asymptotic surfaces &% (y) = pr (fi (y)).

Now we are going to_define the separatrix map SPM. corresponding
to T. in the vicinity of X,

S=U,5(E W US ().

Let U be a small neighborhood of U, .5 L(y) and U a neighborhood of
S (see Fig. 1). If U is sufficiently small, U \ U breaks into two connected
components UT and U~ such that ¥* c Ut UU.

Consider a point z € UT UU". Let k1 = ki(z) be the minimal
natural number such that 7% (z) € UT U U™ and let ks = k2(2) be the
minimal natural number such that k» > ki and T¥2(z) € UTUU". So,
for k = ki the trajectory T (z) leaves the domain UT U U™. For k = k»
the trajectory returns to Ut UTU™. We call the point z good if k2 < oo
and TF(2),...,T¥7(2) € U. Putting

U.={2€UtUU :zis good},
we obtain the maps
SPM.(- ka(-)+k) : U. = UTUU™, SPM.(z,ka(2)+k) = TF2HFF(2),

where we assume that T2 (z), ..., TF2* ;) e U.



Below we will put ¢4 = ka2(2) + k.

In [34] explicit formulas for the map SPM.(z,t4) are obtained. Note
that the construction of the separatrix map does not rely on any result of
KAM type. In particular, some of the unperturbed tori L(y), N(y) are in
general resonant. Actually, we construct the map SP M. as a perturbation
of SPMO

In [35] we showed that the separatrix map can be combined with the
method of anti-integrable limit [2, 24, 33] (see also [8]). The small pa-
rameter due to which the system is close to the anti-integrable limit is
e~te ™+, Here A = A(y) is the positive characteristic number of the
hyperbolic equilibrium of the system (D, du A dv, Ho(y, v, u)), where y is
regarded as a parameter. In fact, e~ 'e”*'+ is not always small in the
separatrix map. However it is small on the trajectories we construct.

3 The separatrix map: formulas

In this section we present formulas for the separatrix map (an explicit part
+ a small error). Formally speaking, below we use only definitions of the
functions H, A, k, ©, and the fact that £p is close to y i.e., the diffusion
problem can be regarded as the problem of evolution of ep. However,
for understanding of dynamical meaning of constructions, presented in
Section 4 we believe that it is reasonable at least to look through all this
section.
The function Hi(y,z,0,0,t) has the following Fourier expansion:

Hi(y,z,0,0,t) = Y HFo(y)e’miketkon,
(k,ko)e Z

Let ¢ : R — [0, 1] be an even C°°-smooth function such that ¢(r) =0
for any |r| > 1, and ¢(r) =1 for any |r| < 1/2. We put

— kl/ +I€ ik

Hyot) = 3 oY b oritiesion (g
(k,ko)eZ’®

H(y,x) = ﬁ(y,a:,()). (32)

The function H is a smoothed in y average of H(y,z,0,0,t) along the
unperturbed trajectories on the tori N(y). It tends pointwise to the actual
average

. T
S EPR(y)emi et = gy L / Hy(y, 4+v(y)s,0,0,t+s) ds
0

T—oo T
kv(y)+ko=0
(3.3)
as ¢ — 0. We prefer to deal with H and H, because the function
(3.3) is discontinuous at resonant y. Smoothness properties of H, H are
anisotropic: the variables y are of a special sort in the sense that j-th
derivative with respect to y is of order £ /4.

Proposition 3.1 Suppose that Hi(y,x,0,0,t) € C?(Dy x T?,R) and
oy _ —1/4
v(y')=p/e+96, pEZ, q€N, g¢g<e /2
Then for sufficiently small €
[H(y’,z +p/q) —H(y",2)| < C&¢’. (3.4)

Corollary 3.1 Consider the function H(y°,z) = % = H@ 2 +1/q).

Then H is 1/q-periodic in x and

|H(y’, 2) — H(y,z)| < Co7 ¢’ .



Proof of Proposition 3.1 is contained in Section 14.

In [34]-[35] we construct canonical coordinates (p,(,r,7,0). Their
main properties are as follows.

(1) dy Adx +dv ANdu=e(dp Ad( +dr Adr).

(2) For some function f(y,u,v,¢) such that f(y,0,0,0) =0

ep=y+O0E"" Ho— E(y)), ¢=z+ f(y,u,v,¢),
er = Ho — E(y) + O(**, Ho — E(y)),

where Ho = Ho(y,u,v).

(3) The variable 7 € (—c™!,c™!) has physical meaning of time. Be-
cause of some technical reasons we have to separate the time variable in
the system in, roughly speaking, the fractional part 7 and the integer part
t € N. Below ¢ is of order |log¢|

(4) We need also the discrete variable o € {—1,1} which denotes the
loop of the separatrix (upper = 1, lower = —1), near which the point lies.

Let (pr, Cry Tk, Tk, tk, 0k ), k € Z be a trajectory of SPM.. In [35] we
present formulas (an explicit part + small errors) which express (pr41, Ck+1, Th+1s Tht1, tk+1, k1)
in terms of (pk, Ck, "k, Tk, tk, ok ). To construct trajectories, we need a cer-
tain special version of these equations: Hamiltonian in p, { and Lagrangian
in 7. We eliminate the r variable from the equations. Then the dynamical
system does not contain r, but becomes of second order in 7. To present
formulas, we need another discrete variable

NS {_1a 1}7 19k+1 = Sigl’l(?"k+1 - H(Epk+1a Ck))

Suppose that Hypotheses Ho1-Hp3 hold, Ky > 0 is a constant in-
dependent of £ and K is a constant, satisfying the inequality K 4+ Ky <
—% loge.

Then there exist C*-smooth functions

)\,Hilﬁ—)R, 0t :DxT? >R
and coordinates (p, ¢, 7, t, o, 9) such that for any trajectory (p, Ck, Tk, tk, Tk, Ik )
of the separatrix map, where
%logs < —K — Ko < =Mtgy1 —loge < —Ko, (3.5)
the following equations hold:

prrt = pi = O (epit, Gy Th) + (Tt — T — tis 1) He (eprsn, Gr) + R,
Cht1 = Ck + Vtgrr — (o1 — 7o — te1)Hp(€pr+1, Cr) + Ra,

e \(k7k—1

Okt1 = OkVk41,
(3.6)

In these equations \,v,x” are functions of epiy1 and O(ep, ¢, 7) =
O(ep,¢ — v(ep)T,7). Exact statements on smallness of the error terms
Ri,2,3 are presented in [35]. We do not use them in this paper.

The functions A > 0 and «* > 0 are determined by the unperturbed
system, and ©F turn out to be certain integrals of the Poincaré-Melnikov
type. Now we present explicit formulas for A and ©%*. The proofs are
presented in [34]-[35].

The function A. According to Ho2, both eigenvalues of the matrix

_ —(Ho)uv(y,0,0), _(HO)uu(yzozo)
A(y) - < (HO)vv(yaOaO)a (HO)UH(%O:O) )

are distinct and real. Their sum equals tr A = 0. The function A = A(y)
is the positive eigenvalue of A.

The functions ©F. TLet v5(y,-) : R — {(v,u) : Ho(y,v,u) =
Hy(y,0,0)} be natural parametrizations of the upper and lower separatrix
loops 3% (y):

35y, 1) = (= (Ho)u(y, v (1)), (Ho)u(y, 7 (1)))-

These parametrizations are defined up to a shift of the time: ¢ — t+to(y).



Definition 3.1 We call natural parametrizations of ¥© and 5~ compart-
ible if they depend smoothly on y and

o (0500770 _

t—=—co (a4 (y), v~ (y,t))

Obviously, compartible parametrizations are defined uniquely up to a
simultaneous rigid shift: if v*(y,¢(y,t)), v~ (y,t~(y,t)) is another pair
of compartible parametrizations then t*(y,t) =t~ (y,t) =t — to(y).

Any solution of the unperturbed system lying on T (y) has the form

(y,z,v,u)(t) = T7(y,&7+t), (€T, 7eR, ce{+ -}
7 (y,&,7) W, & +vy)r,y" (y, 7).

Let us put

HI(y, &, 7,t) = Hi(T7 (y,€,t),t —7) — Hi(y,€ + v,0,0,t — 7).

Note that HI (y,&,7,t) exponentially tends to zero as t — +oo.
Suppose that the parametrizations vi are compartible. Then

~ +OO

(—)G(yang) = (—)a(yac - V(y)Ta T)a ea(yzng) = - Hf(yagaTa t) dt.
The functions O are called the splitting potentials. They are obvi-

ously 1l-periodic in £ and 7. In the case y = const analogous functions

were introduced in [30], see also [17] for the case of arbitrary dimension of

z,y and Diophantine v(y°). Note that in [34] we present a more general

construction, where Hp3 is not assumed.

Some calculations for Hamiltonian (1.5). Now we give explicit
formulas for ©% and H, corresponding to the system, defined by (1.5).
Since in this case v(y) = y, we get:

H(y,z) = a(¢(y/51/4) cos(2mz) + ¢(1/e"/*) cos(2t)
+bo((y — 1)/e"*) cos(2n(x — )
+b((y +1)/e*) cos(2n(z + t))).

On the unperturbed separatrix v = {(v,u) : v?/2 + Q2 cos(27u) =
Q%0 > 0} the natural parametrization is defined by the equation

3 i

driu(t)) = - :
cos (2miu(t) =1+ o o =7~ Smh(@n) 17

The function H; (y,&,,t) is as follows:
a(cos(2mu(t)) — 1) (005(271'(5 +yt)) + cos(2m(t — 1))
+bcos(2m(é + 17+ yt —t)) +bcos(2m(§ — T+ yt + t)))

Direct calculation yields,

Ot (y,&,1) = (sinlily cos(2m¢) + sinlhy cos(2mT)
y—1 y+1
+bm cos(2m(E+ 7)) + bm cos(2m(€ — T)))

Here we have used that Q = 7/2 and a = 7?/8. The function =%— in the

sinh ¢
above equation is assumed to be defined at ¢ = 0 by continuity.



