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ABSTRACT

Some theoretical issues related to the problem of quantifying local predictability of atmospheric flow and the
generation of perturbations for ensemble forecasts are investigated in the Lorenz system. A periodic orbit analysis
and the study of the properties of the associated tangent linear equations are performed.

In this study a set of vectors are found that satisfy Oseledec theorem and reduce to Floquet eigenvectors in
the particular case of a periodic orbit. These vectors, called Lyapunov vectors, can be considered the generalization
to aperiodic orbits of the normal modes of the instability problem and are not necessarily mutually orthogonal.

The relation between singular vectors and Lyapunov vectors is clarified, and transient or asymptotic error
growth properties are investigated. The mechanism responsible for super-Lyapunov growth is shown to be related
to the nonorthogonality of Lyapunov vectors.

The leading Lyapunov vectors, as defined here, as well as the asymptotic final singular vectors, are tangent
to the attractor, while the leading initial singular vectors, in general, point away from it. Perturbations that are
on the attractor and maximize growth should be considered in meteorological applications such as ensemble
forecasting and adaptive observations. These perturbations can be found in the subspace of the leading Lyapunov
vectors.

1. Introduction

Recent improvements in the skill of weather predic-
tion models have been supported by the parallel devel-
opment of applied predictability theory. It has long been
recognized that the a priori reliability of a forecast is
an extremely variable function of the initial state, related
to the local divergence of trajectories. A key question
is how to quantify, locally in phase space, the flow’s
predictability. Furthermore, not all perturbations grow
at the same rate, at least during an initial transient phase.
The natural approach to the problem of estimating the
average divergence consists in forecasting the skill from
the spread of an ensemble of initial perturbations. Since
a true Monte Carlo approach requires large ensembles
and hence is impractical, the selection of perturbations
to be used in small-ensemble forecasts has become an
extremely important and debated issue in numerical
weather prediction (Szunyogh et al. 1997; Molteni et
al. 1996). The goals of ensemble prediction are im-
proving the final forecast and estimating its reliability
(Houtekamer and Derome 1995).

Ensemble prediction systems developed at the major
operational forecasting centers are founded basically
upon two different approaches. The first one, adopted
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among others at ECMWF (Molteni and Palmer 1993;
Mureau et al. 1993), relies upon the construction of the
most rapidly growing perturbations over the optimiza-
tion time, as described by the singular vectors of the
error matrix, corresponding to the largest singular val-
ues. The second one, implemented at NMC (now the
National Centers for Environmental Prediction) and
known as the ‘‘bred grown modes’’ method (Toth and
Kalnay 1993) is aimed, in principle, at determining the
perturbations that grow fastest asymptotically, the lead-
ing Lyapunov vectors.

It is well known that, for a stationary solution, sin-
gular vectors describe amplifying disturbances that, over
the optimization time, can exceed normal-mode growth
if the eigenvectors are not orthogonal (Farrell 1988,
1990; Lacarra and Talagrand 1988). The theoretical
foundations necessary to apply these concepts to a cha-
otic system, such as we currently envisage an atmo-
spheric model to be, are not well established.

It is the main goal of the present work to give a
suitable definition of Lyapunov vectors that can be con-
sidered the generalization to aperiodic orbits of normal
modes. These are not expected, in general, to be mu-
tually orthogonal.

Growth rates larger than predicted by the first Lya-
punov exponent have been documented in the literature,
but the underlying mechanism is controversial (Trevisan
and Legnani 1995; Nicolis et al. 1995). Nonorthogon-
ality of the vectors associated with asymptotic growth
rates given by the Lyapunov exponents has been in-
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voked as a possible mechanism for super-Lyapunov
growth. However, the methods used to compute Lya-
punov exponents are based on definitions of mutually
orthogonal vectors, commonly referred to as Lyapunov
vectors (Lorenz 1965; Benettin et al. 1976, 1980; Shi-
mada and Nagashima 1979).

In the present study, starting from the relationship
between Floquet eigenvectors and singular vectors, with
varying optimization times, a theoretical explanation for
the time-dependent behavior of phase space average er-
ror growth is provided.