4 Construction of a trajectory

In this section we present a method of the construction of trajectories
for the separatrix map. The essence of the method is as follows (see the
details below). Suppose that we have a finite piece of an ”admissible”
trajectory an the corresponding quasi-trajectory (a code). Suppose that
the quasi-trajectory can be extended i.e., it is possible to attach to it
two more points (one from the left and another from the right). The
extension should be compatible in the sense of Definition 4.3. Then by
Lemma 4.1 the extended quasi-trajectory can be regarded as a code for
a larger trajectory of the separatrix map. Since the extension of a quasi-
trajectory can be performed with a certain arbitrariness, it is possible to
use Lemma 4.1 as a tool for the construction of diffusion trajectories.

Below we construct trajectories of the separatrix map with ¢ = 1.
Hence, ¥ also identically equals 1. Due to this we will skip the variables o
and 9, assuming that they always equal 1. Analogous trajectories generi-
cally exist with non-constant o and 9.

Below together with variables p, {, 7 we use variables n, £, 7 defined by
the map 7: R x T x R = R x T?,

7T(p, ¢ T) = (77, '3 T) = (Epz ¢— l/(Ep)T, T)a

The main motivation for this is that the potential O in the new variables
turns to ©. The last one is periodic in £ and 7. This periodicity makes
some arguments simpler.
We put
7= ( 2 ) €R2 3=wvd/d¢—d/or.
Hence, 0 is the differentiation on T? = {¢, 7} along the constant vector
field 7. Consider the sets

Jo = {(77:5,7') €D x T : 59(7%577-) =0, 529(77a£a7—) * 0}

Generically for any n = 7° the set .Jy o contains a nonempty collection
of curves on T2.

We put

|77:7l

Jo=n )N {(p,¢,r) i =1 <T <1} C éﬁxTxR.

The condition —1 < 7 < 1 is introduced because below we need 7 in Jo
to be bounded. Here is another definition of the set Jo:

1— ~ ~
JO = {(p7<a7) € ED x T x (_17 1) : @r(ép,C,T) = 076"'7'(6,074—77-) 7é 0}
(4.1)

Consider the equation

@)T(sp,g,r) =z, z € R. (4.2)

It can be solved with respect to 7 for small |z| near any point (po, o, 70) €
Jo. The solution is a smooth function WP ™ (gp, ¢, z) with values on
(—2,2). We put

Ter,en = {(po,go,ro) € Jo: U = Proo:7o (ep,¢,2) is smooth for
53/4|p —pol <, ¢ —Col <, |z| <, where
O] <2, |¥,| </, W] <1/, |0, | <1/},
Jor o = {(77,5,7') € Jo: (6717],5-1- v(n)T,T) € .Zr,crr}.
Obviously,
Uerso,c>0Tcr e = Jos  Uerso,e>0der e = Jo.

Below we fix sufficiently small ¢, ¢”.
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Our construction of trajectories for the separatrix map is based on a
certain inductive procedure. Below we use the notation Q = (p,(, 7, t). A
finite sequence of vectors §2 is denoted by O:

O=(Qoky-, ), Qi =(pj,(5 75, t5), —k<j<k.

where we always assume that _; does not contain the coordinate ¢ i.e.,
Q_r = (p=,C=k,7—1). For briefness we admit by default that sub- and
superscripts of O (respectively, of Q) are automatically transmitted to the
corresponding sequence of §2; (respectively, to the corresponding vector
(p’ C? T7 t))' For eXample, 6(1) = (ﬁ(—l)kﬂ R ) ﬁ](cl))7 a‘nd Q’l = (p’l’ Ci’T{7t,1)'

For some big constant C' and a positive constant b < min{1/3, ¢’ /2}
we define

LA S S T
»T60C 0 T 302 0 T MRCP '
Here we assume that Ky is chosen (after C' and b) so large that b, and b,
are large constants. Below it is just important that b,, b, are large and
be is of order e=%/*,
For any two sequences ', Q" we define

. ’ "o —+00 if t, # t”,
dlSt(Q 7Q ) - { max{b,,|p' _ P”|, bCK, _ CH|, br|7'l _ 7_//|} otherwise,
Here |p'—p"|, |¢' = ("], and |7’ —7"| are taken with respect to the standard
metric of R, T, and R respectively.

Definition 4.1 We call a sequence O = (U, Q _141,...,Q%), k>0a
quasi-trajectory if

(l) (Pj’gja?j) € Jc’,c”’ —k < j < k,
(i) t; €N, |75 <1, - —k<j<k,
(i1i) Ko < Xj +loge < Ko+ K, —k<j<k.

In particular, O is a quasi-trajectory for k = 0 provided
@ZQoz(meO:Fo) EJG’,C”7 |?0| <1l

Definition 4.2 We call a trajectory O admissible if a quasi-trajectory (a
code) O ezists such that

dist(Q;,Q;) < b2 —b" VY for any integer j € [k, k], (4.3)
(pky Gk, Tke) € Tet o (4.4)

Since 2b < ¢, inclusions (4.4) can be replaced by the equations

Top = \I]Fiksgika?ik(gpikyCik’o).

Definition 4.3 Let O be an admissible trajectory with the code ©. We
say that a quasi-trajectory (Q, Q4) is compartible with O from the right if

Q =0,
b2
<5
2,
2

o+ = pr + Oc(ep g, Gy i) — (T4 — i — t 1) He(epy, )| (4.5)

b
¢+ — G — v(ep)ts + (14 — 7 — t1)H,(epy, G| < W
A quasi-trajectory (Q—,Q) is compartible with O from the left if

p:p—ka CZZ—kz T=T_k,

~ b2
lp-k —p— +Oc(ep—ir, (7 ) = (T — 7 —t_k)Hc(ep—i, ()| < ET
P
b2
¢k = ¢ = w(ep-r)top + (Tor — 7= —t_p)Hy(ep—k, ()| < T

11



Lemma 4.1 (The Attachment Lemma.) Let O° = (Q%,...,Q%) be an
admissible trajectory with the code O, and let quasi-trajectories (Q_, ﬁ_k),
(U, Q1) be compartible with O° from the left and from the right respec-
tively. Then there exists an admissible trajectory 0= (Q,kfl, RN ﬁkH)
with the code

Q" = (Qok—1, Oty oo, U, Qi) Q1 =00, Uy =94,

This lemma is the main result of [35] and the main technical tool in the
present paper. Indeed, we can start from some admissible trajectory with
k = 0. If there exist both left and right compartible quasi-trajectories,
by using Lemma 4.1, we can extend the admissible trajectory ©°, extend
again, and so on. Hence it is possible to obtain a large class of trajectories,
following the codes we prescribe.

Unfortunately, unlike the usual situation in symbolic dynamics we are
not able to choose an infinite code in advance. Indeed, according to Def-
inition 4.3, compartible trajectories are defined in terms of both the tra-
jectory O and the corresponding code @. We are not able to define com-
partible trajectories only in terms of the code O, because the trajectories
we construct are only partially hyperbolic. At least we do not use their
total hyperbolicity even if it really exists.

5 Clear and vague sets

In this section we present hypotheses H11-H13 and divide D into 3 sets
Dn,Dcr, and Dy, which will be studied separately. Consider the sets

je(n) ={(€,7) € T : (n,€,7) € Jo, £O¢(n,€,7) > 0}. (5.1)

Let g™ : T? — T2 be the phase flow of the vector field 7:

9" (& T) = (€ m) + Tt = (€ +v(mt, T —1).

Consider the map pr; : T2 5 Ty = {(¢,7) € T . r = 0},

pry(6,7) = g1 (€, 7) = (€ + ({7}, 0),

where {7} € [0,1) is the fractional part of the real number 7. This map
is the “projection” on the circle Ty along the vector field T(n). This
projection is discontinuous on Ty.

For 0 < @ < 1/2 and a set S C T we put

S—a={e€eS:(f—a,t+a)CS}

H11. There exists c. > 0 independent of n € D such that the sets
pPryj+ (77) — 2¢« are not empty.

Proposition 5.1 The set of C? -smooth functions ©(n,¢,7), 2 < j < w,
satisfying H11, is open and dense in C” topology.

Proof of Proposition 5.1 is contained in Section 13.

Definition 5.1 Suppose that H11 holds and c. is the corresponding con-
stant. We call n € D K-clear if

U 9" @rejs —c.) =T
0<t<K—1
Otherwise 1 is called K-vague.

Proposition 5.2 Suppose that n € D is K-vague and I C pryj+(n) — c«
is an interval of length |I|. Then there exist p € Z, q € N, such that

2 p 1
g<K-1, q<m, and |1/(77)—a <q—K. (5.2)

12



Corollary 5.1 If Hi1 holds then q < 1/c. in (5.2). Hence, according
to Proposition 5.2, vague values of n are gathered into intervals around
resonances of low orders. The number of these intervals is finite and
independent of €.

Proof of Proposition 5.2 is contained in Section 14.
Below o o
K=K/\—4, K =]|loge|/10. (5.3)

Definition 5.2 We call j € D essential if

| log ]
max |H¢(n, ()| > b.

Essential points 5 € D form intervals, on which v(7) are close to res-
onances of not very large orders. More precisely, the following statement
holds.

Proposition 5.3 Letn € D be essential and let H, be C? -smooth, j > 2.
Then there exist k,ko € Z, |k| < ¢ *(|loge|/b)U =Y such that

lkv(n) + ko] < &'/*. (5.4)

Proof of Proposition 5.3 follows from the estimate |HY"| < ¢ (]1] +
[To]) ™7 for the Fourier coefficients of H; and from the definition of H.

Let £ be the set of essential points and let D¢ be the set of K-clear
points of D with K, satisfying (5.3). We call the sets

DNZD(}\g, DCRZDcﬂg, Dy =§\D(j

the nonresonant set, the clear resonant set, and the vague set respectively.
Then D = Dy U Dogr U Dy. The sets Dn, Dcr, and Dy are finite
collections of intervals.

Consider a resonance n = n°, generating a vague interval I C Dy (see
Corollary 5.1). Denote vo = v(n°) = po/qo, where po € Z, qo € N, qo <

2/c., and the fraction po/qo is irreducible. Consider the two functions:

F+(770a C) = 66?1%2(0]{96(770)4 — los, 5) : (77074- — Vos, 5) € 7O}a
F ("¢ = efnin 0]{®g(n°,C —108,8) : (n°,¢ — 108, 8) € Jo}.
s€[—qo,

Obviously, if F; is defined at a point ¢ then F_ is defined at ¢ (and vice
versa) and moreover, Fiy (n°,¢) > F—(3°,¢). Generically Fy are defined
at any (¢ (see Proposition 5.4 below).

The function @(nO,C — 198, 8) is qo-periodic in s. Hence, F1 can be
defined as maximum and minimum with respect to s € R. The functions
F1(n° ¢) are 1/go-periodic in ¢. We define the average:

1/q0
(Fa)(n®) = o / Fa(n®,¢) dc.

Definition 5.3 We call a function f : T — R piecewise smooth if there
exist a finite number of points® ¢1,...,or € T and continuous functions
fi i [ej, pi+1] = R such that

(1) f; are smooth on the open intervals (¢;,pj+1) C T,

(2) f|(tp]‘,tpj+1) = f]“

Note that according to this definition a piecewise smooth function can
be discontinuous.

2We assume that ¢1, ..., ¢ are well-ordered on the circle i.e., moving from pj to pji1 in
the positive direction, we meet no other points ¢ (here i1 = @1).
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Proposition 5.4 For C?-generic ©

(1) £(F+) > 0.

(2) F+ = F_ at most at a finite number of points (1,. ..,k € T, where
for sufficiently small |§| the following transversality condition holds:

Fr(n’, G +0) = F-(1°,G +0) > 2erld], e >0, j=1,....k
(3) Fi(1°,¢) = Oe(n°, ¢ — v072(C), v+ (C)), where for some ¢ > 0

56(7]0’ C - VO’Yi(Oa ES (C)) =0, |52®(n0a C - VO’Yi(Oa Y+ (C))| 2 Z(C,F)
5.5
(4) The functions v+ and Fy are piecewise C7~" -smooth in .

The genericity is understood here in the sense that the set of ©, satisfy-
ing (1)-(4), contains a subset which is open and dense in the C” topology.
Proof of Proposition 5.4 is contained in Section 13.

H12. For any n°, generating a vague interval, the function ©(n°,¢, 1)
is generic in the sense of Proposition 5.4.

H13. For any n°, generating a vague interval the function H(n°, (),
¢ = ( mod % takes global mazimum at o unique point C. = C.(n°) and
this mazimum 1s nondegenerate.

Hypotheses H11-H;3 and system (1.5). Now we outline the proof
of Theorem 2. We need to check that the functions H and © = O,
calculated in the end of Section 3, satisfy Hypotheses H11-H13. First,
we put b = 0. Since & = nd/9¢ — 8/dT, we have:
2

_ , 1
30(n,¢,7) = —27r(sighnsm(27r§)—Sinhlsln(Zﬂr)),

cos(27r7')).

3
=2 _ _ 2 n 1
gemmer) = —4r (sinhn cos(2m¢) + sinh 1

For any n° the set Jo N {n = n°} consists of curves, determined by the

equation 9O = 0 without a finite set, where 9°@ = 0. There are only
two exceptions: n° = +1. For example, for n° = 1 we have to remove the
curve {¢ + 7 = 1/2}, where both equations hold. However, another curve
{¢ = 7} without two points £ = 7 = +1/4 still lies in Jo N {n = 1}. For
n = —1 the situation is analogous.

For |?/sinhn| # 1/sinh 1 the set {(£,7) : 89(n, &, 7) = 0} consists of
two curves, passing through four points (¢,7) € Z?/2 mod 1 (two points
on each curve). Both curves are homotopic to either {r = 0} or {¢£ = 0}
depending on what inequality |p”>/sinhn| > 1/sinh1 or |p?/sinhp| <
1/sinh 1 holds.

Since O¢ = — 271

sinh n

sin(27€), we see that

J= (") = Jo N {n =n"} N {Fsin(2r¢) > 0}.

After these observations Hypothesis H11 can be easily checked.

Vague intervals are neighborhoods of integer n. Hence, we need to
check H22 only for n = £1 and n = 0. For n = %1 the corresponding
functions Fy satisfy Proposition 5.4. In the case n° = 0 we have:

F+(07C) :F*(Oac) =Sin<

i.e., a degeneracy takes place. This degeneracy disappears for small b.
Hypothesis H;3 at n° = &1, 0 is checked easily for b # 0.

6 Passage through a nonresonant inter-
val

We denote Amin = miny€5 A(y). According to Ho2, Amin > 0.

Consider a connected component (a1,a2) of Dy and an admissible
trajectory O = (Q_k,..., Q) which enters the interval i.e., a1 < gpr <
a1 + O(e|logel).
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Lemma 6.1 Suppose that H11 holds. Then it is possible to continue the
trajectory to an admissible trajectory which leaves (a1, a2) through another
end: as < eppr < as + O(e|logel|) for some k' > k. Moreover,

k!

(a2 —a1)|loge|
t < 22— )08 el 1
]; T W (6.1)

Corollary 6.1 The average velocity of the transition through (a1, as2)
2 —m| _ _lp2 = p1l

k! k!
Zj:k tj Zj:k tj

is of order e/|loge|.

Proof of Lemma 6.1. Let O = (Q_p,..., Q%) be the code of the tra-
jectory O. We discuss the continuation of the trajectory forward with
respect to time. (The continuation backward is not essential). We will
use the following

Lemma 6.2 3 Suppose that H11 holds and epy, is K -clear with K, satis-
fying (5.3). Then there exists a right compartible quasi-trajectory (Q, Qe+1)
and another right compartible quasi-trajectory (ﬁﬁc,mﬂ) with

~ _ _ ~ -
O¢(ePrr1y Crprs Th1) < —Tb, 96(5P2+1:Ck+1:7'§c+1) > Tb. (6.2)

Now Lemma 6.1 follows from the Attachment Lemma. Indeed, accord-
ing to the Attachment lemma, the new trajectory O = (Q_g—_1,..., Qk41)
will be such that dist(Qp41, Qe+1) < 2b. In particular, by|prt1 — Ppq| <
2b. This inequality preserves when we extend the trajectory by using
the Attachment lemma repeatedly. We deal with a nonresonant interval.
Therefore, |(Tr+1 — 7 — te41)Hc (€D, ¢)| < b. This implies (see (3.6))
that p,,, —p, > 5b. Hence, on all extensions of the trajectory O

lpe+1 = Pl > —|pr+1 = Pyl + Pryr — P — [P — pr| > 50— 4b/b, > 4b

which means that on the trajectory the variable p increases at least by
4b on each step. Since each step takes time less than 2|loge|/A
obtain estimate (6.1).

min> W€

. roolr o emima o.
6.1 P fof L 6.2
We define
;i(W:C, C,,C”) = {(577-) € T2 : (77,5:7') € Jc’,c”a ﬂ:eﬁ(n7£a7—) Z C}. (63)
Since U, o ors0jx (0, ¢,¢,¢") = ji(n), for any n € D there exists & > 0
such that _
prﬁji(nzgagaa - prﬁji — Cx.

Since D is a compact, positive ¢ can be chosen independent of 5 € D.
Hence for any K-clear n we have:

U o" (prode(n, 80,2 ,2)) = T° (6.4)
0<t<K+1

with small enough b,c’,c”.
Now we construct a right compartible quasi-treajectory (Qg, Qpy1).
Below for briefness we put Q4 = Qx41 and deal with the first inequality
(6.2). According to the definition of a right compartible trajectory, we
need to define p4, (4, 74, t4+ so that
2

~ b
lp+ — P+ Oc(ept, Cry i) — (T4 — 7 — t1 ) He(epy, Gi)| < T (6.5)
P
b2
|+ = Gk = v(ept)ts + (T4 — T — t)Hy(ep, Gi)| < W (6.6)
(p+ag+a7-+) € jc’,c”: (67)
KoS}\t++10gESK0 +?, |T+| <1, t+€N. (68)

3 A multi-dimensional analog of this lemma is presented in [35], Section 5.
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Moreover, because of the condition (:)g(sp+, C+,T+) < —T7b, instead of
(6.7) we need the following stronger condition:

N4+ €4, T4) = (ep4, Co — V() T, 74) € J— (04, Th, ¢ ). (6.9)

Condition (6.8) means that ¢4 can be chosen from a certain interval of
length K /.
(1) First, we find ¢4 and some auxiliary 7., (.. Consider the condition

(epr, Cr + v(epi)t, —t) € j (nk,8b,2¢",2¢"). (6.10)

According to (6.4) and (5.3), for any point (£,70) € T? any interval
I C R of length greater than or equal to K /X — 1 contains a point t with
(&, &0 + v(epr)t, 7o — t) lying in j_ (nx, 8b, 2¢',2¢"). Hence, (6.10) has a
solution

t=t Ko+XA2<A+loge < Ko+K —\/2.

We define ¢4, 7«, (« as follows:
ty —Te =1 ty€Z, 1. €(=1/2,1/2], (e =Ch+rvlepr)ty. (6.11)
Then (6.8) holds. Inclusion (6.10) implies that
(epr, Ce — v(epr)Te, T=) € jx (1, 8D, 2¢", 2¢").
(2) Now we define py, (4:

p+ = pi — Oc(epr, G i) + (1w — 7 — £ He (ep1, i), (6.12)
Ct+ = Ce +v(ep)ts — (T — T — t4)H, (epi, Ck)-

(3) We find 74 from the equation 00(ep4,(+ — v(ep4)Te,7+) = 0
which is equivalent to O, (ep+,(+,7+) = 0. Hence,

T = U (epy (4, 0).