After applying these concepts to periodic orbits in the
Lorenz (1963) model, we extend the analysis to aperi-
odic orbits, giving a definition of Lyapunov vectors that
coincides with that of Floquet eigenvectors in the pe-
riodic case.

In the Lorenz model, these vectors have nonzero pro-
jection on one another. It is shown that transient super-
Lyapunov growth is accounted for by their nonorthogon-
ality.

The relation of these vectors to the local attractor
structure is also examined.

2. The Lorenz system: Periodic orbit analysis

In the present section we summarize some of the prop-
erties and results concerning periodic orbits of the Lo-
renz system. Periodic orbits are dense on a forced–dis-
sipative system’s attractor; that is, an unstable periodic
orbit of arbitrarily large period can always be found
arbitrarily close to any aperiodic orbit (Lichtenberg and
Lieberman 1983). Furthermore, it has been shown that
for hyperbolic systems, that is, for systems where the
local, linear exponents of error evolution are either neg-
ative or positive and uniformly bounded away from
zero, physically relevant invariant measures on the at-
tractor can be computed as averages over a selected
sequence of periodic orbits. The rapid convergence of
the expression for these averages ensures good accuracy
even for a small number of such orbits (Cvitanović
1991). Eckhardt and Ott (1994) applied this method to
the Lorenz system, at the standard parameter values, to
compute, among other quantities, the average Lyapunov
exponent. Convergence to a very accurate estimate for
the first Lyapunov exponent of the flow, computed from
very long integrations, is obtained from orbits recurrent
after a small number of iterations of the Poincaré map.
Therefore, the study of the stability of periodic orbits
is a tool to unfold the structure of the whole attractor.

Periodic solutions of the Lorenz (1963) system:

Ẋ 5 2sX 1 sY

Ẏ 5 2XZ 1 rX 2 Y

Ż 5 XY 2 bZ, (1)

where r 5 28, b 5 8/3, and s 5 10 can be found, given
a sufficiently accurate first guess of the orbit and its

period, using a Newton–Raphson scheme on the residual
of the return map (Ghil and Tavantzis 1983).

Consider now the stability problem and linearize (1)
about a closed orbit to obtain the evolution equations
for infinitesimal perturbations x(t),

ẋ 5 J(X(t))x (2)

where J(X(t)) is the Jacobian, periodic with period T,
X(t) being a closed orbit solution with X 5 (X, Y, Z).

In view of Floquet’s theorem, a fundamental solution
matrix is of the form Q(t) 5 P(t)eRt (Hartman 1982),
where Q, P, and R are matrices and P(t) is periodic with
period T. The eigenvalues of the constant matrix eRT are
Li 5 , where l i are the characteristic exponents ofl Tie
the closed orbit.

For the Lorenz system (1),

2s s 0 
 

J(X(t)) 5 r 2 Z(t) 21 2X(t) . (3) 
 

Y(t) X(t) 2b 

Integrating between t0 and t0 1 t one obtains

x(t0 1 t) 5 A(X(t0), t)x(t0), (4)

where A depends upon the values of X between t0 and
t0 1 t .

After one period T, the error matrix A(X(t0), T) has
real and distinct eigenvalues, L i 5 , independent ofl Tie
X(t0) with l1 . 0, l2 5 0, and l3 , 0. The sum of the
characteristic exponents is

3

l 5 2(s 1 b 1 1).O i
i51

The eigenvectors ei(X(t)) are periodic and the eigen-
vector corresponding to the zero exponent is tangent to
the flow. We identify local Lyapunov vectors with unitary
vectors in the direction of the Floquet eigenvectors ei.

Local Lyapunov exponents for the orbit are given by

d
l(e ) 5 log\x \, (5)i idt

where xi are infinitesimal perturbations in the direction
of the Lyapunov vectors.

The average over one period of the local Lyapunov
exponents l(ei) is given by the characteristic exponents,
li.

3. Singular vectors: Basic formalism

In the present section we review and develop the
stability analysis applied to the case of a fixed point or
periodic solution.