Since 7. = WPH ™ (gpy, (., 0), |p+ — pr| = O(loge), and |¢4 — (.| =
O(e**1og ¢) we have:

3/4
&3/

|74 — 7| = O(e”" | log gl).

Therefore, (6.9) holds, (6.5)—(6.6) can be checked easily. L]

7 Passage through a clear essential reso-
nance

Let I, be a connected component of Dcgr. In this section we discuss
passage of the trajectory through I. According to Proposition 5.3, I cor-
responds to some “near-resonance” (5.4). We will assume that there exists
n° € I such that kvo + ko = 0, vo = v(n°). The case when v(n)|f # vo
is simpler and can be considered analogously. For brevity we put 7° = 0.
Then vy = v(0).

Lemma 7.1 Suppose that H11 holds. Then the trajectory can be contin-
ued through I. This takes time t = O(]I||logel/e).

Proof. Our construction of right compartible trajectories is analogous
to the one presented in Section 6. Unlike the situation with the passage
through a nonresonant interval the term (74 — 7 — t4)H¢(ep4,() can
prevent the variable p from increasing if H¢(epy, () is positive. So, it is
important to look at the evolution of the variable (.

We denote

Vo = V(O) = _kO/ky Vo = _(O)a Vo = _(O)a
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where by Ho4, |vg| + |vg| > 2¢,. We put

Co = sup ®§(n7£a7)'
neD,&,r)eT?

Now we define one dynamical problem with control and noice: Problem
C (C is from “clear”).
Problem C. Consider the discrete dynamical system

pntr — pin = Ve(un — tnp1He(Vepn, (), (7.1)
<n+1 - Cn = V(\/glan)thrl + ,Bn (72)
Here for any n

Ko < M +loge < Ko+ K, |Bn] <c 'e**|logel. (7.3)

The variable un s a control, which according to our needs can be chosen
from one of the intervals:

(—co —b,—5b) or (5b,co +b) (7.4)

Values of un from these intervals and values of tn, Bn, satisfying (7.3), are
arbitrary (i.e., their precise values are unknown). This arbitrariness can
be regarded as a moice. The goal is to construct a trajectory which starts
at a point (po, o), and finishes at a point (un,Cn), where

TZ{MGR:\/EMGI}C[MO,HN].

Note that I is a connected component of the set {p € R: |kv(\/epn) +
k0| S 51/4}.

Proposition 7.1 Problem C has a solution with N = O(|I|/¢).

Proposition 7.2 Suppose that Problem C has a solution. Then Lemma
7.1 holds with t = O(N loge).

7.1 Proof of Proposition 7.1

We begin with some auxiliary estimates. For some large constant C
consider the set

= {p €T lv(Ven) — vo] < 0153/4}.
Let |I| be the length of an interval I C R.

Proposition 7.3 Suppose that 6| + |vo | > 2¢,. Then

(a) III O(*%),

(b) I consists of one or two intervals IJ , 7 = 1,2 and |I |

O(e/%).

Proof of Proposition 7.3. The following statement is crusial for the
proof.

Claim. Let u,v,cy,cCy,8 be constants such that cy,c,,s are positive,
|u|/cu + |v|/cv > 2, and let I C R be an interval. Suppose that

luz 4+ vz’| < s for any x € 1.

Then the length of the interval I does not exceed max{4s/c.,\/4s/cv}.

We omit the straightforward proof of the claim. Now to prove Propo-
sition 7.3, it is sufficient to note that

I cC {ueR:|k(u0u+ VO\/_M +0(ep®))| < 26 v

o~cr

I c {peR: |uou+ Svgep” + 0(ep®)| < Cre'/*Y.
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Counsider the system

{ fr =v — He(Vep, ), 26

= 2 (Vew —v0) +VEH,(VER, Q) U Tloge] )

The constant v is small and positive. This system is Hamiltonian with
symplectic structure du A d¢ and Hamiltonian function

X(1,Q) = S(B(/m) — B(O) ~ vov/Ew) + H(Vam Q) — v (T6)

We use this system to compare its trajectories with trajectories of Problem
C.
Hamiltonian (7.6) is multi-valued on the cylinder

Z ={(1,¢) : p € T,¢ mod 1}.

However, the corresponding Hamiltonian vector field is 1-periodic in ¢
and therefore, single-valued on Z. To make y single-valued, we assume
that x : Z — R/(vZ). In other words, we take x mod v. Note also that
due to Proposition 3.1 the 1-periodic in ¢ function H is approximately
1/k-periodic in (:

H(n, ¢+ 1/k) —H(n,¢) = O( loge) for C-smooth H,. (7.7)
Let 0—Z and 0+ Z be connected components of the boundary 0Z:
0-ZU0+Z = 0Z, H|3_Z<0<H|3+Z-

System (7.5) is integrable and its dynamics is trivial. In particular, any
trajectory which begins on d_Z either reaches 94+ Z or tends asymptoti-
cally to an equilibrium of (7.5).

If I°" consists of two connected components, let puo be some number,
separating them and

So ={(1,¢) € Z: p= po}.

Proposition 7.4 Suppose that1" is connected (respectively, disconnected).
Then system (7.5) has a trajectory

Y(t) = (u(t),¢®), te0t], x|y =x-

(respectively, trajectories v (t) = (ut(t), ¢t (@), t € [0,tF], x|yt = xE)
such that

(1) n(0) € 0-Z, u(t.) € 0+Z (respectively, p=(0) € 0-Z, u~(t;) €
So u*(0) € So, p*(tF) € 04.2),

(2) t. < [1|/(cv) (respectively, t7,t5 < [I|/(cv)) for some constant c,

(8) assertions (1) and (2) hold for any trajectory with energy from
the interval [x. — c1v?, x« 4+ c1v?] (respectively, from the intervals [xT —
c1v?, X*i + clv2]).

Remark 7.1 Due to (7.7) the quantity x. in (3) can be taken moduv/k.

Proof. We consider only the case of connected TCT, For disconnected
=Cr
I the proof is the same. Let

M =maxH(0,{), A=maxH.(0,().
mst (0,¢) max ¢c(0,6)

Claim. For any h € (M — v?/(84), M) any ¢ such that H(0, E) =h
satisfies |H¢(0, Z)| <w/2.

Proof of the claim. Take any ( such that H(0,() = h € (M —
v?/(8A), M). Suppose that HC(O,E) > v/2 (the case HC(O,E) < —v/2
is analogous).

For ¢ > Ewe have:

~ ~ ~

H(0,) ~ H(0,0) ~ He(0, (¢~ O + 5~ 7 0.
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Indeed, the function in the left-hand side and its first derivative in (

~

vanish at {( = ¢ while its second derivative is non-negative for any (.
Taking ¢ = ¢ + H¢(0,()/A, we get:

2 2
H(0,¢) > H(0,0) + H2(0,0)/(24) > M — — + ——.
(0,¢) > H(0,¢) + He(0,¢)/(24) > sa T3

This contradicts to the assumption that M is the global maximum of

H(0, ¢).
Now let us return to the proof of Proposition 7.4. Let (t) be the
trajectory with initial conditions

3v? v?
(1,¢) = (0,¢°), H(0,(")=he (M “ M- 32—A)
According to Claim, while
2
(1) €17 0 {(1,€) + H(0,¢) € (M — g, M)}, (7.8)

we have: > v/2, ¢ = O(e'/%). Recall that by Proposition 7.3 (b)
|TCT| = O(e~"/®). Hence, ~(t) passes I through the ractangle (7.8) with
p-velocity greater than v/2.

Outside T C is separated from zero. Therefore, in average, p increases
with velocity v. u

Proposition 7.5 For C®-smooth H, and p € T

X(pnt15 Cnt1) = X(ins Cn) + vV0tngr
= (v(Vepn) = v0) (un = vtus1) + |loge] O (e + (v(Vep) — 10)*)7.9)
Proof of Proposition 7.5. We have by (7.6):
X (tn+1,Cnr1) = X(tn, Cn) + votny1 = A+ B+ C+ D,
A = Z(B(WEuns) - B(/Emm)),

1
B= —$V0(Mn+1 — pn)s

C = H(\/E[J,n+1, Cn+1) - H(\/gp’na Cn)a
D = —v(Cn+1 — Votnt1 — (n).-

By using (7.1)—(7.2), we get:

A = V(\/Elln)(un - tn+1HC(\/Eljln7 Cn)) + O(E 10g2 E)’
B = —VO(Un _tn+1HC(\/E///n7<n))7
D = —v(w(Vepn) = o)tnts + O(E™).

To deal with the term C, we use the estimates

fing1 —pin = O(Veloge), He(Vem, ¢ +votni1) —He(Ven, §) = O(*?).

The last estimate follows from Proposition 3.1 for C®-smooth H;, because
for \/eu € T we have § = |v(y/ep) — vo| < e/, Now we get:

C = (v(v2n)—v0) tnr1He (Vepn, Ga)+ log 2] (O(e* ) +O(v(Ven)—10)*))
These estimates for A, B, C,D imply (7.9). n
Since Atn41 = |loge| + O(1), we have:

Uy, — VEpy1 > 2b for un, € [5b, co + b,
Uy — VEny1 < —6b  for u, € [—co — b, —5b].

Hence, with the help of u,, we can increase or decrease x mod v/k on the
trajectory. In particular, we can use the control ug,u1, ... first, to make
X close to x«:

X(ftn,Cn) = (x« + O(VE) mod v/k,  n=mng <we /2
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and then to preserve this condition for n > ng provided
[v(Vepn) —vo| > Ce¥*loge| ie., p g1 (7.10)

Since the sequence x(pk,Ck), k > no just weakly oscillates, the trajectory
(tn, Cn) really follows « from Proposition 7.4 provided (7.10) holds. To
enter the strip

S={(m¢): pel”},
we need

N1 <O(T7|/Ve) (7.11)

steps. Indeed, (7.11) follows from the fact that average increment of p on
this part of the trajectory we construct is O(\/2).