In order to keep the notation simple, in this section
we drop any dependence of the matrices on their ar-
guments, keeping in mind that for a periodic orbit A is
a function not only of t , as for a fixed point, but also
of X(t0) [see (4)]; the eigenvectors e i are a function of
X(t0) as well, and the eigenvalues of A(X(t0), T) are of
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the form Li 5 , where Li(T) are independent ofl Tie
X(t0). For integer multiples, n, of the orbit’s period the
eigenvectors do not change, whereas the eigenvalues
become Li 5 .nl Tie

The transient evolution of infinitesimal perturbations
toward their asymptotic directions, given by the eigen-
vectors of A, is described in terms of its singular vectors
(Lorenz 1965, 1984; Yoden and Nomura 1993).

Setting

A 5 UGV, (6)

where U and V are orthogonal matrices and G is diagonal
with elements Gi, we have

T 2AA U 5 UG (7)
T T T 2A AV 5 V G , (8)

where ( )T denotes a transpose.
The initial and final singular vectors are the rows of

V and columns of U, respectively, and satisfy

AVT 5 UG. (9)

As shown by Lorenz (1965) a sphere is transformed,
under A, into an ellipsoid. The eigenvectors Ui of AAT

are an orthonormal set that gives the direction of this
ellipsoid’s semiaxes, while their length is Gi.

Relations between the eigenvalues of H 5 ATA2Gi

and the eigenvalues Li and eigenvectors e i of A can be
obtained. Writing A in terms of the diagonal matrix L
with elements L i and the matrix E whose columns are
the eigenvectors e i,

A 5 ELE21, (10)

we can express H in terms of these quantities.
The relation between the determinants of A and H,

det(H) 5 det(A) det(AT), in terms of the respective ei-
genvalues gives

N N

2 2G 5 L (11)P Pi i
i51 i51

in N dimensions.
In two dimensions, the determinant and the trace of

H are sufficient to determine the two roots G i of the
characteristic equation. The trace of H is given by

2 2

2 2 2G 5 L 1 D , (12a)O Oi i
i51 i51

where
2(e ·e )1 22 2D 5 (L 2 L ) . (12b)1 221 2 (e ·e )1 2

From (11) and (12) we obtain
2 2 2L 1 L D1 22G 5 11,2 2 2

1
2 2 2 4 2 2 26 Ï(L 2 L ) 1 D 1 2D (L 1 L ).1 2 1 22

(13)

When the eigenvectors are orthogonal, D2 5 0 and
the axes of the ellipsoid are equal in length to Li; oth-
erwise, we have D2 . 0, which implies that, for the
major axis, G1 . L1.

Analogously, the root-mean-square error (RMS) is
given by the Lorenz index (Lorenz 1965):

N N1 1
2 2RMS 5 G $ L , (14)O Oi i! !N Ni51 i51

where the equal sign is valid only if the eigenvectors
are orthogonal, in view of the D2 term in (12).

It should be stressed that (13) and (14) describe tran-
sient error growth. In the asymptotic limit the following
relations hold:

L1
lim G 5 (15a)1

2
t→` Ï1 2 (e ·e )1 2

L1
lim RMS 5 , (15b)

2
t→` Ï2(1 2 (e ·e ) )1 2

where L1 5 and time is an integer multiple of thel t1e
period in the periodic orbit case.

The associated asymptotic growth rates are in both
cases equal to l1. We notice that only if D2 . 0 can
growth rates, at some stage, be larger than l1.

In previous works, similar behavior has been ob-
served for some chaotic systems, where phase space
average growth rates are larger than predicted by the
first global Lyapunov exponent. Some results are re-
viewed in section 5. It has been suggested that this so-
called super-Lyapunov growth is due to a mechanism
similar to nonmodal growth, being related to the non-
orthogonality of eigenvectors. One of the objectives of
the present work is to investigate this mechanism in the
Lorenz system, with the aid of stability analysis of un-
stable periodic orbits.

Based on expressions analogous to (12) and (14),
Nicolis et al. (1995) concluded that RMS growth rates
larger than those given by the largest Lyapunov are
obtained under conditions that they considered too re-
strictive to be realized. Before we apply it to the periodic
orbits of the Lorenz system and arrive at firm conclu-
sions about the envisaged mechanism, we have to extend
the analysis to the three-dimensional case.

In three dimensions, after some algebra we obtain the
following expression for the sum of the squares of the
axis lengths, given by the trace of ATA:

3 3

2 2 2G 5 L 1 D , (16)O Oi i
i51 i51

where
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1
2 2 2D 5 {(L 2 L ) (e ·e )[(e ·e ) 2 (e ·e )(e ·e )(e ·e )] 1 (L 2 L ) (e ·e )1 2 1 2 1 2 1 2 2 3 1 3 1 3 1 32[e · (e ` e )]1 2 3

23 [(e ·e ) 2 (e ·e )(e ·e )(e ·e )] 1 (L 2 L ) (e ·e )[(e ·e ) 2 (e ·e )(e ·e )(e ·e )]}1 3 1 2 2 3 1 3 2 3 2 3 2 3 1 2 2 3 1 3

(17)

and (ei ` ej) denotes the vector product. Because of the
identity

2 2 2 2[e · (e ` e )] 5 1 2 (e ·e ) 2 (e ·e ) 2 (e ·e )1 2 3 1 2 1 3 2 3

1 2(e ·e )(e ·e )(e ·e ), (18)1 2 1 3 2 3

we know that D2 $ 0. Nonorthogonality of the eigen-
vectors again implies a strict inequality. It is also pos-
sible to find a characteristic equation for the three-di-
mensional case in terms of the eigenvalues and eigen-
vectors of A, but its roots Gi cannot be cast in as simple
a form as (13).

4. Lyapunov stability

The Floquet eigenvalues and eigenvectors completely
describe the asymptotic behavior of perturbations to a
periodic orbit. If the orbit is aperiodic or—the orbit
being periodic—if the time interval is not equal to a
multiple of the period, the eigenvalues and eigenvectors
of the stability matrix lose their significance. In the Lo-
renz system, the Lyapunov spectrum is nondegenerate
and the Floquet multipliers are real, whereas the eigen-
values of the stability matrix are complex for arbitrary
time intervals.

The existence of Lyapunov exponents and vectors
characterizing the stability of aperiodic orbits has been
proven by Oseledec (1968) for a large class of dynam-
ical systems and has been used as a working hypothesis
in numerical studies of various systems including the
Lorenz model (Shimada and Nagashima 1979; Lorenz
1984).

The result is that, for almost every initial point X(t),
there exists a set of vectors, e i, 1 , i , N such that

1
l 5 lim log\A(t, t)e (t)\, (19)i itt→`

which means that the limit on the rhs of (19) exists and
equals a number l i, 1 , i , N. The numbers li are the
Lyapunov exponents and are global properties of the
attractor. We will assume that these values are distinct,
which is generally the case.

The vectors e i in (19) are not unique. We will adopt
as a definition of Lyapunov vectors the particular choice
of the vectors e i that satisfy Oseledec theorem (19) and
reduce to the Floquet eigenvectors in the case of a pe-
riodic orbit. This definition is based on (20) and (21),
given below. Therefore we use the same symbol, e i, to

denote Lyapunov vectors and Floquet eigenvectors. Lo-
cal Lyapunov exponents, associated to the vectors e i,
can be defined as in (5).

If X(t) belongs to a periodic orbit, the Floquet ei-
genvectors not only satisfy (19), but have the desired
properties of being independent of the definition of the
norm. They are functions of position along the orbit that
are invariant by the tangent flow.

Furthermore, since aperiodic orbits can be approxi-
mated arbitrarily closely by periodic orbits, it is plau-
sible to assume that the Lyapunov vectors as well as
the local Lyapunov exponents of the aperiodic orbit can
be approximated with arbitrary accuracy by those of the
nearby periodic orbit.

Singular vectors do not have the same properties of
Lyapunov vectors and the example of a periodic orbit
will clarify differences and mutual relationships. If the
optimization time t equals an integer number n of pe-
riods, both initial and final sets of singular vectors con-
verge for n going to infinity and the logarithms of the
singular values approach the orbit’s Floquet exponents.
However, the orthonormal set of initial vectors is trans-
formed into the final set and, except for the particular
case when the Floquet eigenvectors are mutually or-
thogonal, the initial and final sets do not coincide. As
a consequence, the vector that has grown at the rate
given approximately by l i during a given, arbitrarily
large, number of periods does not coincide with the
vector that will grow at the same rate during future
iterations.