When the trajectory (pn,Cn) enters the strip S, error terms in (7.9)
can dominate. In this case we choose the control u € [5b,co +b]. On yNS
equation (7.5) implies that

fr=v—He(n’,¢) > v/2. (7.12)
Moreover, according to Proposition 7.4, this inequality remains true while
(1,0 € (1, O) = x-| <ev®} NS, e =1/(3824).  (7.13)

Now turn to the trajectory (un, (). By using (7.1) and (7.12), we see
that (7.13) implies

2|loge 3
208 bt (1, co)) > v,

Un+1 — fUn > \/E(5b -
Hence, pr increases while (p, ¢) = (uk, () satisfies (7.13). To pass S,
we need not more than
ce's ¢

No= —"—— = —
? \eb e5/8b

steps. During this time x changes not more than by Ny O(£*/4|loge|) =
O(e'/®loge). This means that if the trajectory enters S with x = (x« +
O(y/2)) mod v/k, it will remain in the domain (7.13) when leaving S.

Finally, for the total amount N of steps on the trajectory we have:

N =2Ni + N, = O([T|//5) = O(]1|/2).

7.2 Proof of Proposition 7.2

By using Lemma 6.2, we can construct a trajectory such that on the
corresponding sequence of right compatible trajectories

(%, 1), (g1, Yyr2), ..

according to our needs @C (€7,,,€C,.,Tn), n = j,j+ 1,... belong either to
[6b, co] or to [—ce, —6b]. For |ep, — n°| < ce'/* (recall that we assume
that n° = 0), combining (4.5) and the estimates

[P = pn| <2b/bp, |Gy = Cal < 2b/b,  [Tn = Ta] < 2b/br,

we get
En+1 = En - ®C(6pn_7 Zn’Fn) + (Fn+1 - Fn__ En+1)HC(6p_n7Zn)j an’
<n+1 =, +v(Ep,)tnt1 + e(Tnt1 —Tn — tnt1)Hy (€D, () + Bn,

(7.14)
where |a,| < b/2, |Ba| <c 'e|logel/2.
We denote B
€Pn = Vemn + eTnHe(Vepin, C,,).

20



Then

i1 = pin — Oc(€D,,CosTn) — Tns1 He (VEhn, Gy Tn) + i,
an = Qn— (Tn +tnt1)01 + Try1do,
61 = He(Vepn +eTnHe(Ven, (), () — He(Vepn, (),
02 = HC(\/EIM +EFnHC(\/EllmZn),Zn) - HC(\/EHn+1:Zn+1)-

We have: 81 = O(e**), 6, = O(c/*loge) + O(v/zploge). Indeed, the
first estimate is obvious. The second one follows from the equations

Hnt1 — pin = O(loge),  Cny1 —Cn = —ko/k + O(\/eploge),
H¢(Vep, ¢+ ko/k) — He(Vep, ¢) = O(e).

The last equation follows from Proposition 3.1 for Ci-smooth Hy, j>5.
Thus |a,| < b and the quantity u, = —O¢(£p,,,(,,, Tn) + an belongs
to one of intervals (7.4) and we get (7.1). Since

n
v(P,) = v(0) + viov/Epn + ey + O(e) + %200,

we get (7.1)—(7.2). n

8 Passage through a vague interval

We fix a resonance = n°, generating a vague interval I C Dy. Below
without loss of generality we assume that 7° = 0. Denote vo = v(0) =
Po/qo, where po € Z, go € N, go < 2/c«, and the fraction po/qo is irre-
ducible.

Lemma 8.1 Suppose that H12 holds for the vague resonance n = 0.
Then an admissible trajectory can be continued through the corresponding
vague interval I C Dy . This takes time t = O(|loge|/e).

Due to H; 2, the functions F4 satisfy conditions (1)—(4) of Proposition
5.4. For sufficiently small ¢/, ¢’ the functions

FC',C”,+(<) = er[nax 0]{e§ (O,C — oS, S) : (O,C — s, 5) € J2c’,2c” }7
s€[—qo,

Foor_(¢) = €fnin 0]{®5(O,C —108,5) : (0,{ —108,5) € Joer 201 }
s€[—qo,

also satisfy these conditions.

Let v& = £ (¢) be such that Fr o 1 (¢) = O¢(0,¢ — vovd, vE). Since
(Oac - VO’YS:’Y(?) € J2c’,2c”: we have: FY(:JE (C) = \IIO,C,’YOi © (O,C,O) The
functions v (¢) are piecewise €7~ -smooth.

For small |n| we put

Foon e (n,€) = Oc(n, ¢ — vyt ),
+
vE = ®,¢) = 0 ©(n,¢,0).

Hence, @T (77’ Cf‘yi) =0 and (nvg - V(n)’Yi:’Yi) € Jc’,c”- The the func-
tions ﬁc',c”,i are smooth in 7 and for any small |n| satisfy conditions
(1)—(4) of Proposition 5.4 with ¢;/2 instead of cy.

We will assume that ¢’,c”,|n| we deal with are sufficiently small in
this sense. For brevity we will skip the subscripts ¢’,¢”. In partiqular we
write Fi instead of Fc’,c”,i-

Suppose that an admissible trajectory O = (Q_p,...,Q) with the
code O = (Q_y,..., Q) reaches the vague interval i.e., ep, € I, 5, <
0. Note that according to Proposition 5.2, I C [-C\/(qK),C.,/(qK)],
where C,, is the Lipschitz constant for v~ '(n) near the point 5 = 0, and
K satisfies (5.3).

Below the functions F4 will play the role of O¢ in the dynamical
equations. In fact we use the following
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Lemma 8.2 Suppose that H12 holds for the vague n = 0. Then for any
lepr] < Cuv/(qK) and x € {+, =} there exists a right compartible quasi-
trajectory (Qk, Qk+1) and integer t

1

t—[)\

(Ko —loge)] € {1,2,...,2q},

where [[] : R — Z 1is the integer part of the argument, such that

~ ~

Oc(ePrs1> Coprs The1) = Fulepr, G + v(epr)t) + o, (8.1)
las] < d, d is a small constant.

We prove Lemma 8.2 in Section 9, and now we define one more dy-
namical problem: Problem V (V is from “vague”).
Problem V. Consider the discrete dynamical system

Pt = pn = =VE(On + tnp1 He(Vepn, Cn) + an), (8.2)
Crr—Cn = v(Vepn)tngr + Ba.

Here for any n

tn <tn <tn+2g0, tn€Z (8.4)
tn — [3 (Ko —loge)] € {1,2,...,2q0}, (8.5)
1Bn| < Ce¥*|loge|, |an| <d, d=0(*loge). (8.6)

The variables ty,v, should be regarded as a control, where according to
our needs trn, satisfying (8.5), can be chosen arbitrarily, and v, can be
chosen equal to one of the following two quantities:

Fi(Vepn-1,6n 1 +v(Vepn - 1)tn). (8.7)

The small terms oy, Bn are regarded as a noice. They and t, take ar-
bitrary values in the correspondent intervals. The goal is to construct a
trajectory which starts at an arbitrary point (uo, o), vVepmo > —1/(qK)
and finishes at a point (un,(n), Veun > 1/(qoK) with N as small as
possible.

Lemma 8.3 Problem V always has a solution with N < 1/(ceK).

Lemma 8.4 Suppose that Problem V has a solution. Then Lemma 8.1
holds with t = O(N loge).

9 Proof of Lemma 8.2

The argument is analogous to the one we used in Section 6.1. We prove
the lemma for *= +.

We need to satisfy (6.5)—(6.8) and condition (8.1). Again for brevity
we put Q+ = §k+1-

(1) First, we consider instead of (8.1) the equation

Oc(epr, Gk + v(epi)t, —t) = Fiy (epr, Gk + v(epr)t). (9.1)

with unknown integer ¢ € [t, t + 2qo].
According to definition of F;, there exists t = ¢ € [t, t + 2qo] such that

(epks Ch + v(epr)t, —1) € Joer ner and (9.1) holds. (9.2)

(2) We define t4, 7, (« by (6.11). Then ¢, satisfies (6.8). Conditions
(9.2) imply that
(£, G —v(epp)Te, 72) € Jor o, Oc(epr, Co 7o) = Fy(epr, Gi +v(2pr)t).

(3) We define p4, (4 by (6.12). B
(4) We find 7+ from the equation 00(ep+,(+ — v(ep+)T4+,74+) = 0
which is equivalent to ©-(¢p+,(+,7+) = 0. Hence,

T =TT (epy (4, 0).
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Since 7. = WPk (gpy, Ci, 0) and |C+ — (| = O(e¥* loge), we have:

3/4
&3/

|74 — 7| = O(e”" | log gl).

Therefore, |74+| < 1. We have:

|©C(6p+7 §+aT+) - éf(gpkv <*7 T*)| = 0(63/4 lOg 6)'

Now (6.5)—(6.6) can be checked easily. L]

10 Proof of Lemma 8.3

Suppose that the trajectory O of the Problem V reaches some point
(1, €) = (ps, Cs) with —1/(qoK) < Veps < 1/(qoK).

10.1 Step 1 (far from the resonance)

First, consider the case

/% < |Vep| < 1/(qK). (10.1)
Proposition 10.1 Let H; be C?-smooth. Then for sufficiently small ¢
(10.1) implies that |tn+1H<(\/§pn,Cn)| < Cllogel*™.