These simple considerations illustrate the difficulties
that have led to conflicting definitions of Lyapunov vec-
tors. Some authors, in fact, define Lyapunov vectors as
the initial set of singular vectors in the limit of infinite
time (Goldhirsch et al. 1987; Yoden and Nomura 1993),
other authors as the final set (Lorenz 1965, 1984; Shi-
mada and Nagashima 1979). Legras and Vautard (1996)
call the former forward and the latter backward Lya-
punov vectors. The particular definition has no conse-
quences upon the estimate of global Lyapunov expo-
nents but is crucial for correctly defining local exponents
and associated vectors.

We will build upon results relative to periodic orbits
to extend the analysis to the case of aperiodic trajectories
and find a method to compute Lyapunov vectors in the
general case when they are not mutually orthogonal.

The final singular vectors, columns of U, constitute
an orthonormal set and, in the limit of infinite time,
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FIG. 1. (a: long–short dash) Global Lyapunov exponent, l1; (b:
solid) ensemble average growth rate of the most unstable perturbation,
^t21 logG1(tk, t)& as a function of optimization time t ; (c: short dash)
ensemble average growth rate of the rms error, ^t21 log (1/N)Ï

(tk, t)&. Averages are over the whole attractor phase space.N 2S Gi51 i

See text for details of computation.

become independent of the initial perturbed point. For
a periodic orbit, the Lyapunov vectors ei are the Floquet
eigenvectors; setting t1 5 t0 1 t , t 5 nT, and e i 5
ei(t0) 5 e i(t1), the following relations hold:

e 2 (e ·e )eOi i k k
k,i`u (t ) 5 lim u (t , t ) 5 ,i 1 i 0 1

\e 2 (e ·e )e \(t 2t )→` O1 0 i i k k
k,i

1 , i , N. (20)

Analogously, the initial singular vectors, columns of VT

are related to ei by

e 2 (e ·e )eOi i k k
k.iT` Tv (t ) 5 lim v (t , t ) 5 ,i 0 i 0 1

\e 2 (e ·e )e \(t 2t )→` O1 0 i i k k
k.i

1 , i , N. (21)

The result given by (20) and (21) states that, in the
limit of infinite optimization time, the initial singular
vectors are obtained by orthogonalizing the e i starting
from the last one, while the initial vectors are obtained
by orthogonalizing the ei starting from the first one.

The first k final singular vectors span the same sub-
space as the first k Lyapunov vectors, whereas the last
N 2 k 1 1 initial singular vectors span the same sub-
space as the last N 2 k 1 1 Lyapunov vectors. The
vectors e i can therefore be constructed by intersecting
the initial and final families of sets.

When the flow is not periodic, it is still possible to
define the family of vectors e i by the intersection of the
asymptotic initial and final singular vectors referred to
the same point. We will apply this method to compute
the vectors ei for aperiodic orbits in the Lorenz system
and show that they can consistently be defined as local
Lyapunov vectors.

During the revision process, the authors became
aware that the vectors e i were independently used by
Legras and Vautard (1996), who suggested their appli-
cation in ensemble prediction. In their study the vectors
ei are referred to as characteristic vectors.

5. Transient growth and Lyapunov exponents

The average stability properties of a system can be
studied by averaging the growth rate of perturbations
over an ensemble of initial perturbed states sampled on
the attractor according to its natural density.

Evidence supporting the hypothesis that the motion
on the attractor of the Lorenz system is ergodic is found
in the literature (Lichtenberg and Lieberman 1983).
Time average and ensemble average of the first local
Lyapunov exponent computed from a long integration
of the Lorenz system converge to the same estimate,
and the ensemble average is independent of the time
interval (Trevisan 1993). This result is a consequence
of the property of local Lyapunov vectors being unique-
ly defined functions of the state vector, X(t).

Ensemble average growth rates associated with the
singular vectors are instead characterized by transient
behavior, documented for some simple systems which
include the Lorenz model (Trevisan 1993; Krishnamurty
1993; Trevisan and Legnani 1995; Nicolis et al. 1995).

For subsequent reference, Fig. 1 summarizes previous
results (Trevisan and Legnani 1995); the figure shows
ensemble average growth rates computed from a long
integration of (1) for the most unstable perturbation,
^t21 logG1(tk, t)& and for the rms error,

^t21 log (1/N) (tk, t)&,N 2S GÏ i51 i

that is, the growth rate associated with the Lorenz index
as functions of the optimization time t . The operator
^*& indicates average over an ensemble of initial con-
ditions X(tk), equally spaced in time along the orbit.

As opposed to Lyapunov exponents, whose ensemble
average is constant in time, average growth rates of
singular vectors have a time-dependent behavior. Sin-
gular vectors are, in fact, functions not only of the initial
perturbed state but also of the time of integration, t . As
a consequence of this time dependence, phase–space
ensemble averages of growth rates, defined above, are
still functions of t .

Transient error growth is thus related to the evolution
of perturbations and in particular of singular vectors
toward their asymptotes.
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FIG. 2. Periodic orbit j and first and second Lyapunov vectors,
projected on the plane x 5 y. The second Lyapunov vector, corre-
sponding to the exponent l2 5 0, is tangent to the flow. The orbit’s
period is T 5 1.558.

FIG. 3. As in Fig. 1 but averages are computed over the periodic
orbit j shown in Fig. 2.

6. Numerical results

a. Periodic orbits

Periodic orbits in the Lorenz system are labeled ac-
cording to the number of turns around one or the other
of the fixed points. We refer to Eckhardt and Ott (1994)
for details on the symbolic coding of periodic orbits. In
their notation, two consecutive turns around the same
fixed points are indicated by the symbol n (no jump),
and two consecutive turns, the first around one and the
second around the other of the fixed points, are indicated
by j (jump). The orbit with smallest period takes one
turn around each of the fixed points and is coded j. The
Lorenz system is invariant under reflection R in the Z
axis, R(X, Y, Z) 5 (2X, 2Y, Z). The orbit corresponding
to the coding j is symmetric under rotation. If an orbit
is not symmetric, as, for example, the one corresponding
to the coding nj, the orbit R(X(t)) with the same coding
satisfies the invariance of the equations.

After a periodic orbit, X(t), X(t 1 T) 5 X(t) has been
located, and Eq. (2) is integrated along the orbit starting
from an orthonormal set of initial perturbation vectors
to obtain the error matrix A(X(t), t) (Lorenz 1965). The
Floquet eigenvectors ei of A(X(t0), T) are computed for
an arbitrary X(t0) along the orbit. The local Floquet
eigenvectors are then computed for the whole orbit from

A(X(t ), t)e (t )0 i 0e (t) 5 e (t 1 t) 5 .i i 0
\A(X(t ), t)e (t )\0 i 0

Estimates of the local Lyapunov exponents are then
given by

1
log\A(X(t), Dt)e (t)\,iDt

with Dt small.
We also compute the singular values Gi(t, t) and ma-

trices of initial and final singular vectors, U(t, t) and
VT(t, t), for a set of initial states X(t), equally spaced
in time along the periodic orbit, X(t) [ X(tk), tk 5 Dt,
2Dt, · · · , T, and for 0 , t , 2T.

The periodic orbit j and its first and second Lyapunov
vectors are shown in Fig. 2, in a projection on the plane
X 5 Y. Whereas the second Lyapunov vector is, as
expected, tangent to the flow, the first Lyapunov vector
is not orthogonal to the flow: the vectors have nonzero
projection on one another.

The average Lyapunov exponents for this orbit are l1

5 0.99, l2 5 0.00, and l3 5 214.66; these values are
very close to the global Lyapunov exponents, l1 5 0.90,
l2 5 0.00, and l3 5 214.61 (Trevisan 1993). The sum
of the exponents is in good agreement with the value
of the divergence of the vector field, 2(s 1 b 1 1) 5
2(13 1 2/3).

Figure 3 illustrates the time dependence of growth
rates for the most unstable perturbation and for the rms
error averaged over initial states X(tk) on the periodic
orbit j. Figures 1 and 3 show a close similarity also
during the transient phase: the average growth rate as-
sociated with the optimal perturbation for t small is
much larger than l1 and monotonically decreases. The
average growth rate associated with the Lorenz index
is negative for t small when the negative exponent dom-
inates (14) (see also Mukougawa et al. 1991) and is
larger than l1 for a limited time interval. This behavior
is common to all periodic orbits that we have analyzed
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FIG. 4. Scalar products of Lyapunov vectors along the orbit j. (a:
solid) (e1 ·e2)2; (b: short dash) (e1 ·e3)2; (c: long–short dash) (e2 ·e3)2

as a function of time. X(t) at t 5 0 is the point of intersection of the
orbit with the plane z 5 27 marked with a dot in Fig. 2.