Proof. Let c, be a Lipschitz constant for v(y) and c, = Z—Z(O). Ac-
cording to Ho4, ¢}, > 0. Inequality (10.1) implies that

q02"/°¢, /2 < lqov(v/ep) — pol < cu /K. (10.2)

For any resonance v(v/eu) = p/q, p € Z, q € N, satisfying (10.2), we
have:
1< |qop — pog| < cvgq/K.
Since K is of order |loge|, q is big: ¢ > K /c,.
Now let us estimate H¢(y/2p, ¢) for p, satisfying (10.1). According to
(3.1)—(3.2), we have:

|He(Vep, ¢)| < Cge™ < Ol K7

for some constant Cpg. ‘Here we have used the standard estimate for
Fourier coefficients for C?-smooth functions. Finally we have:

2|log ¢|c) Cy C
AK |log e =1

|tn+1He (Vepn, Cn)l <

We take R
VUn = F_ (\/gllnfly Cnfl + V(\/gllnfl)tn)
Hence, (8.2)—(8.3) can be replaced by the system
pnst = o = —VE(F- (Vapn-1, Gt + ¥(Vepn-1)tn) + @ ) {10.3)
Cnt1—Cn = V(\/gﬂn)thrl + Bn (10.4)

with |8,| < Ce®*|loge| and |@n| < 2d. Below we skip hats over ay.
Our idea is as follows. Starting from the point (us,(s) for natural k
we will have:

Corhmr + V(VEpsti1)bssr = C + KA,
with A = v(Veus)(t + 290), (10.5)

1
teEN, t— [X(K0 —loge)] € {1,2,...,2q0}, (10.6)

and some EG T
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Hence, if A satisfies good arithmetic properties, for some q € N the

points (s,. .., s+q—1 more or less uniformly cover the circle {¢ mod 1}.
Therefore,
q—1 q—1
Bsta+1 — fst+1 R —\/EZ F_(Veps, s + kA) — \/EZ st
k=0 k=0

Here the first sum approximately equals —q\/E(ﬁ_ (0)), while the second
one does not exceed 2q+/zd. Hence, if ¢ is sufficiently small, prsyq41 —
ps+1 > 5(F-(0))\/2q, because d can be chosen less than ;(F_(0)).

More precisely, we choose t such that (10.5)—(10.6) hold and A satisfies
the following weak resonant condition (WRC):

WRC. Given a large constant C > 0 and a small constant ¢ > 0.

For any ps satisfying (10.1) there ezist p,q € Z such that

(a) C < q < clelog?c)~/°,

(b) the fraction p/q is irreducible,

(c) there exists A, determined by (10.5)-(10.6), satisfying the inequal-
ity [qA —p| <q~'.

Proposition 10.2 For any p = us, satisfying (10.1) there exists t, sat-
1sfying (10.6) such that for the corresponding A WRC holds.

Proof of Proposition 10.2 is contained in Section 12.
We choose the sequence ts, such that for any £k =0,...,q
t <tstr <t + 2qo,
[Cork 1 + V(VEHS ) bork — C — kA < ¢ k| loge|,  (10.7)
= Comr + v(Vepa)ts.
These inequalities can be satisfied. Indeed, for &k = 0 (10.7) holds. Now

we apply induction argument. Suppose that (10.7) holds for some &k > 0.
Then by (10.3),

ts+k = ps + O(kV/E). (10.8)
Using (10.8) and (10.4), we get:

Cok Fv(VeEps)bsthtt
= Copr—1 +v(Veps)(tsrr + tosrit) + Yr, (10.9)

where |¢x| < ¢"'k\/g|loge| and the constant ¢ > 0 does not depend on
k. The quantity (10.9) equals

Cob—1+ V(\/EHS)tSka + V(\/EHS)(tSka —topk + togiss) + Ui

Since ts4r —ts+x € [0,2¢0]NZ then ts1x41 € [t,t+290] NZ can be chosen
such that ts4r — tsqr + tstrt+1 =t + 2go. This finishes the induction.

Proposition 10.3 Let t be such that (10.5)—(10.6) hold and the corre-
sponding A satisfies WRC. Suppose that the sequence (un,Cn) satisfies
(10.83)-(10.4), and (10.7). Then

S ==Y F (Veptar Copk + V(Velars)bashir) > 2—q|( —(0))].
= (10.10)

Proof of Proposition 10.3. By definition (see Section 8), the function
F_(n,¢) = Fu o,_(n,¢) is smooth in 7 provided 7 is close to zero.
By using the estimate (10.8), we get:

Y = 24 0(q’Ve), (10.11)

q—1
— Z F_ (\/ENS: Cstr + V(\/gﬂs+k)ts+k+1)'
k=0

P

24



Estimates (10.7)—(10.8) imply that

Coth +V(Vepsri)bsrbtr = C+ (k+1)A + 8y, |0k| < 2¢”"k*\/E| loge].

Therefore by WRC ¥ can be regarded as an integral sum for

/0 B (\eps, €)dC = (F(0)) + O(v/2ps).

Provided q is sufficiently large (to have a good approximation of the in-
tegral), but less than c(elog®e)™"/% (to have |dx| < 1/q), the following
estimate holds:

~ 1~
|31 = al(F0)]] < Jal(F(0)]-
Combined with (10.11), this implies (10.10). L]
According to (10.3),

q—1
Pstat1 — Pst1 = VED + \/EZ Qstht1, |an| < 2d.
k=0

Proposition 10.3 implies that

st = ier > VEa(FUF- )] = 20) > L[FO)

provided d < %(ﬁ, (0)).
We proceed in this way while (10.1) holds.

10.2 Step 2 (near the resonance)

Now turn to the case

Cvz/|loge| < |Vepu| < e'/°. (10.12)
We use the equations

v(Vep) = vo + vo/ep + O(ep®).

Due to (10.12) the function H(/zp,() is close to a 1/go-periodic in (
function H (see Corolary 3.1):

H(Vi, Q) = H(va, Ol = 0"y *).

We replace H by H in (8.2). Then the order of the error term o, remains
the same. R

Since vo = po/qo, the functions F4 (0, () are %-periodic in ¢, and the
sequences t,, t, are integer, we will consider in (8.2)-(8.3) ¢( = ¢ mod %.
Therefore we can replace (8.3) by the equation (n41 — ¢ = (V(VEpR) —
vo)tn+1 + Bn. Equations (8.2)—(8.3) take the form

fnst — o = —VE(Bn + tar1He (VEpn, Ca) + @),  (10.13)
Cnt1 — Cn VoVEtntntt + Br + Bn, (10.14)
|@n| < 2d, |Bn] < Cepn|loge|, |Br] < Ce*|loge],

where v, equals to one of the following two quantities:
Fi(0,0), Cn = Gt + Vor/Efin—1tn + O(eps_y|logel).  (10.15)
Note that according to (10.14)—(10.15)
Cn = Cn + O(Vepn) + 0¥ | log ). (10.16)

‘We choose

t = [ (Kg—loga)] +1

1
Y
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and the sequence ts4+r, £ = 0,1,... such that

t S ts+lc S t+ 2q07
Cothtt = Cogk + VoVEMsthts + 0sqr,  te =t + 2o, (10.17)
|65 +x] < C1(epzyilloge| +**[loge]).

The sequence tsy, can be chosen as follows. By (10.15) and (10.14)

Corbirt = Corh +V0VEHariboriss + O(eplyi|logel)

Corbmt + V0VE(tsth—1tsth + Pothbsths1)
+Bitk—1 + Biyr—1 + O(epsix|logel)

otk 4 VovV/E(lsthortsir — Mothotbork + fotrbstrtr)
+Bitk—1 + Bitr—1 + O(epis x| logel)

We choose ts4r4+1 € [t,t 4+ 2g0] N Z such that ts4p — tsyp + tsprt1 =

t + 2go. Then (10.17) holds.
Lemma 8.3 on step 2 follows from

Proposition 10.4 For any

. 1
s, Cs) with  \/eps > _51/6, (s = (s mod q_
0
there exists a trajectory

(tny Cn),s n=s,...,s+N (10.18)

of Problem V such that
(a) ps+n > —C/|loge|,
(b) N < Ce™/5,

Remark 10.1 By using Proposition 10.4, it is possible to pass through
the interval —e'/® < \fep < —C\/2/|loge|. The interval C\/2/|loge| <
Vep < e/ can be passed analogously.

To construct such a trajectory, we consider the systems
¢ =wop+ e/ Hy (Veu, 0),
(F1)e(Q) = Fx(0,0) = Fx, Fi =[] FL(0,()d¢.  (10.20)

This system is Hamiltonian with symplectic structure dp A d¢ and
Hamiltonian function

X = bt + VA Q + PO +he,  (10:2)

he = —mgx(ﬁ(\/gp,g)Jr&Fi(g)). (10.22)

Below in this section we concentrate on properties of the system with
Hamiltonian y—. The case of the function x4+ can be studied analogously.
System (10.19) is integrable and has phase portrait analogous to that of
a pendulum.

We note that because of (10.13)—(10.14)

X (Bnt1, Cat1) = X (1n, Cn) = diy = Vevoundin + By, + 1,

dF = —Varbun Fe0,G) + 1 (F-(Gua) = F-(G),  (10.23)

|Bn] < Ceppllogel, |B| < Ce**|logel. (10.24)
The superscript + or — in dif corresponds to the choice of T, in (10.15).

Remark 10.2 According to (10.17), the difference Cnt1—Cn € R/(q;'Z)
is close to zero. Below we will regard En+1 - Zn (respectively Cn+1 — Cn)
as a real number which belongs to a small neighborhood of zero. Due to
this convention we regard Cs4k+1—Cs (respectively (syk+1—Cs) as the sum

Zfi;’i(fnﬂ - En) (respectively Z;Z’Z(gnﬂ — ).
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For s < k' < k" we put Dki,,k,, = x—(pprr, Corr) — x— (s, Car ), where

the superscript of D is the same as the one of dif in (10.23).

Proposition 10.5 Suppose that the sequence Ciry Crrg1,y - - -, Cprr 48 monotonous.
Then there_ezists a constant K € N such that for E'—k > K and for

[Cotr+1 — Cs| <1 ,
D;Ctr,ku = _t_ai + a’i + a’i,
*
where

Ckrr R
ax = - F(0,¢) d¢ + F(Cerr) — F(Crr), (10.25)
Ck’

2d
lal| < t—|Ck”—Ck'|,

laf| < C(Vewr pr + (K" — K Yepn | loge| + (K — k)| log g]),

P = nl- 10.26
okt ke k,g}lagk,, |pen | ( )

Proof of Proposition 10.5 is presented in Section 12.
Note that according to (10.20) and (10.25),

Ckll ~ ~
0= =G~ )P a-—aw= [ (Fu(0.0 ~ F-(0.0)dc.
Ckl
We construct the trajectory (10.18) as follows. We take in (10.13)
Un = F_(0,(n).
Consider a constant K satisfying Proposition 10.5. For K <n —s <
€ el log ]
e|loge

|ps — pn| = |O(K\/gloge)| < pn /2. (10.27)
The quantity ¢, — (n—x is negative. Moreover, by (10.27)
1, | log £|

Therefore we have: x— (pin,Cn) — X= (pn—r,Cn—xK) = D, xn

— n~— {n— F* 2d n — $n—
D, kn < K Ct ) + S tC K|+20\/Eun+20K53/4|10g5|
F_ +2
—Ter\/EunuéK. (10.29)

provided the constant K is sufficiently big compared with C. This means
that proceeding in this way, we reach a point (ng, (ny) such that

fing—1 < —C/loge| < fin,. (10.30)

Moreover, since on this part of the trajectory average increment of u
is of order /e, we obtain the estimate

no —s < Ce /8, (10.31)
Construction of the trajectory for p > 6/| logel|, x+(u,¢) > 0 is analo-

gous: for v = ﬁ+(0, E) the energy x+ increases.

10.3 Step 3 (at the resonance)
In this section we lead the trajecory through the cylinder

S ={(1,¢) : lul < C/|logel}.

Due to (10.22) and H13, the equation x = 0 determines separatrices.
These separatrices are outer in the sense that all critical points of y_ are in
the domain {x_ < 0}. There can be also inner separatrices, corresponding
to smaller values of the energy, but below we will call by separatrices only
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the outer ones. We call the curve {x = 0,4 < 0} by the lower separatrix
and {x = 0, < 0} by the upper one.

According to H1 3, for £ small enough the maximums (10.22) are taken
at unique poins (+ = (+(¢) = (. + O(1/loge).

Counsider the ractangle

I = { (1, ¢ mod 1/¢°) : |u| < C/|logel, |¢ = ¢.| < C1/|logel},

where the constants 61, 6 are such that for small ¢
(1) the energy x— is negative at the four points

(1,¢) = (£C/|logel, ¢ £ C1/|logel)

(see Fig. 2)

(2) 1€ (e) = G| < Cu/2.

In Section 10.2 we continued a trajectory of Problem V up to a point
(ng,Cng) € S, ping = —C/|loge|+O(y/eloge). There are two cases. The
point (fing, Cny) can be outside and inside II. In the first case x(tng, Cng) <
0. Therefore, the trajectory has crossed the lower separatrix. In the last
case we can loose control on the trajectory. To avoid such a possibility, we
return a little back. More precisely, starting from some point (p,, Car),
n' < mnp, we construct the trajectory as in step 2, using v = fA'+(0,E)
instead of v = ]?_ (0, Z)

We denote the new trajectory by

(/j’n’ ) Cn’)a (Hz/_}.la C;—’_H): (Hz/_}.z: C;—’_}.z): RN (/j’:” ) C:”) (10'32)

Now by Proposition 10.5 the energy x on the trajectory decreases slower
or does not decrease at all. We choose (p,,7, (,/) so that

Cnt ~
/C (F4(0,¢) = P (0,0)) dC = co/|log | + O(/E log ).

Then we take the point (uj,,,(i",,), n" > n' such that C:',, = (ng +
O(y/eloge). According to Proposition 10.5,

co+ Y1

+ochy = e dl
X*(/J’n”’gn.”) Xﬁ(lJ‘nanO) t*|10g5|7

where |Y1| < 3d for sufficiently small . Therefore,

1, w2 1,5 cot+Ys

= " - = l = -

21/0(/“1’77, ) QVOIJ‘no + O(\/g Ogé‘) t*|10g5|7
2(co + Yo

(b )? = png + W, V2| < 4d.

(Recall that both ", and pin, are negative.)
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For some cp, continuation of the trajectory (10.32) with v, = F. (0, En)
will cross the lower separatrix outside II. Hence, redenoting (i}, () by
(ttn,Cn) and n'' by ng, we can return to our assumption that (10.30) holds
and (fing, Ca) € S\ L.

Now we just need to pass the resonance itself, crossing the upper sepa-
ratrix outside II. Consider the energy x4 (tng, Cny) (instead of x_). There
are two cases.

(1) X+ (BngsCno) > —co/|loge|, where co > 0 is sufficiently small.

In this case we pass S by using 9, = F_ (0, En) (this is possible since
(fng > Cno ) is outside IT). This takes O(e~ /2| log e|2) steps, and ¢ changes
by a quantity O(log™2¢). Hence, the trajectory leaves S with

X+ (B0, Gng) > —co/|log | + O(log ™’ ¢). (10.33)

Now we switch to U, = ﬁ+(0, En) Because of (10.33) the trajectory crosses
the upper separatrix outside II.

(2) x+(Ing>Cno) < —co/|loge|. In this case we return back. Using
Bn = F4(0,(,) beginning from some n' < no, we obtain a trajectory,
where y . is larger than before. Choosing a proper n’ and n” > n', where
again v, = F1(0,(n), we reduce the situation to case (1).

11 Proof of Lemma 8.4

By using Lemma 8.2, we can construct a trajectory such that on the
corresponding sequence of right

compartible trajectories (Qr, Q+1), (Qpa1, Qeaz), ... according to
our needs v, = @C(Eﬁn,zn,Fn), n=kk+1,...equals

cither to  F7" (epn—1, Cnm14v(pn-1)tn) orto F7™(epn—1,Cno1+(epn-1)tn)

(see (8.7)).

We need to show that the codes (Q, Q1) can be chosen so that on
the corresponding trajectory ep passes through the interval I. To this end
we reduce the problem to Problem V.

Indeed, for ep,, € I, combining (4.5) and the estimates

[ = pul <b/bp, |Gy = Cnl <b/be,  [Tu = Ta| <b/br,

we get:
ﬁn+1 = pn - eg(gpnizn’?") + (?“Jfl —Tn — En+1)HC(6pn’En) + a"v
Zn+1 = Zn + V(Eﬁn)fn"rl + ﬂna

where for small d > 0 we have |&,| < d/2, |Bn| < Ce**|loge]|/2.
We denote

Hn = \/g(pn - FnHC(S_n’ n))a
0 = Qn+ Fn+1(HC (Eﬁfm Cn) - Hf(gpn+1a Cn+1))'

Then we get (8.2). Since v(ep,,) = v(v/eun) + O(g), we get (8.3).

12 Addendum to Section 10

Proof of Proposition 10.2. Take arbitrary t, satisfying (10.6) (except the
greatest one) and the corresponding A = A(t), determined by (10.5).
Take N = [c(elog®e)~!/®], where ¢ is the same as in condition (1) of
WRC. According to the Dirichlet theorem there exists a natural ¢ < N
and p € Z such that the fraction p/q is irreducible and |¢A — p| < 1/N.
If ¢ > C, the proof is complete. Otherwise we put

6 =v(Veps) —po/qo
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and consider two cases:

A 24 , dv

N  —2 << 2L, =), @121

() g << 2% =0, a2

an 20 <5< S (12.2)
oK

According to (10.1) and to the inequality vj # 0 (see Ho4), § satisfies one
of these conditions.

(I) In this case take A’ = A(t'), ' =t + 1. Again apply the Dirichlet
theorem and assume that for the corresponding p’ € Z and ¢' € N we
have ¢ < C. Then

U !
A - A = w(Vep) = +6—’i,+5—,—£+§,
q q q 4
where |£] < 1/N, |¢'| < 1/N.
We have the equation
U !
@—3+£‘=‘—5+5—,—§. (12.3)
qo q q
Since ¢', ¢ do not exceed C, the left-hand side of (12.3) can not belong to
the interval (0,1/(goC?)). The right-hand side belongs to (§/2,35/2) C
(0,1/(goC?)) (the last inclusion follows for small € from (12.1)). We come

to a conradiction.
(II) This case is simpler. The equation

A:(t+2qo)(q +0) = §+

K

, o EI<1/N

implies that
‘(+2 Po p‘_‘f (6 + 2¢0)4]. (12.4)

The left-hand side of (12.4) can not belong to the interval (0,1/(qoC)).
For sufficiently small ¢ we have: 2go < t/2. Hence, according to (10.6)
and (12.2),

1/6

vhe |log g| A 2| log €|

e — < .
7 xS 20000 < s T

For small € we have: |£| < |(t 4+ 2g0)d|. Therefore, the right-hand side of
(12.4) belongs to (0,1/(goC)). Again we obtain a contradiction.

u
Proof of Proposition 10.5. We have:
Df v =54 + 2 + 37,
k1171 k1171 k1171
L= dy, Sh=—VEy Y pedn, S = (B +81)
n=k' n=k' n=k'
Proposition 10.5 follows from the estimates
/ 1 Ck” s ]
o= (=7 Pe0,0dC+ FG) = FlG) +9),
* Ck’
1] < C(Vepmax + kepihax|log e| + ke *| loge]), (12.5)
2d C" -k
< Mg Gol+ ST @4 ) 10gel. (126)
First, we check (12.5):
K'—1 N N 1
= > VerbunFe(0,60) + — (F(Gwr) = F(Gw))-
n=~k' *
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Due to (10.17) the multiplier v/zvgun
in the last sum equals & (Cn+1 — (n — 6r). Therefore