FIG. 5. (a: solid) growth rate of the rms error as a function of the
initial time, along the orbit j, computed for a fixed optimization time
t 5 T: t21 log (1/N) (t, T); (b: short dash) first LyapunovN 2S GÏ i51 i

exponent of the orbit, l1. As in Fig. 4 but t 5 0 corresponds to the
intersection of the orbit with the plane z 5 27.

and is thus representative of the behavior over the whole
attractor.

In order to demonstrate that super-Lyapunov growth
is related to the nonorthogonality of eigenvectors, the
scalar products (e i ·e j) were computed along the orbit
and are shown in Fig. 4 for the orbit j.

In Fig. 5 the growth rate associated with the rms error
is shown as a function of tk, for t 5 T. The first Lya-
punov exponent for t 5 T, l1 is independent of X(tk)
and is also shown.

The growth rate of the rms error for t 5 T, shown
in Fig. 5, is related to the scalar products of the Lya-
punov vectors by the exact expression (16). Although
at t 5 T the average growth rate is not much larger
than the first Lyapunov exponent, as shown in Fig. 3,
the large variability of the RMS growth rate reflects the
large variability of the scalar products as functions of
the initial state: when the eigenvectors are approxi-
mately orthogonal, the RMS growth rate is close to l1.

Singular vectors, in the limit of large t , were also
computed. The following conclusions can be drawn
about the asymptotic initial and final singular vectors.
The first final singular vector tends to the first Lyapunov
vector. The second final singular vector, in the same
limit, lies in the plane of the first two Lyapunov vectors,
but it is orthogonal to the first one, in agreement with
(20); therefore, it is not tangent to the flow, a property
of the Lyapunov vector corresponding to l2 5 0. Due
to the nonorthogonality of the vectors e i, perturbations
in the direction of the second (and third) final singular
vector belong to the unstable manifold.

The initial (asymptotic) third singular vector, accord-
ing to (21), is in the stable direction e3. The first and

second initial singular vector do not belong to the sub-
space spanned by e1 and e2. Since the attractor has Can-
tor set structure in any direction out of the plane spanned
by the first two Lyapunov vectors—two being the in-
teger part of the system dimension—the first two final
singular vectors identify perturbations on the attractor
while none of the initial singular vectors has such prop-
erty.

b. Aperiodic orbits

In section 4 we have defined the vectors e i as the
Lyapunov vectors and discussed how they can be con-
structed by intersecting the subspaces spanned by the
asymptotic initial and final singular vectors.

We test numerically this hypothesis in the Lorenz
system against the knowledge that the Lyapunov vector
corresponding to the zero exponent is tangent to the
flow.

To this end, we compute the initial and final singular
vectors referred to the same point along an aperiodic
trajectory, for increasing optimization times, until con-
vergence is obtained. We intersect the plane of the first
two final singular vectors with the plane of the last two
singular vectors to construct the vector e2 and take the
scalar product with the tangent to the flow. The mean
and standard deviation of the scalar product computed
for 10 000 different points, sampled along a trajectory
once every 100 time units, is shown in Table 1 as a
function of the optimization time interval t .

The results support our conclusions that (19)–(20)
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TABLE 1. Mean and standard deviation of the scalar product, s,
between the vector obtained intersecting the planes of the first two
final and the last two initial singular vectors with the tangent to the
flow, t, as a function of optimization time, t. For sufficiently large
t, we obtain the vector e2; that is, the Lyapunov vector corresponding
to the zero exponent and s 5 t · e2 converges to one.

t ^s& Standard deviation of s

1
2
3
4
5

0.94
0.99
0.99
1.00
1.00

0.15
0.05
0.04
0.02
0.02

6
7
8
9

10

1.00
1.00
1.00
1.00
1.00

0.01
0.01
0.01
0.00
0.00

define a set of vectors with the required property of
Lyapunov vectors, as discussed in section 4.

7. Summary and conclusions

The original motivation of this work was to inves-
tigate the relation between singular vectors and Lya-
punov vectors, as well as the consequences for finite
time error growth and in particular the mechanism re-
sponsible for super-Lyapunov growth.

To this end, we have exploited unstable periodic or-
bits of the Lorenz system as a tool for the study of
Lyapunov stability and transient error growth. Based
upon Floquet theory, we arrived at a number of con-
clusions applicable also to aperiodic orbits.

We have proposed a definition of Lyapunov vectors
that satisfies the Oseledec theorem and is consistent with
Floquet theory. These vectors coincide with Floquet ei-
genvectors in the specific case of a periodic orbit and
can be considered their generalization to the aperiodic
case. The main properties can be summarized as follows.

1) Lyapunov vectors (as Floquet eigenvectors) can be
obtained by intersecting the orthonormal sets of ini-
tial and final asymptotic singular vectors. In fact, the
initial and final sets of singular vectors in the limit
of infinite optimization time converge to the sets
obtained by orthonormalizing the Lyapunov vectors,
starting from the first one and the last one, respec-
tively.

2) In contrast to the eigenvalues and eigenvectors of
the stability matrix, which are complex if computed
for arbitrary time intervals, Floquet eigenvectors as
well as Lyapunov vectors are real, because their
spectrum in not degenerate.

3) Lyapunov vectors and Floquet eigenvectors are in-
dependent of the norm definition.

4) The local Lyapunov exponents are the local growth
rates associated with Lyapunov vectors (Floquet ei-
genvectors, for periodic orbits). In fact, their average
is given by the global Lyapunov exponents (the Flo-

quet exponents of the orbit) for time going both to
plus and minus infinity (plus or minus one period).
The same does not hold for growth rates associated
with singular vectors.

5) The Lyapunov vector (and Floquet eigenvector) cor-
responding to the zero exponent is tangent to the
flow; this property has been exploited to give nu-
merical evidence that our definition is consistent with
the notion of Lyapunov stability.

6) Lyapunov vectors (Floquet eigenvectors) are not in
general mutually orthogonal and, in fact, are found
to have large projections on one another in the Lo-
renz system.

7) From 1) it follows that the leading Lyapunov vectors
(and the asymptotic final singular vectors) are tan-
gent to the attractor, whereas, in the generic case of
nonorthogonality of Lyapunov vectors, the initial
singular vectors point in directions with Cantor set
structure of the attractor. In the Lorenz system, it
can be verified that the plane of the first two Lya-
punov vectors, two being the integer part of the sys-
tem’s dimension, is tangent to the surface where a
continuum of analogs can be found.

As an application, the mechanism responsible for su-
per-Lyapunov growth has been clarified. Growth rates
of random perturbations and perturbations in the direc-
tion of singular vectors are mathematically related to
local Lyapunov exponents via the scalar products of the
Lyapunov vectors. Accordingly, super-Lyapunov
growth in the Lorenz system is accounted for by the
nonorthogonality of the Lyapunov vectors. In short,
Lyapunov vectors play the same role as normal modes
in the stability of steady solutions and, because of their
nonorthogonality, perturbations may grow very fast in
a limited period of time.

A few remarks can be made on the implications of
the present findings and open questions regarding me-
teorological applications.

Evidence of super-Lyapunov growth of the average
error has not been found in GCMs (Savijarvi 1995;
Simmons et al. 1995). However, we would expect to
see large amplifications in those individual cases where
Lyapunov vectors have large projections on one another
and for particular perturbations. An example of this is
found in Szunyogh et al. (1997), who compared the
growth rate of finite time optimal perturbations with the
local Lyapunov exponent in a low-resolution GCM.

In ensemble forecasting, because of the large number
of degrees of freedom of numerical prediction models,
there may be a number of initial singular vectors that
grow very quickly during an initial short transient but
that, pointing in directions where the attractor is not
continuous, may be incompatible with the dynamics.
Instead, the relevant perturbations are those that grow
particularly fast during an initial transient period, yet,
being confined to the subspace of the leading Lyapunov
vectors, are on the attractor.
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The generation of such perturbations should be tested
against other current methods used in ensemble fore-
casting and adaptive observations.
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