1
Sho= o (She + e + FlGer) — F(G)),
IC”—l N N R N
E,1:|: = - Z Fi(O,Cn)(Cn+1 - Cn)a
n=k'
k'”—l N R
E,2:|: = Z Fi(oagn)‘;n-
n=k’

The functions Fy are piecewise smooth. Hence by (10.16) we have:

Crtt

S+ Fi(0,0) d¢| < Cv/Epman-
Ck/

The sum Y5, can be estimated as follows:

k”
[S52] S C1 Y 10a] < O = K (hanse + )| 0g o]
n==k'
This implies (12.5).
To check (12.6), we note that |X''| < %|Ek”71(g’n+1—ﬁn—5n)|. Hence,

n=~k'
2d ~ -~ 2d k-1
=" < o ] e R LI
The last sum can be estimated analogously to X5 . u

13 Genericity of the hypotheses

Proof of Proposition 5.1. First, let us fix n = ° and put © =
O(n°,€,7). The function © : T> — R is C%-smooth. Let (£°,7°) be
a nondegenerate critical point of ©. We put

9’0
o, 1)

Since 90(€°,7°) = 0 and 9 O(£°, 7°) = 1z (AD, ), we see that (n°,£°,7°) €
Jo provided

A= (€°,7%,  detA #0. (13.1)

(AD, D) # 0. (13.2)
Moreover, (13.2) implies that in a neighborhood of the point (£°,7°) the
set jo = Jo o is a smooth curve. The normal vector to jo at (£°,7°)
equals AD.
On the other hand since

0,7 =0 and Oee(e’ ) = 55(A( o ). (g )

|7l:77

the set S = {(¢,7) € T? : O¢(¢,7) = 0}
near (¢°,7°) is a smooth curve provided

() (g ) #o (13.3)

Moreover, (13.3) implies that locally near (o, 7o) the curve S separates
the sets {©¢ > 0} and {©¢ < 0}. The normal vector to S at (£°,7°)

equals A( (1] )

Since detA # 0, the two normals are not parallel: AT |f A( é )

Hence, the function O¢|j, is positive locally on one side with respect to
(€0, 70) and negative on another.
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According to (13.2), 7 and the tangent vector to jo at the point (£°, 7°)
are not parallel. Therefore, for n = ° and some c. > 0 H11 holds.

The set of CY-smooth functions © : T? — R, satisfying (13.1)-(13.3)
at at least one critical point, is obviously open and dense.

To finish the proof, it remains to recall that any function on T2 has
at least 3 critical points and to use compactness of D. u

Proof of Proposition 5.4. Given a C?-smooth, 2 < j < oo function
9:T? - R we put

f(p1) = Hﬁx{ﬂm g, =0}, f-(p1) = rgizn{ﬂm g, = 0}

Proposition 13.1 For C-generic 9

(1) % [y fr(pr)dpr > 0.
(2) f+ = f- at most at a finite number of points x1,...,xr € T, where
for sufficiently small |§| the following transversality condition holds:

fr(zj +06) — f—(zj + ) > 2¢f]d], cr>0, j=1,...,k (13.4)
(3) f(p1) =Dy, (p1,q+ (1)), where for some c; >0
Doy (01, q£(01)) = 0, [Dpnps (01, qx(01))] > 265

(4) The functions g+ and f+ are piecewise C7 =" -smooth in ¢1.

The genericity is understood here in the sense that the set of 9, satisfy-
ing (1)—(4), contains a subset which is open and dense in the C’ topology.

Proposition 13.1 implies Proposition 5.4. To see this, it is sufficient to
put 9(¢,s) = O(n°,{ — vogos, gos)-
Proof of Proposition 13.1. First, note that for generic ¥ the set A =

{p € T? : ¥y, = 0} contains only a finite number of points o et
o = (¢1", ¢3"), where 94,4, = 0. Moreover, for generic 9
Dpapnes(p) #0 for anyp € {‘pl*a ) ‘pl*}- (13.5)

We define the projection

pr:A— T,  prips,pe) =i
Then ¢'*, ..., ¢ are folding points for pr.
Remark 13.1 Due to (13.5) for any folding point (09, ¢3) € A the func-

tion g(a) = 9(p?,a) has no extremum at o = ¢3. Hence, for any
@1 € T the preimage pr~'(p1) consists of at least 2 points different from
O o (mazimum and minimum of §(g2) = 9(@1,@2)).

The set A* = A\ {o*,..., ¢} breaks into a finite number of con-
nected components A,,, 1 < m < M which are graphs of C?~'-smooth
functions @2 = wa(p1).

For any connected piece A = Aj C A" we define its orientation to be
compartible with positive orientation on pr(\) C T'. Let A begin at ¢’
and finish at " i.e., the motion along A from ¢’ to ¢ takes place in the
positive direction. Then

I(g") - 0() = / a9 = / D, dipy < /p L frenden 139)

Take <p§°) € T such that

9°(@) =9(¢{",a), aeTh

has a unique global minimum at some point o = <pg0). We put ¢©@ =
(01?,0") € Am,. Consider the longest connected piece A® C A*, be-
ginning at (p(o)_

Now there are two cases:
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(a) A(? has an end point ® € {p'*, ..., ¥'*},

(b) A® is a circle.

Consider these possibilities separately.

(a). If pr(A©@) = T, we stop. Otherwise consider p(') C A* such that
<p§1) = {0) and 19(9051), npgl)) = miny, 19(9051), ¢2). According to Remark
13.1, 9(eM) < 9@ @) and M) # ©.

We regard ¢ as the beginning point for the curve A’ ¢ A* which
is again the longest connected piece of A*. If pr(A®)Upr(A) £ T, we
continue in the same way. At last we get a finite collection of curves A",
n = 0,...,N beginning at <p(") and ending at ™). The curves project
one-to-one on T' and UN_oA(™ = T'.

Instead of the last curve AY) we take a shorter piece, 5\£N) C )\(N),
with the same beginning having the end point ¢, where (") = {?.
Below we skip the hats. According to the definition of (® (more precisely,
to the minimality property of p(®), 9(p(®) < 9 (™). Moreover,

Ity < 9(@™)  for any n € {0, N —1}. (13.7)

By using (13.6), we get:

/01f+(501)d501 =2]:/p

The last sum is positive if N > 1 because of (13.7). If N = 0, it is
also positive because in this case @ # ™) and therefore, 9(y™¥)) —
I(®) > 0.

(b) First, note that in the arguments from part (a) we could assume
that ) are maximums instead of minimums and construct the curves
A to the negative direction from the points ¢™). This means that the
proof we presented in part (a) does not work only in the case when A*
contains at least 2 smooth curves projecting one-to-one onto T' = {(1}.
Let these curves be @2 = ¢n(p1), n = 1,2. Since f1(p1) > (1, qn(p1))
for any n € {1,2} and

Fr(pn) dor >y @) = > 0(™).

n=0

(A ()

/0 f+(p1)dpr > /0 Y1, qn (1)) dpr = (1, gn (1)) — 9(0,¢.(0)) = 0,

it is sufficient to show that generically fi (1) # 9(p1,qn(p1)) for at
least one n € {1,2}. The contrary would imply that ¥(¢1,q1(p1)) =
9(p1,q2(p1)), and this does not hold for generic 9.

Now turn to assertion 2. The set of functions, where this condition
holds, is obviously open. Let us show that it is dense. Generically the
equation fi (1) = f-(¢1) has only a finite number of solutions.

Let z € T be one of them. Since pr™!(x) contains at least two points
¢, 0" € A*, we have: ¥y, (') = Vs, (¢"). Let o' € X C A", " € X' C
A* and the curves X', X" have the form @2 = f'(¢1), w2 = f'(p1). If
condition (13.4) is violated, we have:

d
d(pl

i [01 (01, X (1)) = D1 (91, X" (2))] = 0. (13.8)
Adding to ¥ a small perturbation, we can either remove the solution of
the equation 9y, (w1, A (p1)) = 9, (91, X" (1)) from a neighborhood of
the point = or make this solution non-degenerate in the sense that (13.8)
does not hold. Then the equation fi(p1) = f— (1) will have at most one
solution z; in a neighborhood of z and for small § (13.4) holds. Doing
the same near any solution of the equation fi(¢1) = f-(¢1), we obtain
9 satisfying assertion (2).

Assertions (3) and (4) follow from the fact that the graphs of the
functions ¢+ (¢1) are subsets of A. L]
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14 Auxiliary statements

Proof of Proposition 3.1. The difference H(y°, z +p/q) — H(y°, z) equals

k + ko + ko mikx T
S (LI ARY i oy rrike nitola _y)

(k,ko)eZ?
Consider nonzero terms in this sum. First, note that
lkp/q + ko + ké| < &'/*, (14.1)

otherwise ¢ = 0. Secondly, kp/q ¢ Z, otherwise e>***?/7 — 1 = (. There-
fore, we have: |kp/q + ko| > 1/q > 2¢*/*. Hence by (14.1) |kd| > 1/(2q)
ie., |k| > 1/(2¢0). Now inequality (3.4) follows from the standard esti-
mate |HF*0| < O (k| + [ko|) 7. n

Proof of Proposition 5.2. According to the Dirichlet theorem there
exists ¢ < K — 1, p € Z such that the fraction p/q is irreducible and
lgv —p| < & ie, v =2 +¢, €] < .

Take I C pr;j5(n). Suppose that ¢ > 2/|I|. Then Proposition 5.2 will

be proven if
Uo<e<r g™ (I) = T (14.2)

Equation (14.2) is a consequence of the following one:
Ul g™ (1) = To = T2 N {r = 0}. (14.3)
Equation (14.3) is equivalent to the following one:
T=( UKo [, |T] + nv])mod 1.
We replace the last set by a smaller one:
1 [np np
U= (Uizo [? g |11+ 72 +n§])mod1.

If £ = 0, U covers "at least twice” the torus T. This follows from the
assumption |I| > 2/q. Since |n¢| < 1/K < 1/qfor 0 < n < q—1, U still
coincides with Ty. n
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